//! Event handling types. use crate as bevy_ecs; use crate::system::{Local, Res, ResMut, SystemParam}; use bevy_utils::tracing::trace; use std::ops::{Deref, DerefMut}; use std::{ fmt::{self}, hash::Hash, marker::PhantomData, }; /// A type that can be stored in an [`Events`] resource /// You can conveniently access events using the [`EventReader`] and [`EventWriter`] system parameter. /// /// Events must be thread-safe. pub trait Event: Send + Sync + 'static {} impl Event for T where T: Send + Sync + 'static {} /// An `EventId` uniquely identifies an event. /// /// An `EventId` can among other things be used to trace the flow of an event from the point it was /// sent to the point it was processed. #[derive(Eq, PartialEq, Ord, PartialOrd, Hash)] pub struct EventId { pub id: usize, _marker: PhantomData, } impl Copy for EventId {} impl Clone for EventId { fn clone(&self) -> Self { *self } } impl fmt::Display for EventId { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { ::fmt(self, f) } } impl fmt::Debug for EventId { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!( f, "event<{}>#{}", std::any::type_name::().split("::").last().unwrap(), self.id, ) } } #[derive(Debug)] struct EventInstance { pub event_id: EventId, pub event: E, } /// An event collection that represents the events that occurred within the last two /// [`Events::update`] calls. /// Events can be written to using an [`EventWriter`] /// and are typically cheaply read using an [`EventReader`]. /// /// Each event can be consumed by multiple systems, in parallel, /// with consumption tracked by the [`EventReader`] on a per-system basis. /// /// If no [ordering](https://github.com/bevyengine/bevy/blob/main/examples/ecs/ecs_guide.rs) /// is applied between writing and reading systems, there is a risk of a race condition. /// This means that whether the events arrive before or after the next [`Events::update`] is unpredictable. /// /// This collection is meant to be paired with a system that calls /// [`Events::update`] exactly once per update/frame. /// /// [`Events::update_system`] is a system that does this, typically initialized automatically using /// [`add_event`](https://docs.rs/bevy/*/bevy/app/struct.App.html#method.add_event). /// [`EventReader`]s are expected to read events from this collection at least once per loop/frame. /// Events will persist across a single frame boundary and so ordering of event producers and /// consumers is not critical (although poorly-planned ordering may cause accumulating lag). /// If events are not handled by the end of the frame after they are updated, they will be /// dropped silently. /// /// # Example /// ``` /// use bevy_ecs::event::Events; /// /// struct MyEvent { /// value: usize /// } /// /// // setup /// let mut events = Events::::default(); /// let mut reader = events.get_reader(); /// /// // run this once per update/frame /// events.update(); /// /// // somewhere else: send an event /// events.send(MyEvent { value: 1 }); /// /// // somewhere else: read the events /// for event in reader.iter(&events) { /// assert_eq!(event.value, 1) /// } /// /// // events are only processed once per reader /// assert_eq!(reader.iter(&events).count(), 0); /// ``` /// /// # Details /// /// [`Events`] is implemented using a variation of a double buffer strategy. /// Each call to [`update`](Events::update) swaps buffers and clears out the oldest one. /// - [`EventReader`]s will read events from both buffers. /// - [`EventReader`]s that read at least once per update will never drop events. /// - [`EventReader`]s that read once within two updates might still receive some events /// - [`EventReader`]s that read after two updates are guaranteed to drop all events that occurred /// before those updates. /// /// The buffers in [`Events`] will grow indefinitely if [`update`](Events::update) is never called. /// /// An alternative call pattern would be to call [`update`](Events::update) /// manually across frames to control when events are cleared. /// This complicates consumption and risks ever-expanding memory usage if not cleaned up, /// but can be done by adding your event as a resource instead of using /// [`add_event`](https://docs.rs/bevy/*/bevy/app/struct.App.html#method.add_event). /// /// [Example usage.](https://github.com/bevyengine/bevy/blob/latest/examples/ecs/event.rs) /// [Example usage standalone.](https://github.com/bevyengine/bevy/blob/latest/crates/bevy_ecs/examples/events.rs) /// #[derive(Debug)] pub