//! Demonstrates how shadow biases affect shadows in a 3d scene. use bevy::{input::mouse::MouseMotion, prelude::*}; fn main() { println!( "Controls: WSAD - forward/back/strafe left/right LShift - 'run' E - up Q - down L - switch between directional and point lights 1/2 - decrease/increase point light depth bias 3/4 - decrease/increase point light normal bias 5/6 - decrease/increase direction light depth bias 7/8 - decrease/increase direction light normal bias" ); App::new() .add_plugins(DefaultPlugins) .add_startup_system(setup) .add_system(adjust_point_light_biases) .add_system(toggle_light) .add_system(adjust_directional_light_biases) .add_system(camera_controller) .run(); } /// set up a 3D scene to test shadow biases and perspective projections fn setup( mut commands: Commands, mut meshes: ResMut<Assets<Mesh>>, mut materials: ResMut<Assets<StandardMaterial>>, ) { let spawn_plane_depth = 500.0f32; let spawn_height = 2.0; let sphere_radius = 0.25; let white_handle = materials.add(StandardMaterial { base_color: Color::WHITE, perceptual_roughness: 1.0, ..default() }); let sphere_handle = meshes.add(Mesh::from(shape::Icosphere { radius: sphere_radius, ..default() })); println!("Using DirectionalLight"); commands.spawn_bundle(PointLightBundle { transform: Transform::from_xyz(5.0, 5.0, 0.0), point_light: PointLight { intensity: 0.0, range: spawn_plane_depth, color: Color::WHITE, shadow_depth_bias: 0.0, shadow_normal_bias: 0.0, shadows_enabled: true, ..default() }, ..default() }); let theta = std::f32::consts::FRAC_PI_4; let light_transform = Mat4::from_euler(EulerRot::ZYX, 0.0, std::f32::consts::FRAC_PI_2, -theta); commands.spawn_bundle(DirectionalLightBundle { directional_light: DirectionalLight { illuminance: 100000.0, shadow_projection: OrthographicProjection { left: -0.35, right: 500.35, bottom: -0.1, top: 5.0, near: -5.0, far: 5.0, ..default() }, shadow_depth_bias: 0.0, shadow_normal_bias: 0.0, shadows_enabled: true, ..default() }, transform: Transform::from_matrix(light_transform), ..default() }); // camera commands .spawn_bundle(PerspectiveCameraBundle { transform: Transform::from_xyz(-1.0, 1.0, 1.0) .looking_at(Vec3::new(-1.0, 1.0, 0.0), Vec3::Y), ..default() }) .insert(CameraController::default()); for z_i32 in -spawn_plane_depth as i32..=0 { commands.spawn_bundle(PbrBundle { mesh: sphere_handle.clone(), material: white_handle.clone(), transform: Transform::from_xyz(0.0, spawn_height, z_i32 as f32), ..default() }); } // ground plane commands.spawn_bundle(PbrBundle { mesh: meshes.add(Mesh::from(shape::Plane { size: 2.0 * spawn_plane_depth, })), material: white_handle, ..default() }); } fn toggle_light( input: Res<Input<KeyCode>>, mut point_lights: Query<&mut PointLight>, mut directional_lights: Query<&mut DirectionalLight>, ) { if input.just_pressed(KeyCode::L) { for mut light in point_lights.iter_mut() { light.intensity = if light.intensity == 0.0 { println!("Using PointLight"); 100000000.0 } else { 0.0 }; } for mut light in directional_lights.iter_mut() { light.illuminance = if light.illuminance == 0.0 { println!("Using DirectionalLight"); 100000.0 } else { 0.0 }; } } } fn adjust_point_light_biases(input: Res<Input<KeyCode>>, mut query: Query<&mut PointLight>) { let depth_bias_step_size = 0.01; let normal_bias_step_size = 0.1; for mut light in query.iter_mut() { if input.just_pressed(KeyCode::Key1) { light.shadow_depth_bias -= depth_bias_step_size; println!("PointLight shadow_depth_bias: {}", light.shadow_depth_bias); } if input.just_pressed(KeyCode::Key2) { light.shadow_depth_bias += depth_bias_step_size; println!("PointLight shadow_depth_bias: {}", light.shadow_depth_bias); } if input.just_pressed(KeyCode::Key3) { light.shadow_normal_bias -= normal_bias_step_size; println!