use std::fmt::Debug; use bevy_utils::{ petgraph::{algo::TarjanScc, graphmap::NodeTrait, prelude::*}, HashMap, HashSet, }; use fixedbitset::FixedBitSet; use crate::schedule::set::*; /// Unique identifier for a system or system set stored in a [`ScheduleGraph`]. /// /// [`ScheduleGraph`]: super::ScheduleGraph #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)] pub enum NodeId { /// Identifier for a system. System(usize), /// Identifier for a system set. Set(usize), } impl NodeId { /// Returns the internal integer value. pub(crate) fn index(&self) -> usize { match self { NodeId::System(index) | NodeId::Set(index) => *index, } } /// Returns `true` if the identified node is a system. pub const fn is_system(&self) -> bool { matches!(self, NodeId::System(_)) } /// Returns `true` if the identified node is a system set. pub const fn is_set(&self) -> bool { matches!(self, NodeId::Set(_)) } } /// Specifies what kind of edge should be added to the dependency graph. #[derive(Debug, Clone, Copy, Eq, PartialEq, PartialOrd, Ord, Hash)] pub(crate) enum DependencyKind { /// A node that should be preceded. Before, /// A node that should be succeeded. After, } /// An edge to be added to the dependency graph. #[derive(Clone)] pub(crate) struct Dependency { pub(crate) kind: DependencyKind, pub(crate) set: InternedSystemSet, } impl Dependency { pub fn new(kind: DependencyKind, set: InternedSystemSet) -> Self { Self { kind, set } } } /// Configures ambiguity detection for a single system. #[derive(Clone, Debug, Default)] pub(crate) enum Ambiguity { #[default] Check, /// Ignore warnings with systems in any of these system sets. May contain duplicates. IgnoreWithSet(Vec), /// Ignore all warnings. IgnoreAll, } #[derive(Clone, Default)] pub(crate) struct GraphInfo { pub(crate) sets: Vec, pub(crate) dependencies: Vec, pub(crate) ambiguous_with: Ambiguity, } /// Converts 2D row-major pair of indices into a 1D array index. pub(crate) fn index(row: usize, col: usize, num_cols: usize) -> usize { debug_assert!(col < num_cols); (row * num_cols) + col } /// Converts a 1D array index into a 2D row-major pair of indices. pub(crate) fn row_col(index: usize, num_cols: usize) -> (usize, usize) { (index / num_cols, index % num_cols) } /// Stores the results of the graph analysis. pub(crate) struct CheckGraphResults { /// Boolean reachability matrix for the graph. pub(crate) reachable: FixedBitSet, /// Pairs of nodes that have a path connecting them. pub(crate) connected: HashSet<(V, V)>, /// Pairs of nodes that don't have a path connecting them. pub(crate) disconnected: Vec<(V, V)>, /// Edges that are redundant because a longer path exists. pub(crate) transitive_edges: Vec<(V, V)>, /// Variant of the graph with no transitive edges. pub(crate) transitive_reduction: DiGraphMap, /// Variant of the graph with all possible transitive edges. // TODO: this will very likely be used by "if-needed" ordering #[allow(dead_code)] pub(crate) transitive_closure: DiGraphMap, } impl Default for CheckGraphResults { fn default() -> Self { Self { reachable: FixedBitSet::new(), connected: HashSet::new(), disconnected: Vec::new(), transitive_edges: Vec::new(), transitive_reduction: DiGraphMap::new(), transitive_closure: DiGraphMap::new(), } } } /// Processes a DAG and computes its: /// - transitive reduction (along with the set of removed edges) /// - transitive closure /// - reachability matrix (as a bitset) /// - pairs of nodes connected by a path /// - pairs of nodes not connected by a path /// /// The algorithm implemented comes from /// ["On the calculation of transitive reduction-closure of orders"][1] by Habib, Morvan and Rampon. /// /// [1]: https://doi.org/10.1016/0012-365X(93)90164-O pub(crate) fn check_graph( graph: &DiGraphMap, topological_order: &[V], ) -> CheckGraphResults where V: NodeTrait + Debug, { if graph.node_count() == 0 { return CheckGraphResults::default(); } let n = graph.node_count(); // build a copy of the graph where the nodes and edges appear in topsorted order let mut map = HashMap::with_capacity(n); let mut topsorted = DiGraphMap::::new(); // iterate nodes in topological order for (i, &node) in topological_order.iter().enumerate() { map.insert(node, i); topsorted.add_node(node); // insert nodes as successors to their predecessors for pred in graph.neighbors_directed(node, Direction::Incoming) { topsorted.add_edge(pred, node, ()); } } let mut reachable = FixedBitSet::with_capacity(n * n); let mut connected = HashSet::new(); let mut disconnected = Vec::new(); let mut transitive_edges = Vec::new(); let mut transitive_reduction = DiGraphMap::::new(); let mut transitive_closure = DiGraphMap::::new(); let mut visited = FixedBitSet::with_capacity(n); // iterate nodes in topological order for node in topsorted.nodes() { transitive_reduction.add_node(node); transitive_closure.add_node(node); } // iterate nodes in reverse topological order for a in topsorted.nodes().rev() { let index_a = *map.get(&a).unwrap(); // iterate their successors in topological order for b in topsorted.neighbors_directed(a, Direction::Outgoing) { let index_b = *map.get(&b).unwrap(); debug_assert!