# Objective
fixes#8357
gltf animations can affect multiple "root" nodes (i.e. top level nodes
within a gltf scene).
the current loader adds an AnimationPlayer to each root node which is
affected by any animation. when a clip which affects multiple root nodes
is played on a root node player, the root node name is not checked,
leading to potentially incorrect weights being applied.
also, the `AnimationClip::compatible_with` method will never return true
for those clips, as it checks that all paths start with the root node
name - not all paths start with the same name so it can't return true.
## Solution
- check the first path node name matches the given root
- change compatible_with to return true if `any` match is found
a better alternative would probably be to attach the player to the scene
root instead of the first child, and then walk the full path from there.
this would be breaking (and would stop multiple animations that *don't*
overlap from being played concurrently), but i'm happy to modify to that
if it's preferred.
---------
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
# Objective
Added `AnimationPlayer` API UX improvements.
- Succestor to https://github.com/bevyengine/bevy/pull/5912
- Fixes https://github.com/bevyengine/bevy/issues/5848
_(Credits to @asafigan for filing #5848, creating the initial pull
request, and the discussion in #5912)_
## Solution
- Created `RepeatAnimation` enum to describe an animation repetition
behavior.
- Added `is_finished()`, `set_repeat()`, and `is_playback_reversed()`
methods to the animation player.
- ~~Made the animation clip optional as per the comment from #5912~~
> ~~My problem is that the default handle [used the initialize a
`PlayingAnimation`] could actually refer to an actual animation if an
AnimationClip is set for the default handle, which leads me to ask,
"Should animation_clip should be an Option?"~~
- Added an accessor for the animation clip `animation_clip()` to the
animation player.
To determine if an animation is finished, we use the number of times the
animation has completed and the repetition behavior. If the animation is
playing in reverse then `elapsed < 0.0` counts as a completion.
Otherwise, `elapsed > animation.duration` counts as a completion. This
is what I would expect, personally. If there's any ambiguity, perhaps we
could add some `AnimationCompletionBehavior`, to specify that kind of
completion behavior to use.
Update: Previously `PlayingAnimation::elapsed` was being used as the
seek time into the animation clip. This was misleading because if you
increased the speed of the animation it would also increase (or
decrease) the elapsed time. In other words, the elapsed time was not
actually the elapsed time. To solve this, we introduce
`PlayingAnimation::seek_time` to serve as the value we manipulate the
move between keyframes. Consequently, `elapsed()` now returns the actual
elapsed time, and is not effected by the animation speed. Because
`set_elapsed` was being used to manipulate the displayed keyframe, we
introduce `AnimationPlayer::seek_to` and `AnimationPlayer::replay` to
provide this functionality.
## Migration Guide
- Removed `set_elapsed`.
- Removed `stop_repeating` in favour of
`AnimationPlayer::set_repeat(RepeatAnimation::Never)`.
- Introduced `seek_to` to seek to a given timestamp inside of the
animation.
- Introduced `seek_time` accessor for the `PlayingAnimation::seek_to`.
- Introduced `AnimationPlayer::replay` to reset the `PlayingAnimation`
to a state where no time has elapsed.
---------
Co-authored-by: Hennadii Chernyshchyk <genaloner@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
# Objective
[Rust 1.72.0](https://blog.rust-lang.org/2023/08/24/Rust-1.72.0.html) is
now stable.
# Notes
- `let-else` formatting has arrived!
- I chose to allow `explicit_iter_loop` due to
https://github.com/rust-lang/rust-clippy/issues/11074.
We didn't hit any of the false positives that prevent compilation, but
fixing this did produce a lot of the "symbol soup" mentioned, e.g. `for
image in &mut *image_events {`.
Happy to undo this if there's consensus the other way.
---------
Co-authored-by: François <mockersf@gmail.com>
Need this for a custom `AnimationPlayer` that I tick in `FixedUpdate`
# Objective
- Need access to an animation clip's `paths` from outside the module
## Solution
- Add a getter method to return a reference to `paths`
---------
Co-authored-by: Tristan Guichaoua <33934311+tguichaoua@users.noreply.github.com>
# Objective
The `QueryParIter::for_each_mut` function is required when doing
parallel iteration with mutable queries.
This results in an unfortunate stutter:
`query.par_iter_mut().par_for_each_mut()` ('mut' is repeated).
## Solution
- Make `for_each` compatible with mutable queries, and deprecate
`for_each_mut`. In order to prevent `for_each` from being called
multiple times in parallel, we take ownership of the QueryParIter.