( "PointLight shadow_normal_bias: {}", light.shadow_normal_bias ); } if input.just_pressed(KeyCode::Key4) { light.shadow_normal_bias += normal_bias_step_size; println!( "PointLight shadow_normal_bias: {}", light.shadow_normal_bias ); } } } fn adjust_directional_light_biases( input: Res<Input<KeyCode>>, mut query: Query<&mut DirectionalLight>, ) { let depth_bias_step_size = 0.01; let normal_bias_step_size = 0.1; for mut light in query.iter_mut() { if input.just_pressed(KeyCode::Key5) { light.shadow_depth_bias -= depth_bias_step_size; println!( "DirectionalLight shadow_depth_bias: {}", light.shadow_depth_bias ); } if input.just_pressed(KeyCode::Key6) { light.shadow_depth_bias += depth_bias_step_size; println!( "DirectionalLight shadow_depth_bias: {}", light.shadow_depth_bias ); } if input.just_pressed(KeyCode::Key7) { light.shadow_normal_bias -= normal_bias_step_size; println!( "DirectionalLight shadow_normal_bias: {}", light.shadow_normal_bias ); } if input.just_pressed(KeyCode::Key8) { light.shadow_normal_bias += normal_bias_step_size; println!( "DirectionalLight shadow_normal_bias: {}", light.shadow_normal_bias ); } } } #[derive(Component)] struct CameraController { pub enabled: bool, pub sensitivity: f32, pub key_forward: KeyCode, pub key_back: KeyCode, pub key_left: KeyCode, pub key_right: KeyCode, pub key_up: KeyCode, pub key_down: KeyCode, pub key_run: KeyCode, pub walk_speed: f32, pub run_speed: f32, pub friction: f32, pub pitch: f32, pub yaw: f32, pub velocity: Vec3, } impl Default for CameraController { fn default() -> Self { Self { enabled: true, sensitivity: 0.5, key_forward: KeyCode::W, key_back: KeyCode::S, key_left: KeyCode::A, key_right: KeyCode::D, key_up: KeyCode::E, key_down: KeyCode::Q, key_run: KeyCode::LShift, walk_speed: 10.0, run_speed: 30.0, friction: 0.5, pitch: 0.0, yaw: 0.0, velocity: Vec3::ZERO, } } } fn camera_controller( time: Res<Time>, mut mouse_events: EventReader<MouseMotion>, key_input: Res<Input<KeyCode>>, mut query: Query<(&mut Transform, &mut CameraController), With<Camera>>, ) { let dt = time.delta_seconds(); // Handle mouse input let mut mouse_delta = Vec2::ZERO; for mouse_event in mouse_events.iter() { mouse_delta += mouse_event.delta; } for (mut transform, mut options) in query.iter_mut() { if !options.enabled { continue; } // Handle key input let mut axis_input = Vec3::ZERO; if key_input.pressed(options.key_forward) { axis_input.z += 1.0; } if key_input.pressed(options.key_back) { axis_input.z -= 1.0; } if key_input.pressed(options.key_right) { axis_input.x += 1.0; } if key_input.pressed(options.key_left) { axis_input.x -= 1.0; } if key_input.pressed(options.key_up) { axis_input.y += 1.0; } if key_input.pressed(options.key_down) { axis_input.y -= 1.0; } // Apply movement update if axis_input != Vec3::ZERO { let max_speed = if key_input.pressed(options.key_run) { options.run_speed } else { options.walk_speed }; options.velocity = axis_input.normalize() * max_speed; } else { let friction = options.friction.clamp(0.0, 1.0); options.velocity *= 1.0 - friction; if options.velocity.length_squared() < 1e-6 { options.velocity = Vec3::ZERO; } } let forward = transform.forward(); let right = transform.right(); transform.translation += options.velocity.x * dt * right + options.velocity.y * dt * Vec3::Y + options.velocity.z * dt * forward; if mouse_delta != Vec2::ZERO { // Apply look update let (pitch, yaw) = ( (options.pitch - mouse_delta.y * 0.5 * options.sensitivity * dt).clamp( -0.99 * std::f32::consts::FRAC_PI_2, 0.99 * std::f32::consts::FRAC_PI_2, ), options.yaw - mouse_delta.x * options.sensitivity * dt, ); transform.rotation = Quat::from_euler(EulerRot::ZYX, 0.0, yaw, pitch); options.pitch = pitch; options.yaw = yaw; } } }