struct Events { /// Holds the oldest still active events. /// Note that a.start_event_count + a.len() should always === events_b.start_event_count. events_a: EventSequence, /// Holds the newer events. events_b: EventSequence, event_count: usize, } // Derived Default impl would incorrectly require E: Default impl Default for Events { fn default() -> Self { Self { events_a: Default::default(), events_b: Default::default(), event_count: Default::default(), } } } #[derive(Debug)] struct EventSequence { events: Vec>, start_event_count: usize, } // Derived Default impl would incorrectly require E: Default impl Default for EventSequence { fn default() -> Self { Self { events: Default::default(), start_event_count: Default::default(), } } } impl Deref for EventSequence { type Target = Vec>; fn deref(&self) -> &Self::Target { &self.events } } impl DerefMut for EventSequence { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.events } } /// Reads events of type `T` in order and tracks which events have already been read. #[derive(SystemParam)] pub struct EventReader<'w, 's, E: Event> { reader: Local<'s, ManualEventReader>, events: Res<'w, Events>, } impl<'w, 's, E: Event> EventReader<'w, 's, E> { /// Iterates over the events this [`EventReader`] has not seen yet. This updates the /// [`EventReader`]'s event counter, which means subsequent event reads will not include events /// that happened before now. pub fn iter(&mut self) -> impl DoubleEndedIterator + ExactSizeIterator { self.iter_with_id().map(|(event, _id)| event) } /// Like [`iter`](Self::iter), except also returning the [`EventId`] of the events. pub fn iter_with_id( &mut self, ) -> impl DoubleEndedIterator)> + ExactSizeIterator)> { self.reader.iter_with_id(&self.events).map(|r @ (_, id)| { trace!("EventReader::iter() -> {}", id); r }) } /// Determines the number of events available to be read from this [`EventReader`] without consuming any. pub fn len(&self) -> usize { self.reader.len(&self.events) } /// Determines if no events are available to be read without consuming any. /// If you need to consume the iterator you can use [`EventReader::clear`]. /// /// # Example /// /// The following example shows a common pattern of this function in conjunction with `clear` /// to avoid leaking events to the next schedule iteration while also checking if it was emitted. /// /// ``` /// # use bevy_ecs::prelude::*; /// # /// struct CollisionEvent; /// /// fn play_collision_sound(events: EventReader) { /// if !events.is_empty() { /// events.clear(); /// // Play a sound /// } /// } /// # bevy_ecs::system::assert_is_system(play_collision_sound); /// ``` pub fn is_empty(&self) -> bool { self.len() == 0 } /// Consumes the iterator. /// /// This means all currently available events will be removed before the next frame. /// This is useful when multiple events are sent in a single frame and you want /// to react to one or more events without needing to know how many were sent. /// In those situations you generally want to consume those events to make sure they don't appear in the next frame. /// /// For more information see [`EventReader::is_empty()`]. pub fn clear(mut self) { self.iter().last(); } } /// Sends events of type `T`. /// /// # Usage /// /// `EventWriter`s are usually declared as a [`SystemParam`]. /// ``` /// # use bevy_ecs::prelude::*; /// /// pub struct MyEvent; // Custom event type. /// fn my_system(mut writer: EventWriter) { /// writer.send(MyEvent); /// } /// /// # bevy_ecs::system::assert_is_system(my_system); /// ``` /// /// # Limitations /// /// `EventWriter` can only send events of one specific type, which must be known at compile-time. /// This is not a problem most of the time, but you may find a situation where you cannot know /// ahead of time every kind of event you'll need to send. In this case, you can use the "type-erased event" pattern. /// /// ``` /// # use bevy_ecs::{prelude::*, event::Events}; /// /// # pub struct MyEvent; /// fn send_untyped(mut commands: Commands) { /// // Send an event of a specific type without having to declare that /// // type as a SystemParam. /// // /// // Effectively, we're just moving the type parameter from the /type/ to the /method/, /// // which allows one to do all kinds of clever things with type erasure, such as sending /// // custom events to unknown 3rd party plugins (modding API). /// // /// // NOTE: the event won't actually be sent until commands get flushed /// // at the end of the current stage. /// commands.add(|w: &mut World| { /// let mut events_resource = w.resource_mut::>(); /// events_resource.send(MyEvent); /// }); /// } /// ``` /// Note that this is considered *non-idiomatic*, and should only be used when `EventWriter` will not work. #[derive(SystemParam)] pub struct EventWriter<'w, 's, E: Event> { events: ResMut<'w, Events>, #[system_param(ignore)] marker: PhantomData<&'s usize>, } impl<'w, 's, E: Event> EventWriter<'w, 's, E> { /// Sends an `event`. [`EventReader`]s can then read the event. /// See [`Events`] for details. pub fn send(&mut self, event: E) { self.events.send(event); } pub fn send_batch(&mut self, events: impl Iterator) { self.events.extend(events); } /// Sends the default value of the event. Useful when the event is an empty struct. pub fn send_default(&mut self) where E: Default, { self.events.send_default(); } } #[derive(Debug)] pub struct ManualEventReader { last_event_count: usize, _marker: PhantomData, } impl Default for ManualEventReader { fn default() -> Self { ManualEventReader { last_event_count: 0, _marker: Default::default(), } } } #[allow(clippy::len_without_is_empty)] // Check fails since the is_empty implementation has a signature other than `(&self) -> bool` impl ManualEventReader { /// See [`EventReader::iter`] pub fn iter<'a>( &'a mut self, events: &'a Events, ) -> impl DoubleEndedIterator + ExactSizeIterator { self.iter_with_id(events).map(|(e, _)| e) } /// See [`EventReader::iter_with_id`] pub fn iter_with_id<'a>( &'a mut self, events: &'a Events, ) -> impl DoubleEndedIterator)> + ExactSizeIterator)> { // if the reader has seen some of the events in a buffer, find the proper index offset. // otherwise read all events in the buffer let a_index = (self.last_event_count).saturating_sub(events.events_a.start_event_count); let b_index = (self.last_event_count).saturating_sub(events.events_b.start_event_count); let a = events.events_a.get(a_index..).unwrap_or_default(); let b = events.events_b.get(b_index..).unwrap_or_default(); let unread_count = a.len() + b.len(); // Ensure `len` is implemented correctly debug_assert_eq!(unread_count, self.len(events)); self.last_event_count = events.event_count - unread_count; // Iterate the oldest first, then the newer events let iterator = a.iter().chain(b.iter()); iterator .map(|e| (&e.event, e.event_id)) .with_exact_size(unread_count) .inspect(move |(_, id)| self.last_event_count = (id.id + 1).max(self.last_event_count)) } /// See [`EventReader::len`] pub fn len(&self, events: &Events) -> usize { // The number of events in this reader is the difference between the most recent event // and the last event seen by it. This will be at most the number of events contained // with the events (any others have already been dropped) // TODO: Warn when there are dropped events, or return e.g. a `Result` events .event_count .saturating_sub(self.last_event_count) .min(events.len()) } /// See [`EventReader::is_empty`] pub fn is_empty(&self, events: &Events) -> bool { self.len(events) == 0 } } trait IteratorExt { fn with_exact_size(self, len: usize) -> ExactSize where Self: Sized, { ExactSize::new(self, len) } } impl IteratorExt for I where I: Iterator {} #[must_use = "iterators are lazy and do nothing unless consumed"] #[derive(Clone)] struct ExactSize { iter: I, len: usize, } impl ExactSize { fn new(iter: I, len: usize) -> Self { ExactSize { iter, len } } } impl Iterator for ExactSize { type Item = I::Item; #[inline] fn next(&mut self) -> Option { self.iter.next().map(|e| { self.len -= 1; e }) } #[inline] fn size_hint(&self) -> (usize, Option) { (self.len, Some(self.len)) } } impl DoubleEndedIterator for ExactSize { #[inline] fn next_back(&mut self) -> Option { self.iter.next_back().map(|e| { self.len -= 1; e }) } } impl ExactSizeIterator for ExactSize { fn len(&self) -> usize { self.len } } impl Events { /// "Sends" an `event` by writing it to the current event buffer. [`EventReader`]s can then read /// the event. pub fn send(&mut self, event: E) { let event_id = EventId { id: self.event_count, _marker: PhantomData, }; trace!