---
## Changelog
- `QueryParIter::for_each` is now compatible with mutable queries.
`for_each_mut` has been deprecated as it is now redundant.
## Migration Guide
The method `QueryParIter::for_each_mut` has been deprecated and is no
longer functional. Use `for_each` instead, which now supports mutable
queries.
```rust
// Before:
query.par_iter_mut().for_each_mut(|x| ...);
// After:
query.par_iter_mut().for_each(|x| ...);
```
The method `QueryParIter::for_each` now takes ownership of the
`QueryParIter`, rather than taking a shared reference.
```rust
// Before:
let par_iter = my_query.par_iter().batching_strategy(my_batching_strategy);
par_iter.for_each(|x| {
// ...Do stuff with x...
par_iter.for_each(|y| {
// ...Do nested stuff with y...
});
});
// After:
my_query.par_iter().batching_strategy(my_batching_strategy).for_each(|x| {
// ...Do stuff with x...
my_query.par_iter().batching_strategy(my_batching_strategy).for_each(|y| {
// ...Do nested stuff with y...
});
});
```
# Objective
**This implementation is based on
https://github.com/bevyengine/rfcs/pull/59.**
---
Resolves#4597
Full details and motivation can be found in the RFC, but here's a brief
summary.
`FromReflect` is a very powerful and important trait within the
reflection API. It allows Dynamic types (e.g., `DynamicList`, etc.) to
be formed into Real ones (e.g., `Vec<i32>`, etc.).
This mainly comes into play concerning deserialization, where the
reflection deserializers both return a `Box<dyn Reflect>` that almost
always contain one of these Dynamic representations of a Real type. To
convert this to our Real type, we need to use `FromReflect`.
It also sneaks up in other ways. For example, it's a required bound for
`T` in `Vec<T>` so that `Vec<T>` as a whole can be made `FromReflect`.
It's also required by all fields of an enum as it's used as part of the
`Reflect::apply` implementation.
So in other words, much like `GetTypeRegistration` and `Typed`, it is
very much a core reflection trait.
The problem is that it is not currently treated like a core trait and is
not automatically derived alongside `Reflect`. This makes using it a bit
cumbersome and easy to forget.
## Solution
Automatically derive `FromReflect` when deriving `Reflect`.
Users can then choose to opt-out if needed using the
`#[reflect(from_reflect = false)]` attribute.
```rust
#[derive(Reflect)]
struct Foo;
#[derive(Reflect)]
#[reflect(from_reflect = false)]
struct Bar;
fn test<T: FromReflect>(value: T) {}
test(Foo); // <-- OK
test(Bar); // <-- Panic! Bar does not implement trait `FromReflect`
```
#### `ReflectFromReflect`
This PR also automatically adds the `ReflectFromReflect` (introduced in
#6245) registration to the derived `GetTypeRegistration` impl— if the
type hasn't opted out of `FromReflect` of course.
<details>
<summary><h4>Improved Deserialization</h4></summary>
> **Warning**
> This section includes changes that have since been descoped from this
PR. They will likely be implemented again in a followup PR. I am mainly
leaving these details in for archival purposes, as well as for reference
when implementing this logic again.
And since we can do all the above, we might as well improve
deserialization. We can now choose to deserialize into a Dynamic type or
automatically convert it using `FromReflect` under the hood.
`[Un]TypedReflectDeserializer::new` will now perform the conversion and
return the `Box`'d Real type.
`[Un]TypedReflectDeserializer::new_dynamic` will work like what we have
now and simply return the `Box`'d Dynamic type.
```rust
// Returns the Real type
let reflect_deserializer = UntypedReflectDeserializer::new(®istry);
let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?;
let output: SomeStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?;
// Returns the Dynamic type
let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(®istry);
let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?;
let output: DynamicStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?;
```
</details>
---
## Changelog
* `FromReflect` is now automatically derived within the `Reflect` derive
macro
* This includes auto-registering `ReflectFromReflect` in the derived
`GetTypeRegistration` impl
* ~~Renamed `TypedReflectDeserializer::new` and
`UntypedReflectDeserializer::new` to
`TypedReflectDeserializer::new_dynamic` and
`UntypedReflectDeserializer::new_dynamic`, respectively~~ **Descoped**
* ~~Changed `TypedReflectDeserializer::new` and
`UntypedReflectDeserializer::new` to automatically convert the
deserialized output using `FromReflect`~~ **Descoped**
## Migration Guide
* `FromReflect` is now automatically derived within the `Reflect` derive
macro. Items with both derives will need to remove the `FromReflect`
one.
