use anyhow::Result; use bevy_asset::{ AssetIoError, AssetLoader, AssetPath, BoxedFuture, Handle, LoadContext, LoadedAsset, }; use bevy_core::Name; use bevy_ecs::world::World; use bevy_math::Mat4; use bevy_pbr::prelude::{PbrBundle, StandardMaterial}; use bevy_render::{ camera::{ Camera, CameraProjection, OrthographicProjection, PerspectiveProjection, VisibleEntities, }, mesh::{Indices, Mesh, VertexAttributeValues}, pipeline::PrimitiveTopology, prelude::{Color, Texture}, render_graph::base, texture::{AddressMode, FilterMode, ImageType, SamplerDescriptor, TextureError, TextureFormat}, }; use bevy_scene::Scene; use bevy_transform::{ hierarchy::{BuildWorldChildren, WorldChildBuilder}, prelude::{GlobalTransform, Transform}, }; use gltf::{ mesh::Mode, texture::{MagFilter, MinFilter, WrappingMode}, Material, Primitive, }; use std::{ collections::{HashMap, HashSet}, path::Path, }; use thiserror::Error; use crate::{Gltf, GltfNode}; /// An error that occurs when loading a GLTF file #[derive(Error, Debug)] pub enum GltfError { #[error("unsupported primitive mode")] UnsupportedPrimitive { mode: Mode }, #[error("invalid GLTF file: {0}")] Gltf(#[from] gltf::Error), #[error("binary blob is missing")] MissingBlob, #[error("failed to decode base64 mesh data")] Base64Decode(#[from] base64::DecodeError), #[error("unsupported buffer format")] BufferFormatUnsupported, #[error("invalid image mime type: {0}")] InvalidImageMimeType(String), #[error("{0}")] ImageError(#[from] TextureError), #[error("failed to load an asset path: {0}")] AssetIoError(#[from] AssetIoError), } /// Loads meshes from GLTF files into Mesh assets #[derive(Default)] pub struct GltfLoader; impl AssetLoader for GltfLoader { fn load<'a>( &'a self, bytes: &'a [u8], load_context: &'a mut LoadContext, ) -> BoxedFuture<'a, Result<()>> { Box::pin(async move { Ok(load_gltf(bytes, load_context).await?) }) } fn extensions(&self) -> &[&str] { &["gltf", "glb"] } } async fn load_gltf<'a, 'b>( bytes: &'a [u8], load_context: &'a mut LoadContext<'b>, ) -> Result<(), GltfError> { let gltf = gltf::Gltf::from_slice(bytes)?; let buffer_data = load_buffers(&gltf, load_context, load_context.path()).await?; let mut materials = vec![]; let mut named_materials = HashMap::new(); let mut linear_textures = HashSet::new(); for material in gltf.materials() { let handle = load_material(&material, load_context); if let Some(name) = material.name() { named_materials.insert(name.to_string(), handle.clone()); } materials.push(handle); if let Some(texture) = material.normal_texture() { linear_textures.insert(texture.texture().index()); } if let Some(texture) = material.occlusion_texture() { linear_textures.insert(texture.texture().index()); } if let Some(texture) = material .pbr_metallic_roughness() .metallic_roughness_texture() { linear_textures.insert(texture.texture().index()); } } let mut meshes = vec![]; let mut named_meshes = HashMap::new(); for mesh in gltf.meshes() { let mut primitives = vec![]; for primitive in mesh.primitives() { let primitive_label = primitive_label(&mesh, &primitive); let reader = primitive.reader(|buffer| Some(&buffer_data[buffer.index()])); let primitive_topology = get_primitive_topology(primitive.mode())?; let mut mesh = Mesh::new(primitive_topology); if let Some(vertex_attribute) = reader .read_positions() .map(|v| VertexAttributeValues::Float3(v.collect())) { mesh.set_attribute(Mesh::ATTRIBUTE_POSITION, vertex_attribute); } if let Some(vertex_attribute) = reader .read_normals() .map(|v| VertexAttributeValues::Float3(v.collect())) { mesh.set_attribute(Mesh::ATTRIBUTE_NORMAL, vertex_attribute); } if