("Events::send() -> id: {}", event_id); let event_instance = EventInstance { event_id, event }; self.events_b.push(event_instance); self.event_count += 1; } /// Sends the default value of the event. Useful when the event is an empty struct. pub fn send_default(&mut self) where E: Default, { self.send(Default::default()); } /// Gets a new [`ManualEventReader`]. This will include all events already in the event buffers. pub fn get_reader(&self) -> ManualEventReader { ManualEventReader::default() } /// Gets a new [`ManualEventReader`]. This will ignore all events already in the event buffers. /// It will read all future events. pub fn get_reader_current(&self) -> ManualEventReader { ManualEventReader { last_event_count: self.event_count, ..Default::default() } } /// Swaps the event buffers and clears the oldest event buffer. In general, this should be /// called once per frame/update. pub fn update(&mut self) { std::mem::swap(&mut self.events_a, &mut self.events_b); self.events_b.clear(); self.events_b.start_event_count = self.event_count; debug_assert_eq!( self.events_a.start_event_count + self.events_a.len(), self.events_b.start_event_count ); } /// A system that calls [`Events::update`] once per frame. pub fn update_system(mut events: ResMut) { events.update(); } #[inline] fn reset_start_event_count(&mut self) { self.events_a.start_event_count = self.event_count; self.events_b.start_event_count = self.event_count; } /// Removes all events. #[inline] pub fn clear(&mut self) { self.reset_start_event_count(); self.events_a.clear(); self.events_b.clear(); } #[inline] pub fn len(&self) -> usize { self.events_a.len() + self.events_b.len() } /// Returns true if there are no events in this collection. #[inline] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Creates a draining iterator that removes all events. pub fn drain(&mut self) -> impl Iterator + '_ { self.reset_start_event_count(); // Drain the oldest events first, then the newest self.events_a .drain(..) .chain(self.events_b.drain(..)) .map(|i| i.event) } /// Iterates over events that happened since the last "update" call. /// WARNING: You probably don't want to use this call. In most cases you should use an /// [`EventReader`]. You should only use this if you know you only need to consume events /// between the last `update()` call and your call to `iter_current_update_events`. /// If events happen outside that window, they will not be handled. For example, any events that /// happen after this call and before the next `update()` call will be dropped. pub fn iter_current_update_events( &self, ) -> impl DoubleEndedIterator + ExactSizeIterator { self.events_b.iter().map(|i| &i.event) } } impl std::iter::Extend for Events { fn extend(&mut self, iter: I) where I: IntoIterator, { let mut event_count = self.event_count; let events = iter.into_iter().map(|event| { let event_id = EventId { id: event_count, _marker: PhantomData, }; event_count += 1; EventInstance { event_id, event } }); self.events_b.extend(events); trace!( "Events::extend() -> ids: ({}..{})", self.event_count, event_count ); self.event_count = event_count; } } #[cfg(test)] mod tests { use crate::{prelude::World, system::SystemState}; use super::*; #[derive(Copy, Clone, PartialEq, Eq, Debug)] struct TestEvent { i: usize, } #[test] fn test_events() { let mut events = Events::::default(); let event_0 = TestEvent { i: 0 }; let event_1 = TestEvent { i: 1 }; let event_2 = TestEvent { i: 2 }; // this reader will miss event_0 and event_1 because it wont read them over the course of // two updates let mut reader_missed = events.get_reader(); let mut reader_a = events.get_reader(); events.send(event_0); assert_eq!( get_events(&events, &mut reader_a), vec![event_0], "reader_a created before event receives event" ); assert_eq!( get_events(&events, &mut reader_a), vec![], "second iteration of reader_a created before event results in zero events" ); let mut reader_b = events.get_reader(); assert_eq!( get_events(&events, &mut reader_b), vec![event_0], "reader_b created after event receives event" ); assert_eq!( get_events(&events, &mut reader_b), vec![], "second iteration of reader_b created after event results in zero events" ); events.send(event_1); let mut reader_c = events.get_reader(); assert_eq!( get_events(&events, &mut reader_c), vec![event_0, event_1], "reader_c created after two events receives both events" ); assert_eq!( get_events(&events, &mut reader_c), vec![], "second iteration of reader_c created after two event results in zero events" ); assert_eq!( get_events(&events, &mut reader_a), vec![event_1], "reader_a receives next unread event" ); events.update(); let mut reader_d = events.get_reader(); events.send(event_2); assert_eq!( get_events(&events, &mut reader_a), vec![event_2], "reader_a receives event created after update" ); assert_eq!( get_events(&events, &mut reader_b), vec![event_1, event_2], "reader_b receives events created before and after update" ); assert_eq!