(index_a < index_b); if !visited[index_b] { // edge is not redundant transitive_reduction.add_edge(a, b, ()); transitive_closure.add_edge(a, b, ()); reachable.insert(index(index_a, index_b, n)); let successors = transitive_closure .neighbors_directed(b, Direction::Outgoing) .collect::>(); for c in successors { let index_c = *map.get(&c).unwrap(); debug_assert!(index_b < index_c); if !visited[index_c] { visited.insert(index_c); transitive_closure.add_edge(a, c, ()); reachable.insert(index(index_a, index_c, n)); } } } else { // edge is redundant transitive_edges.push((a, b)); } } visited.clear(); } // partition pairs of nodes into "connected by path" and "not connected by path" for i in 0..(n - 1) { // reachable is upper triangular because the nodes were topsorted for index in index(i, i + 1, n)..=index(i, n - 1, n) { let (a, b) = row_col(index, n); let pair = (topological_order[a], topological_order[b]); if reachable[index] { connected.insert(pair); } else { disconnected.push(pair); } } } // fill diagonal (nodes reach themselves) // for i in 0..n { // reachable.set(index(i, i, n), true); // } CheckGraphResults { reachable, connected, disconnected, transitive_edges, transitive_reduction, transitive_closure, } } /// Returns the simple cycles in a strongly-connected component of a directed graph. /// /// The algorithm implemented comes from /// ["Finding all the elementary circuits of a directed graph"][1] by D. B. Johnson. /// /// [1]: https://doi.org/10.1137/0204007 pub fn simple_cycles_in_component(graph: &DiGraphMap, scc: &[N]) -> Vec> where N: NodeTrait + Debug, { let mut cycles = vec![]; let mut sccs = vec![scc.to_vec()]; while let Some(mut scc) = sccs.pop() { // only look at nodes and edges in this strongly-connected component let mut subgraph = DiGraphMap::new(); for &node in &scc { subgraph.add_node(node); } for &node in &scc { for successor in graph.neighbors(node) { if subgraph.contains_node(successor) { subgraph.add_edge(node, successor, ()); } } } // path of nodes that may form a cycle let mut path = Vec::with_capacity(subgraph.node_count()); // we mark nodes as "blocked" to avoid finding permutations of the same cycles let mut blocked = HashSet::with_capacity(subgraph.node_count()); // connects nodes along path segments that can't be part of a cycle (given current root) // those nodes can be unblocked at the same time let mut unblock_together: HashMap> = HashMap::with_capacity(subgraph.node_count()); // stack for unblocking nodes let mut unblock_stack = Vec::with_capacity(subgraph.node_count()); // nodes can be involved in multiple cycles let mut maybe_in_more_cycles: HashSet = HashSet::with_capacity(subgraph.node_count()); // stack for DFS let mut stack = Vec::with_capacity(subgraph.node_count()); // we're going to look for all cycles that begin and end at this node let root = scc.pop().unwrap(); // start a path at the root path.clear(); path.push(root); // mark this node as blocked blocked.insert(root); // DFS stack.clear(); stack.push((root, subgraph.neighbors(root))); while !stack.is_empty() { let (ref node, successors) = stack.last_mut().unwrap(); if let Some(next) = successors.next() { if next == root { // found a cycle maybe_in_more_cycles.extend(path.iter()); cycles.push(path.clone()); } else if !blocked.contains(&next) { // first time seeing `next` on this path maybe_in_more_cycles.remove(&next); path.push(next); blocked.insert(next); stack.push((next, subgraph.neighbors(next))); continue; } else { // not first time seeing `next` on this path } } if successors.peekable().peek().is_none() { if maybe_in_more_cycles.contains(node) { unblock_stack.push(*node); // unblock this node's ancestors while let Some(n) = unblock_stack.pop() { if blocked.remove(&n) { let unblock_predecessors = unblock_together.entry(n).or_insert_with(HashSet::new); unblock_stack.extend(unblock_predecessors.iter()); unblock_predecessors.clear(); } } } else { // if its descendants can be unblocked later, this node will be too for successor in subgraph.neighbors(*node) { unblock_together .entry(successor) .or_insert_with(HashSet::new) .insert(*node); } } // remove node from path and DFS stack path.pop(); stack.pop(); } } // remove node from subgraph subgraph.remove_node(root); // divide remainder into smaller SCCs let mut tarjan_scc = TarjanScc::new(); tarjan_scc.run(&subgraph, |scc| { if scc.len() > 1 { sccs.push(scc.to_vec()); } }); } cycles }