let Some(vertex_attribute) = reader .read_tangents() .map(|v| VertexAttributeValues::Float4(v.collect())) { mesh.set_attribute(Mesh::ATTRIBUTE_TANGENT, vertex_attribute); } if let Some(vertex_attribute) = reader .read_tex_coords(0) .map(|v| VertexAttributeValues::Float2(v.into_f32().collect())) { mesh.set_attribute(Mesh::ATTRIBUTE_UV_0, vertex_attribute); } if let Some(vertex_attribute) = reader .read_colors(0) .map(|v| VertexAttributeValues::Float4(v.into_rgba_f32().collect())) { mesh.set_attribute(Mesh::ATTRIBUTE_COLOR, vertex_attribute); } if let Some(indices) = reader.read_indices() { mesh.set_indices(Some(Indices::U32(indices.into_u32().collect()))); }; let mesh = load_context.set_labeled_asset(&primitive_label, LoadedAsset::new(mesh)); primitives.push(super::GltfPrimitive { mesh, material: primitive .material() .index() .and_then(|i| materials.get(i).cloned()), }); } let handle = load_context.set_labeled_asset( &mesh_label(&mesh), LoadedAsset::new(super::GltfMesh { primitives }), ); if let Some(name) = mesh.name() { named_meshes.insert(name.to_string(), handle.clone()); } meshes.push(handle); } let mut nodes_intermediate = vec![]; let mut named_nodes_intermediate = HashMap::new(); for node in gltf.nodes() { let node_label = node_label(&node); nodes_intermediate.push(( node_label, GltfNode { children: vec![], mesh: node .mesh() .map(|mesh| mesh.index()) .and_then(|i| meshes.get(i).cloned()), transform: match node.transform() { gltf::scene::Transform::Matrix { matrix } => { Transform::from_matrix(bevy_math::Mat4::from_cols_array_2d(&matrix)) } gltf::scene::Transform::Decomposed { translation, rotation, scale, } => Transform { translation: bevy_math::Vec3::from(translation), rotation: bevy_math::Quat::from(rotation), scale: bevy_math::Vec3::from(scale), }, }, }, node.children() .map(|child| child.index()) .collect::>(), )); if let Some(name) = node.name() { named_nodes_intermediate.insert(name, node.index()); } } let nodes = resolve_node_hierarchy(nodes_intermediate) .into_iter() .map(|(label, node)| load_context.set_labeled_asset(&label, LoadedAsset::new(node))) .collect::>>(); let named_nodes = named_nodes_intermediate .into_iter() .filter_map(|(name, index)| { nodes .get(index) .map(|handle| (name.to_string(), handle.clone())) }) .collect(); for gltf_texture in gltf.textures() { let mut texture = match gltf_texture.source().source() { gltf::image::Source::View { view, mime_type } => { let start = view.offset() as usize; let end = (view.offset() + view.length()) as usize; let buffer = &buffer_data[view.buffer().index()][start..end]; Texture::from_buffer(buffer, ImageType::MimeType(mime_type))? } gltf::image::Source::Uri { uri, mime_type } => { let uri = percent_encoding::percent_decode_str(uri) .decode_utf8() .unwrap(); let uri = uri.as_ref(); let (bytes, image_type) = match DataUri::parse(uri) { Ok(data_uri) => (data_uri.decode()?, ImageType::MimeType(data_uri.mime_type)), Err(()) => { let parent = load_context.path().parent().unwrap(); let image_path = parent.join(uri); let bytes = load_context.read_asset_bytes(image_path.clone()).await?; let extension = Path::new(uri).extension().unwrap().to_str().unwrap(); let image_type = ImageType::Extension(extension); (bytes, image_type) } }; Texture::from_buffer( &bytes, mime_type .map(|mt| ImageType::MimeType(mt)) .unwrap_or(image_type), )? } }; let texture_label = texture_label(&gltf_texture); texture.sampler = texture_sampler(&gltf_texture); if linear_textures.contains(&gltf_texture.index()) { texture.format = TextureFormat::Rgba8Unorm; } load_context.set_labeled_asset::(&texture_label, LoadedAsset::new(texture)); } let