( get_events(&events, &mut reader_d), vec![event_0, event_1, event_2], "reader_d receives all events created before and after update" ); events.update(); assert_eq!( get_events(&events, &mut reader_missed), vec![event_2], "reader_missed missed events unread after two update() calls" ); } fn get_events( events: &Events, reader: &mut ManualEventReader, ) -> Vec { reader.iter(events).cloned().collect::>() } #[derive(PartialEq, Eq, Debug)] struct E(usize); fn events_clear_and_read_impl(clear_func: impl FnOnce(&mut Events)) { let mut events = Events::::default(); let mut reader = events.get_reader(); assert!(reader.iter(&events).next().is_none()); events.send(E(0)); assert_eq!(*reader.iter(&events).next().unwrap(), E(0)); assert_eq!(reader.iter(&events).next(), None); events.send(E(1)); clear_func(&mut events); assert!(reader.iter(&events).next().is_none()); events.send(E(2)); events.update(); events.send(E(3)); assert!(reader.iter(&events).eq([E(2), E(3)].iter())); } #[test] fn test_events_clear_and_read() { events_clear_and_read_impl(|events| events.clear()); } #[test] fn test_events_drain_and_read() { events_clear_and_read_impl(|events| { assert!(events.drain().eq(vec![E(0), E(1)].into_iter())); }); } #[test] fn test_events_extend_impl() { let mut events = Events::::default(); let mut reader = events.get_reader(); events.extend(vec![TestEvent { i: 0 }, TestEvent { i: 1 }]); assert!(reader .iter(&events) .eq([TestEvent { i: 0 }, TestEvent { i: 1 }].iter())); } #[test] fn test_events_empty() { let mut events = Events::::default(); assert!(events.is_empty()); events.send(TestEvent { i: 0 }); assert!(!events.is_empty()); events.update(); assert!(!events.is_empty()); // events are only empty after the second call to update // due to double buffering. events.update(); assert!(events.is_empty()); } #[test] fn test_event_reader_len_empty() { let events = Events::::default(); assert_eq!(events.get_reader().len(&events), 0); assert!(events.get_reader().is_empty(&events)); } #[test] fn test_event_reader_len_filled() { let mut events = Events::::default(); events.send(TestEvent { i: 0 }); assert_eq!(events.get_reader().len(&events), 1); assert!(!events.get_reader().is_empty(&events)); } #[test] fn test_event_iter_len_updated() { let mut events = Events::::default(); events.send(TestEvent { i: 0 }); events.send(TestEvent { i: 1 }); events.send(TestEvent { i: 2 }); let mut reader = events.get_reader(); let mut iter = reader.iter(&events); assert_eq!(iter.len(), 3); iter.next(); assert_eq!(iter.len(), 2); iter.next_back(); assert_eq!(iter.len(), 1); } #[test] fn test_event_reader_len_current() { let mut events = Events::::default(); events.send(TestEvent { i: 0 }); let reader = events.get_reader_current(); dbg!(&reader); dbg!(&events); assert!(reader.is_empty(&events)); events.send(TestEvent { i: 0 }); assert_eq!(reader.len(&events), 1); assert!(!reader.is_empty(&events)); } #[test] fn test_event_reader_len_update() { let mut events = Events::::default(); events.send(TestEvent { i: 0 }); events.send(TestEvent { i: 0 }); let reader = events.get_reader(); assert_eq!(reader.len(&events), 2); events.update(); events.send(TestEvent { i: 0 }); assert_eq!(reader.len(&events), 3); events.update(); assert_eq!(reader.len(&events), 1); events.update(); assert!(reader.is_empty(&events)); } #[test] fn test_event_reader_clear() { use bevy_ecs::prelude::*; let mut world = World::new(); let mut events = Events::::default(); events.send(TestEvent { i: 0 }); world.insert_resource(events); let mut reader = IntoSystem::into_system(|events: EventReader| -> bool { if !events.is_empty() { events.clear(); false } else { true } }); reader.initialize(&mut world); let is_empty = reader.run((), &mut world); assert!(!is_empty, "EventReader should not be empty"); let is_empty = reader.run((), &mut world); assert!(is_empty, "EventReader should be empty"); } #[derive(Clone, PartialEq, Debug, Default)] struct EmptyTestEvent; #[test] fn test_firing_empty_event() { let mut events = Events::::default(); events.send_default(); let mut reader = events.get_reader(); assert_eq!( get_events(&events, &mut reader), vec![EmptyTestEvent::default()] ); } #[test] fn ensure_reader_readonly() { fn read_for() { let mut world = World::new(); world.init_resource::>(); let mut state = SystemState::>::new(&mut world); // This can only work if EventReader only reads the world let _reader = state.get(&world); } read_for::(); } }