#import bevy_pbr::prepass_bindings #import bevy_pbr::pbr_bindings #ifdef NORMAL_PREPASS #import bevy_pbr::pbr_functions #endif // NORMAL_PREPASS struct FragmentInput { @builtin(front_facing) is_front: bool, @builtin(position) frag_coord: vec4, #ifdef VERTEX_UVS @location(0) uv: vec2, #endif // VERTEX_UVS #ifdef NORMAL_PREPASS @location(1) world_normal: vec3, #ifdef VERTEX_TANGENTS @location(2) world_tangent: vec4, #endif // VERTEX_TANGENTS #endif // NORMAL_PREPASS #ifdef MOTION_VECTOR_PREPASS @location(3) world_position: vec4, @location(4) previous_world_position: vec4, #endif // MOTION_VECTOR_PREPASS #ifdef DEPTH_CLAMP_ORTHO @location(5) clip_position_unclamped: vec4, #endif // DEPTH_CLAMP_ORTHO }; // Cutoff used for the premultiplied alpha modes BLEND and ADD. const PREMULTIPLIED_ALPHA_CUTOFF = 0.05; // We can use a simplified version of alpha_discard() here since we only need to handle the alpha_cutoff fn prepass_alpha_discard(in: FragmentInput) { #ifdef MAY_DISCARD var output_color: vec4 = material.base_color; #ifdef VERTEX_UVS if (material.flags & STANDARD_MATERIAL_FLAGS_BASE_COLOR_TEXTURE_BIT) != 0u { output_color = output_color * textureSampleBias(base_color_texture, base_color_sampler, in.uv, view.mip_bias); } #endif // VERTEX_UVS let alpha_mode = material.flags & STANDARD_MATERIAL_FLAGS_ALPHA_MODE_RESERVED_BITS; if alpha_mode == STANDARD_MATERIAL_FLAGS_ALPHA_MODE_MASK { if output_color.a < material.alpha_cutoff { discard; } } else if (alpha_mode == STANDARD_MATERIAL_FLAGS_ALPHA_MODE_BLEND || alpha_mode == STANDARD_MATERIAL_FLAGS_ALPHA_MODE_ADD) { if output_color.a < PREMULTIPLIED_ALPHA_CUTOFF { discard; } } else if alpha_mode == STANDARD_MATERIAL_FLAGS_ALPHA_MODE_PREMULTIPLIED { if all(output_color < vec4(PREMULTIPLIED_ALPHA_CUTOFF)) { discard; } } #endif // MAY_DISCARD } #ifdef PREPASS_FRAGMENT struct FragmentOutput { #ifdef NORMAL_PREPASS @location(0) normal: vec4, #endif // NORMAL_PREPASS #ifdef MOTION_VECTOR_PREPASS @location(1) motion_vector: vec2, #endif // MOTION_VECTOR_PREPASS #ifdef DEPTH_CLAMP_ORTHO @builtin(frag_depth) frag_depth: f32, #endif // DEPTH_CLAMP_ORTHO } @fragment fn fragment(in: FragmentInput) -> FragmentOutput { prepass_alpha_discard(in); var out: FragmentOutput; #ifdef DEPTH_CLAMP_ORTHO out.frag_depth = in.clip_position_unclamped.z; #endif // DEPTH_CLAMP_ORTHO #ifdef NORMAL_PREPASS // NOTE: Unlit bit not set means == 0 is true, so the true case is if lit if (material.flags & STANDARD_MATERIAL_FLAGS_UNLIT_BIT) == 0u { let world_normal = prepare_world_normal( in.world_normal, (material.flags & STANDARD_MATERIAL_FLAGS_DOUBLE_SIDED_BIT) != 0u, in.is_front, ); let normal = apply_normal_mapping( material.flags, world_normal, #ifdef VERTEX_TANGENTS #ifdef STANDARDMATERIAL_NORMAL_MAP in.world_tangent, #endif // STANDARDMATERIAL_NORMAL_MAP #endif // VERTEX_TANGENTS #ifdef VERTEX_UVS in.uv, #endif // VERTEX_UVS ); out.normal = vec4(normal * 0.5 + vec3(0.5), 1.0); } else { out.normal = vec4(in.world_normal * 0.5 + vec3(0.5), 1.0); } #endif // NORMAL_PREPASS #ifdef MOTION_VECTOR_PREPASS let clip_position_t = view.unjittered_view_proj * in.world_position; let clip_position = clip_position_t.xy / clip_position_t.w; let previous_clip_position_t = previous_view_proj * in.previous_world_position; let previous_clip_position = previous_clip_position_t.xy / previous_clip_position_t.w; // These motion vectors are used as offsets to UV positions and are stored // in the range -1,1 to allow offsetting from the one corner to the // diagonally-opposite corner in UV coordinates, in either direction. // A difference between diagonally-opposite corners of clip space is in the // range -2,2, so this needs to be scaled by 0.5. And the V direction goes // down where clip space y goes up, so y needs to be flipped. out.motion_vector = (clip_position - previous_clip_position) * vec2(0.5, -0.5); #endif // MOTION_VECTOR_PREPASS return out; } #else @fragment fn fragment(in: FragmentInput) { prepass_alpha_discard(in); } #endif // PREPASS_FRAGMENT