use crate::{ archetype::{ArchetypeId, Archetypes}, entity::{Entities, Entity}, prelude::World, query::{Fetch, QueryState, WorldQuery}, storage::{TableId, Tables}, }; use std::{borrow::Borrow, marker::PhantomData, mem::MaybeUninit}; use super::{QueryFetch, QueryItem, ReadOnlyFetch}; /// An [`Iterator`] over query results of a [`Query`](crate::system::Query). /// /// This struct is created by the [`Query::iter`](crate::system::Query::iter) and /// [`Query::iter_mut`](crate::system::Query::iter_mut) methods. pub struct QueryIter<'w, 's, Q: WorldQuery, QF: Fetch<'w, State = Q::State>, F: WorldQuery> { tables: &'w Tables, archetypes: &'w Archetypes, query_state: &'s QueryState, cursor: QueryIterationCursor<'w, 's, Q, QF, F>, } impl<'w, 's, Q: WorldQuery, QF, F: WorldQuery> QueryIter<'w, 's, Q, QF, F> where QF: Fetch<'w, State = Q::State>, { /// # Safety /// This does not check for mutable query correctness. To be safe, make sure mutable queries /// have unique access to the components they query. /// This does not validate that `world.id()` matches `query_state.world_id`. Calling this on a `world` /// with a mismatched [`WorldId`](crate::world::WorldId) is unsound. pub(crate) unsafe fn new( world: &'w World, query_state: &'s QueryState, last_change_tick: u32, change_tick: u32, ) -> Self { QueryIter { query_state, tables: &world.storages().tables, archetypes: &world.archetypes, cursor: QueryIterationCursor::init(world, query_state, last_change_tick, change_tick), } } } impl<'w, 's, Q: WorldQuery, QF, F: WorldQuery> Iterator for QueryIter<'w, 's, Q, QF, F> where QF: Fetch<'w, State = Q::State>, { type Item = QF::Item; #[inline(always)] fn next(&mut self) -> Option { unsafe { self.cursor .next(self.tables, self.archetypes, self.query_state) } } fn size_hint(&self) -> (usize, Option) { let max_size = self .query_state .matched_archetype_ids .iter() .map(|id| self.archetypes[*id].len()) .sum(); let archetype_query = F::Fetch::IS_ARCHETYPAL && QF::IS_ARCHETYPAL; let min_size = if archetype_query { max_size } else { 0 }; (min_size, Some(max_size)) } } /// An [`Iterator`] over query results of a [`Query`](crate::system::Query). /// /// This struct is created by the [`Query::iter_many`](crate::system::Query::iter_many) method. pub struct QueryManyIter< 'w, 's, Q: WorldQuery, QF: Fetch<'w, State = Q::State>, F: WorldQuery, I: Iterator, > where I::Item: Borrow, { entity_iter: I, entities: &'w Entities, tables: &'w Tables, archetypes: &'w Archetypes, fetch: QF, filter: QueryFetch<'w, F>, query_state: &'s QueryState, } impl<'w, 's, Q: WorldQuery, QF: Fetch<'w, State = Q::State>, F: WorldQuery, I: Iterator> QueryManyIter<'w, 's, Q, QF, F, I> where I::Item: Borrow, { /// # Safety /// This does not check for mutable query correctness. To be safe, make sure mutable queries /// have unique access to the components they query. /// This does not validate that `world.id()` matches `query_state.world_id`. Calling this on a `world` /// with a mismatched [`WorldId`](crate::world::WorldId) is unsound. pub(crate) unsafe fn new>( world: &'w World, query_state: &'s QueryState, entity_list: EntityList, last_change_tick: u32, change_tick: u32, ) -> QueryManyIter<'w, 's, Q, QF, F, I> { let fetch = QF::init( world, &query_state.fetch_state, last_change_tick, change_tick, ); let filter = QueryFetch::::init( world, &query_state.filter_state, last_change_tick, change_tick, ); QueryManyIter { query_state, entities: &world.entities, archetypes: &world.archetypes, tables: &world.storages.tables, fetch, filter, entity_iter: entity_list.into_iter(), } } } impl<'w, 's, Q: WorldQuery, QF: Fetch<'w, State = Q::State>, F: WorldQuery, I: Iterator> Iterator for QueryManyIter<'w, 'w, Q, QF, F, I> where I::Item: Borrow, { type Item = QF::Item; #[inline(always)] fn next(&mut self) -> Option { unsafe { for entity in self.entity_iter.by_ref() { let location = match self.entities.get(*entity.borrow()) { Some(location) => location, None => continue, }; if !self .query_state .matched_archetypes .contains(location.archetype_id.index()) { continue; } let archetype = &self.archetypes[location.archetype_id]; self.fetch .set_archetype(&self.query_state.fetch_state, archetype, self.tables); self.filter .set_archetype(&self.query_state.filter_state, archetype, self.tables); if self.filter.archetype_filter_fetch(location.index) { return