mut scenes = vec![]; let mut named_scenes = HashMap::new(); for scene in gltf.scenes() { let mut err = None; let mut world = World::default(); world .spawn() .insert_bundle((Transform::identity(), GlobalTransform::identity())) .with_children(|parent| { for node in scene.nodes() { let result = load_node(&node, parent, load_context, &buffer_data); if result.is_err() { err = Some(result); return; } } }); if let Some(Err(err)) = err { return Err(err); } let scene_handle = load_context .set_labeled_asset(&scene_label(&scene), LoadedAsset::new(Scene::new(world))); if let Some(name) = scene.name() { named_scenes.insert(name.to_string(), scene_handle.clone()); } scenes.push(scene_handle); } load_context.set_default_asset(LoadedAsset::new(Gltf { default_scene: gltf .default_scene() .and_then(|scene| scenes.get(scene.index())) .cloned(), scenes, named_scenes, meshes, named_meshes, materials, named_materials, nodes, named_nodes, })); Ok(()) } fn load_material(material: &Material, load_context: &mut LoadContext) -> Handle { let material_label = material_label(&material); let pbr = material.pbr_metallic_roughness(); let color = pbr.base_color_factor(); let base_color_texture = if let Some(info) = pbr.base_color_texture() { // TODO: handle info.tex_coord() (the *set* index for the right texcoords) let label = texture_label(&info.texture()); let path = AssetPath::new_ref(load_context.path(), Some(&label)); Some(load_context.get_handle(path)) } else { None }; let normal_map = if let Some(normal_texture) = material.normal_texture() { // TODO: handle normal_texture.scale // TODO: handle normal_texture.tex_coord() (the *set* index for the right texcoords) let label = texture_label(&normal_texture.texture()); let path = AssetPath::new_ref(load_context.path(), Some(&label)); Some(load_context.get_handle(path)) } else { None }; let metallic_roughness_texture = if let Some(info) = pbr.metallic_roughness_texture() { // TODO: handle info.tex_coord() (the *set* index for the right texcoords) let label = texture_label(&info.texture()); let path = AssetPath::new_ref(load_context.path(), Some(&label)); Some(load_context.get_handle(path)) } else { None }; let occlusion_texture = if let Some(occlusion_texture) = material.occlusion_texture() { // TODO: handle occlusion_texture.tex_coord() (the *set* index for the right texcoords) // TODO: handle occlusion_texture.strength() (a scalar multiplier for occlusion strength) let label = texture_label(&occlusion_texture.texture()); let path = AssetPath::new_ref(load_context.path(), Some(&label)); Some(load_context.get_handle(path)) } else { None }; let emissive = material.emissive_factor(); let emissive_texture = if let Some(info) = material.emissive_texture() { // TODO: handle occlusion_texture.tex_coord() (the *set* index for the right texcoords) // TODO: handle occlusion_texture.strength() (a scalar multiplier for occlusion strength) let label = texture_label(&info.texture()); let path = AssetPath::new_ref(load_context.path(), Some(&label)); Some(load_context.get_handle(path)) } else { None }; load_context.set_labeled_asset( &material_label, LoadedAsset::new(StandardMaterial { base_color: Color::rgba(color[0], color[1], color[2], color[3]), base_color_texture, roughness: pbr.roughness_factor(), metallic: pbr.metallic_factor(), metallic_roughness_texture, normal_map, double_sided: material.double_sided(), occlusion_texture, emissive: Color::rgba(emissive[0], emissive[1], emissive[2], 1.0), emissive_texture, unlit: material.unlit(), ..Default::default() }), ) } fn load_node( gltf_node: &gltf::Node, world_builder: &mut WorldChildBuilder, load_context: &mut LoadContext, buffer_data: &[Vec], ) -> Result<(), GltfError> { let transform = gltf_node.transform(); let mut gltf_error = None; let mut node = world_builder.spawn_bundle(( Transform::from_matrix(Mat4::from_cols_array_2d(&transform.matrix())), GlobalTransform::identity(), )); if let Some(name) = gltf_node.name() { node.insert(Name::new(name.to_string())); } // create camera node if let Some(camera) = gltf_node.camera() { node.insert(VisibleEntities { ..Default::default() }); match camera.projection() { gltf::camera::Projection::Orthographic(orthographic) => { let xmag = orthographic.xmag(); let ymag = orthographic.ymag(); let orthographic_projection: OrthographicProjection = OrthographicProjection { left: -xmag, right: xmag, top: ymag, bottom: -ymag, far: orthographic.zfar(), near: orthographic.znear(), ..Default::default() }; node.insert(Camera { name: Some(base::camera::CAMERA_2D.to_owned()), projection_matrix: orthographic_projection.get_projection_matrix(), ..Default::default() }); node.insert(orthographic_projection); } gltf::camera::Projection::Perspective(perspective) => { let mut perspective_projection: PerspectiveProjection = PerspectiveProjection { fov: perspective.yfov(), near: perspective.znear(), ..Default::default() }; if let Some(zfar) = perspective.zfar() { perspective_projection.far = zfar; } if let Some(aspect_ratio) = perspective.aspect_ratio() { perspective_projection.aspect_ratio = aspect_ratio; } node.insert(Camera { name: Some(base::camera::CAMERA_3D.to_owned()), projection_matrix: perspective_projection.get_projection_matrix(), ..Default::default() }); node.insert(perspective_projection); } } } node.with_children(|parent| { if let Some(mesh) = gltf_node.mesh() { // append primitives for primitive in mesh.primitives() { let material = primitive.material(); let material_label = material_label(&material); // This will make sure we load the default material now since it would not have been // added when iterating over all the gltf materials (since the default material is // not explicitly listed in the gltf). if !load_context.has_labeled_asset(&material_label) { load_material(&material, load_context); } let primitive_label = primitive_label(&mesh, &primitive); let mesh_asset_path = AssetPath::new_ref(load_context.path(), Some(&primitive_label)); let material_asset_path = AssetPath::new_ref(load_context.path(), Some(&material_label)); parent.spawn_bundle(PbrBundle { mesh: load_context.get_handle(mesh_asset_path), material: load_context.get_handle(material_asset_path), ..Default::default() }); } } // append other nodes for child in gltf_node.children() { if let Err(err) = load_node(&child, parent, load_context, buffer_data) { gltf_error = Some(err); return; } } }); if let Some(err) = gltf_error { Err(err) } else { Ok(()) } } fn mesh_label(mesh: &gltf::Mesh) -> String { format!("Mesh{}", mesh.index()) } fn primitive_label(mesh: &gltf::Mesh, primitive: &Primitive) -> String { format!("Mesh{}/Primitive{}", mesh.index(), primitive.index()) } fn material_label(material: &gltf::Material) -> String { if let Some(index) = material.index() { format!("Material{}", index) } else { "MaterialDefault".to_string() } } fn texture_label(texture: &gltf::Texture) -> String { format!("Texture{}", texture.index()) } fn node_label(node: &gltf::Node) -> String { format!("Node{}", node.index()) } fn scene_label(scene: &gltf::Scene) -> String { format!