Some(self.fetch.archetype_fetch(location.index)); } } None } } fn size_hint(&self) -> (usize, Option) { let (_, max_size) = self.entity_iter.size_hint(); (0, max_size) } } pub struct QueryCombinationIter<'w, 's, Q: WorldQuery, F: WorldQuery, const K: usize> { tables: &'w Tables, archetypes: &'w Archetypes, query_state: &'s QueryState, cursors: [QueryIterationCursor<'w, 's, Q, QueryFetch<'w, Q>, F>; K], } impl<'w, 's, Q: WorldQuery, F: WorldQuery, const K: usize> QueryCombinationIter<'w, 's, Q, F, K> { /// # Safety /// This does not check for mutable query correctness. To be safe, make sure mutable queries /// have unique access to the components they query. /// This does not validate that `world.id()` matches `query_state.world_id`. Calling this on a /// `world` with a mismatched [`WorldId`](crate::world::WorldId) is unsound. pub(crate) unsafe fn new( world: &'w World, query_state: &'s QueryState, last_change_tick: u32, change_tick: u32, ) -> Self { // Initialize array with cursors. // There is no FromIterator on arrays, so instead initialize it manually with MaybeUninit let mut array: MaybeUninit<[QueryIterationCursor<'w, 's, Q, QueryFetch<'w, Q>, F>; K]> = MaybeUninit::uninit(); let ptr = array .as_mut_ptr() .cast::, F>>(); if K != 0 { ptr.write(QueryIterationCursor::init( world, query_state, last_change_tick, change_tick, )); } for slot in (1..K).map(|offset| ptr.add(offset)) { slot.write(QueryIterationCursor::init_empty( world, query_state, last_change_tick, change_tick, )); } QueryCombinationIter { query_state, tables: &world.storages().tables, archetypes: &world.archetypes, cursors: array.assume_init(), } } /// Safety: /// The lifetime here is not restrictive enough for Fetch with &mut access, /// as calling `fetch_next_aliased_unchecked` multiple times can produce multiple /// references to the same component, leading to unique reference aliasing. ///. /// It is always safe for shared access. unsafe fn fetch_next_aliased_unchecked(&mut self) -> Option<[QueryItem<'w, Q>; K]> where QueryFetch<'w, Q>: Clone, QueryFetch<'w, F>: Clone, { if K == 0 { return None; } // first, iterate from last to first until next item is found 'outer: for i in (0..K).rev() { match self.cursors[i].next(self.tables, self.archetypes, self.query_state) { Some(_) => { // walk forward up to last element, propagating cursor state forward for j in (i + 1)..K { self.cursors[j] = self.cursors[j - 1].clone(); match self.cursors[j].next(self.tables, self.archetypes, self.query_state) { Some(_) => {} None if i > 0 => continue 'outer, None => return None, } } break; } None if i > 0 => continue, None => return None, } } let mut values = MaybeUninit::<[QueryItem<'w, Q>; K]>::uninit(); let ptr = values.as_mut_ptr().cast::>(); for (offset, cursor) in self.cursors.iter_mut().enumerate() { ptr.add(offset).write(cursor.peek_last().unwrap()); } Some(values.assume_init()) } /// Get next combination of queried components #[inline] pub fn fetch_next(&mut self) -> Option<[QueryItem<'_, Q>; K]> where for<'a> QueryFetch<'a, Q>: Clone, for<'a> QueryFetch<'a, F>: Clone, { // safety: we are limiting the returned reference to self, // making sure this method cannot be called multiple times without getting rid // of any previously returned unique references first, thus preventing aliasing. unsafe { self.fetch_next_aliased_unchecked() .map(|array| array.map(Q::shrink)) } } } // Iterator type is intentionally implemented only for read-only access. // Doing so for mutable references would be unsound, because calling `next` // multiple times would allow multiple owned references to the same data to exist. impl<'w, 's, Q: WorldQuery, F: WorldQuery, const K: usize> Iterator for QueryCombinationIter<'w, 's, Q, F, K> where QueryFetch<'w, Q>: Clone + ReadOnlyFetch, QueryFetch<'w, F>: Clone + ReadOnlyFetch, { type Item = [QueryItem<'w, Q>; K]; #[inline] fn next(&mut self) -> Option { // Safety: it is safe to alias for ReadOnlyFetch unsafe { QueryCombinationIter::fetch_next_aliased_unchecked(self) } } fn size_hint(&self) -> (usize, Option) { if K == 0 { return (0, Some(0)); } let max_size: usize = self .query_state .matched_archetype_ids .iter() .map(|id| self.archetypes[*id].len()) .sum(); if max_size < K { return (0, Some(0)); } // n! / k!(n-k)! = (n*n-1*...*n-k+1) / k! let max_combinations = (0..K) .try_fold(1usize, |n, i| n.checked_mul(max_size - i)) .map(|n| { let k_factorial: usize = (1..=K).product(); n / k_factorial }); let archetype_query = F::Fetch::IS_ARCHETYPAL && Q::Fetch::IS_ARCHETYPAL; let min_combinations = if archetype_query { max_size } else { 0 }; (min_combinations, max_combinations) } } // NOTE: We can cheaply implement this for unfiltered Queries because we have: // (1) pre-computed archetype matches // (2) each archetype pre-computes length // (3) there are no per-entity filters // TODO: add an ArchetypeOnlyFilter that enables us to implement this for filters like With. // This would need to be added to all types that implement Filter with Filter::IS_ARCHETYPAL = true impl<'w, 's, Q: WorldQuery, QF> ExactSizeIterator for QueryIter<'w, 's, Q, QF, ()> where QF: Fetch<'w, State = Q::State>, { fn len(&self) -> usize { self.query_state .matched_archetype_ids .iter() .map(|id| self.archetypes[*id].len()) .sum() } } struct QueryIterationCursor<'w, 's, Q: WorldQuery, QF: Fetch<'w, State = Q::State>, F: WorldQuery> { table_id_iter: std::slice::Iter<'s, TableId>, archetype_id_iter: std::slice::Iter<'s, ArchetypeId>, fetch: QF, filter: QueryFetch<'w, F>, current_len: usize, current_index: usize, phantom: PhantomData<(&'w (), Q)>, } impl<'w, 's, Q: WorldQuery, QF, F: WorldQuery> Clone for QueryIterationCursor<'w, 's, Q, QF, F> where QF: Fetch<'w, State = Q::State> + Clone, QueryFetch<'w, F>: Clone, { fn clone(&self) -> Self { Self { table_id_iter: self.table_id_iter.clone(), archetype_id_iter: self.archetype_id_iter.clone(), fetch: self.fetch.clone(), filter: self.filter.clone(), current_len: self.current_len, current_index: self.current_index, phantom: PhantomData, } } } impl<'w, 's, Q: WorldQuery, QF, F: WorldQuery> QueryIterationCursor<'w, 's, Q, QF, F> where QF: Fetch<'w, State = Q::State>, { const IS_DENSE: bool = QF::IS_DENSE && >::IS_DENSE; unsafe fn init_empty( world: &'w World, query_state: &'s QueryState, last_change_tick: u32, change_tick: u32, ) -> Self { QueryIterationCursor { table_id_iter: [].iter(), archetype_id_iter: [].iter(), ..Self::init(world, query_state, last_change_tick, change_tick) } } unsafe fn init( world: &'w World, query_state: &'s QueryState, last_change_tick: u32, change_tick: u32, ) -> Self { let fetch = QF::init( world, &query_state.fetch_state, last_change_tick, change_tick, ); let filter = QueryFetch::::init( world, &query_state.filter_state, last_change_tick, change_tick, ); QueryIterationCursor { fetch, filter, table_id_iter: query_state.matched_table_ids.iter(), archetype_id_iter: query_state.matched_archetype_ids.iter(), current_len: 0, current_index: 0, phantom: PhantomData, } } /// retrieve item returned from most recent `next` call again. #[inline] unsafe fn peek_last(&mut self) -> Option { if self.current_index > 0 { if Self::IS_DENSE { Some(self.fetch.table_fetch(self.current_index - 1)) } else { Some(self.fetch.archetype_fetch(self.current_index - 1)) } } else { None } } // NOTE: If you are changing query iteration code, remember to update the following places, where relevant: // QueryIterationCursor, QueryState::for_each_unchecked_manual, QueryState::par_for_each_unchecked_manual #[inline(always)] unsafe fn next( &mut self, tables: &'w Tables, archetypes: &'w Archetypes, query_state: &'s QueryState, ) -> Option { if Self::IS_DENSE { loop { if self.current_index == self.current_len { let table_id = self.table_id_iter.next()?; let table = &tables[*table_id]; self.fetch.set_table(&query_state.fetch_state, table); self.filter.set_table(&query_state.filter_state, table); self.current_len = table.len(); self.current_index = 0; continue; } if !self.filter.table_filter_fetch(self.current_index) { self.current_index += 1; continue; } let item = self.fetch.table_fetch(self.current_index); self.current_index += 1; return Some(item); } } else { loop { if self.current_index == self.current_len { let archetype_id = self.archetype_id_iter.next()?; let archetype = &archetypes[*archetype_id]; self.fetch .set_archetype(&query_state.fetch_state, archetype, tables); self.filter .set_archetype(&query_state.filter_state, archetype, tables); self.current_len = archetype.len(); self.current_index = 0; continue; } if !self.filter.archetype_filter_fetch(self.current_index) { self.current_index += 1; continue; } let item = self.fetch.archetype_fetch(self.current_index); self.current_index += 1; return Some(item); } } } }