("Scene{}", scene.index()) } fn texture_sampler(texture: &gltf::Texture) -> SamplerDescriptor { let gltf_sampler = texture.sampler(); SamplerDescriptor { address_mode_u: texture_address_mode(&gltf_sampler.wrap_s()), address_mode_v: texture_address_mode(&gltf_sampler.wrap_t()), mag_filter: gltf_sampler .mag_filter() .map(|mf| match mf { MagFilter::Nearest => FilterMode::Nearest, MagFilter::Linear => FilterMode::Linear, }) .unwrap_or(SamplerDescriptor::default().mag_filter), min_filter: gltf_sampler .min_filter() .map(|mf| match mf { MinFilter::Nearest | MinFilter::NearestMipmapNearest | MinFilter::NearestMipmapLinear => FilterMode::Nearest, MinFilter::Linear | MinFilter::LinearMipmapNearest | MinFilter::LinearMipmapLinear => FilterMode::Linear, }) .unwrap_or(SamplerDescriptor::default().min_filter), mipmap_filter: gltf_sampler .min_filter() .map(|mf| match mf { MinFilter::Nearest | MinFilter::Linear | MinFilter::NearestMipmapNearest | MinFilter::LinearMipmapNearest => FilterMode::Nearest, MinFilter::NearestMipmapLinear | MinFilter::LinearMipmapLinear => { FilterMode::Linear } }) .unwrap_or(SamplerDescriptor::default().mipmap_filter), ..Default::default() } } fn texture_address_mode(gltf_address_mode: &gltf::texture::WrappingMode) -> AddressMode { match gltf_address_mode { WrappingMode::ClampToEdge => AddressMode::ClampToEdge, WrappingMode::Repeat => AddressMode::Repeat, WrappingMode::MirroredRepeat => AddressMode::MirrorRepeat, } } fn get_primitive_topology(mode: Mode) -> Result { match mode { Mode::Points => Ok(PrimitiveTopology::PointList), Mode::Lines => Ok(PrimitiveTopology::LineList), Mode::LineStrip => Ok(PrimitiveTopology::LineStrip), Mode::Triangles => Ok(PrimitiveTopology::TriangleList), Mode::TriangleStrip => Ok(PrimitiveTopology::TriangleStrip), mode => Err(GltfError::UnsupportedPrimitive { mode }), } } async fn load_buffers( gltf: &gltf::Gltf, load_context: &LoadContext<'_>, asset_path: &Path, ) -> Result>, GltfError> { const OCTET_STREAM_URI: &str = "application/octet-stream"; let mut buffer_data = Vec::new(); for buffer in gltf.buffers() { match buffer.source() { gltf::buffer::Source::Uri(uri) => { let uri = percent_encoding::percent_decode_str(uri) .decode_utf8() .unwrap(); let uri = uri.as_ref(); let buffer_bytes = match DataUri::parse(uri) { Ok(data_uri) if data_uri.mime_type == OCTET_STREAM_URI => data_uri.decode()?, Ok(_) => return Err(GltfError::BufferFormatUnsupported), Err(()) => { // TODO: Remove this and add dep let buffer_path = asset_path.parent().unwrap().join(uri); let buffer_bytes = load_context.read_asset_bytes(buffer_path).await?; buffer_bytes } }; buffer_data.push(buffer_bytes); } gltf::buffer::Source::Bin => { if let Some(blob) = gltf.blob.as_deref() { buffer_data.push(blob.into()); } else { return Err(GltfError::MissingBlob); } } } } Ok(buffer_data) } fn resolve_node_hierarchy( nodes_intermediate: Vec<(String, GltfNode, Vec)>, ) -> Vec<(String, GltfNode)> { let mut max_steps = nodes_intermediate.len(); let mut nodes_step = nodes_intermediate .into_iter() .enumerate() .map(|(i, (label, node, children))| (i, label, node, children)) .collect::>(); let mut nodes = std::collections::HashMap::::new(); while max_steps > 0 && !nodes_step.is_empty() { if let Some((index, label, node, _)) = nodes_step .iter() .find(|(_, _, _, children)| children.is_empty()) .cloned() { nodes.insert(index, (label, node)); for (_, _, node, children) in nodes_step.iter_mut() { if let Some((i, _)) = children .iter() .enumerate() .find(|(_, child_index)| **child_index == index) { children.remove(i); if let Some((_, child_node)) = nodes.get(&index) { node.children.push(child_node.clone()) } } } nodes_step = nodes_step .into_iter() .filter(|(i, _, _, _)| *i != index) .collect() } max_steps -= 1; } let mut nodes_to_sort = nodes.into_iter().collect::>(); nodes_to_sort.sort_by_key(|(i, _)| *i); nodes_to_sort .into_iter() .map(|(_, resolved)| resolved) .collect() } struct DataUri<'a> { mime_type: &'a str, base64: bool, data: &'a str, } fn split_once(input: &str, delimiter: char) -> Option<(&str, &str)> { let mut iter = input.splitn(2, delimiter); Some((iter.next()?, iter.next()?)) } impl<'a> DataUri<'a> { fn parse(uri: &'a str) -> Result, ()> { let uri = uri.strip_prefix("data:").ok_or(())?; let (mime_type, data) = split_once(uri, ',').ok_or(())?; let (mime_type, base64) = match mime_type.strip_suffix(";base64") { Some(mime_type) => (mime_type, true), None => (mime_type, false), }; Ok(DataUri { mime_type, base64, data, }) } fn decode(&self) -> Result, base64::DecodeError> { if self.base64 { base64::decode(self.data) } else { Ok(self.data.as_bytes().to_owned()) } } } #[cfg(test)] mod test { use super::resolve_node_hierarchy; use crate::GltfNode; impl GltfNode { fn empty() -> Self { GltfNode { children: vec![], mesh: None, transform: bevy_transform::prelude::Transform::identity(), } } } #[test] fn node_hierarchy_single_node() { let result = resolve_node_hierarchy(vec![("l1".to_string(), GltfNode::empty(), vec![])]); assert_eq!(result.len(), 1); assert_eq!(result[0].0, "l1"); assert_eq!(result[0].1.children.len(), 0); } #[test] fn node_hierarchy_no_hierarchy() { let result = resolve_node_hierarchy(vec![ ("l1".to_string(), GltfNode::empty(), vec![]), ("l2".to_string(), GltfNode::empty(), vec![]), ]); assert_eq!(result.len(), 2); assert_eq!(result[0].0, "l1"); assert_eq!(result[0].1.children.len(), 0); assert_eq!(result[1].0, "l2"); assert_eq!(result[1].1.children.len(), 0); } #[test] fn node_hierarchy_simple_hierarchy() { let result = resolve_node_hierarchy(vec![ ("l1".to_string(), GltfNode::empty(), vec![1]), ("l2".to_string(), GltfNode::empty(), vec![]), ]); assert_eq!(result.len(), 2); assert_eq!(result[0].0, "l1"); assert_eq!(result[0].1.children.len(), 1); assert_eq!(result[1].0, "l2"); assert_eq!(result[1].1.children.len(), 0); } #[test] fn node_hierarchy_hierarchy() { let result = resolve_node_hierarchy(vec![ ("l1".to_string(), GltfNode::empty(), vec![1]), ("l2".to_string(), GltfNode::empty(), vec![2]), ("l3".to_string(), GltfNode::empty(), vec![3, 4, 5]), ("l4".to_string(), GltfNode::empty(), vec![6]), ("l5".to_string(), GltfNode::empty(), vec![]), ("l6".to_string(), GltfNode::empty(), vec![]), ("l7".to_string(), GltfNode::empty(), vec![]), ]); assert_eq!(result.len(), 7); assert_eq!(result[0].0, "l1"); assert_eq!(result[0].1.children.len(), 1); assert_eq!(result[1].0, "l2"); assert_eq!(result[1].1.children.len(), 1); assert_eq!(result[2].0, "l3"); assert_eq!(result[2].1.children.len(), 3); assert_eq!(result[3].0, "l4"); assert_eq!(result[3].1.children.len(), 1); assert_eq!(result[4].0, "l5"); assert_eq!(result[4].1.children.len(), 0); assert_eq!(result[5].0, "l6"); assert_eq!(result[5].1.children.len(), 0); assert_eq!(result[6].0, "l7"); assert_eq!(result[6].1.children.len(), 0); } #[test] fn node_hierarchy_cyclic() { let result = resolve_node_hierarchy(vec![ ("l1".to_string(), GltfNode::empty(), vec![1]), ("l2".to_string(), GltfNode::empty(), vec![0]), ]); assert_eq!(result.len(), 0); } #[test] fn node_hierarchy_missing_node() { let result = resolve_node_hierarchy(vec![ ("l1".to_string(), GltfNode::empty(), vec![2]), ("l2".to_string(), GltfNode::empty(), vec![]), ]); assert_eq!(result.len(), 1); assert_eq!(result[0].0, "l2"); assert_eq!(result[0].1.children.len(), 0); } }