```rust
// OLD
#[derive(Reflect, FromReflect)]
struct Foo;
// NEW
#[derive(Reflect)]
struct Foo;
```
If using a manual implementation of `FromReflect` and the `Reflect`
derive, users will need to opt-out of the automatic implementation.
```rust
// OLD
#[derive(Reflect)]
struct Foo;
impl FromReflect for Foo {/* ... */}
// NEW
#[derive(Reflect)]
#[reflect(from_reflect = false)]
struct Foo;
impl FromReflect for Foo {/* ... */}
```
<details>
<summary><h4>Removed Migrations</h4></summary>
> **Warning**
> This section includes changes that have since been descoped from this
PR. They will likely be implemented again in a followup PR. I am mainly
leaving these details in for archival purposes, as well as for reference
when implementing this logic again.
* The reflect deserializers now perform a `FromReflect` conversion
internally. The expected output of `TypedReflectDeserializer::new` and
`UntypedReflectDeserializer::new` is no longer a Dynamic (e.g.,
`DynamicList`), but its Real counterpart (e.g., `Vec<i32>`).
```rust
let reflect_deserializer =
UntypedReflectDeserializer::new_dynamic(®istry);
let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?;
// OLD
let output: DynamicStruct = reflect_deserializer.deserialize(&mut
deserializer)?.take()?;
// NEW
let output: SomeStruct = reflect_deserializer.deserialize(&mut
deserializer)?.take()?;
```
Alternatively, if this behavior isn't desired, use the
`TypedReflectDeserializer::new_dynamic` and
`UntypedReflectDeserializer::new_dynamic` methods instead:
```rust
// OLD
let reflect_deserializer = UntypedReflectDeserializer::new(®istry);
// NEW
let reflect_deserializer =
UntypedReflectDeserializer::new_dynamic(®istry);
```
</details>
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Add morph targets to `bevy_pbr` (closes#5756) & load them from glTF
- Supersedes #3722
- Fixes#6814
[Morph targets][1] (also known as shape interpolation, shape keys, or
blend shapes) allow animating individual vertices with fine grained
controls. This is typically used for facial expressions. By specifying
multiple poses as vertex offset, and providing a set of weight of each
pose, it is possible to define surprisingly realistic transitions
between poses. Blending between multiple poses also allow composition.
Morph targets are part of the [gltf standard][2] and are a feature of
Unity and Unreal, and babylone.js, it is only natural to implement them
in bevy.
## Solution
This implementation of morph targets uses a 3d texture where each pixel
is a component of an animated attribute. Each layer is a different
target. We use a 2d texture for each target, because the number of
attribute×components×animated vertices is expected to always exceed the
maximum pixel row size limit of webGL2. It copies fairly closely the way
skinning is implemented on the CPU side, while on the GPU side, the
shader morph target implementation is a relatively trivial detail.
We add an optional `morph_texture` to the `Mesh` struct. The
`morph_texture` is built through a method that accepts an iterator over
attribute buffers.
The `MorphWeights` component, user-accessible, controls the blend of
poses used by mesh instances (so that multiple copy of the same mesh may
have different weights), all the weights are uploaded to a uniform
buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256
poses.
More literature:
* Old babylone.js implementation (vertex attribute-based):
https://www.eternalcoding.com/dev-log-1-morph-targets/
* Babylone.js implementation (similar to ours):
https://www.youtube.com/watch?v=LBPRmGgU0PE
* GPU gems 3:
https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits
* Development discord thread
https://discord.com/channels/691052431525675048/1083325980615114772https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258
## Acknowledgements
* Thanks to `storytold` for sponsoring the feature
* Thanks to `superdump` and `james7132` for guidance and help figuring
out stuff
## Future work
- Handling of less and more attributes (eg: animated uv, animated
arbitrary attributes)
- Dynamic pose allocation (so that zero-weighted poses aren't uploaded
to GPU for example, enables much more total poses)
- Better animation API, see #8357
----
## Changelog
- Add morph targets to bevy meshes
- Support up to 64 poses per mesh of individually up to 116508 vertices,
animation currently strictly limited to the position, normal and tangent
attributes.
- Load a morph target using `Mesh::set_morph_targets`
- Add `VisitMorphTargets` and `VisitMorphAttributes` traits to
`bevy_render`, this allows defining morph targets (a fairly complex and
nested data structure) through iterators (ie: single copy instead of
passing around buffers), see documentation of those traits for details
- Add `MorphWeights` component exported by `bevy_render`
- `MorphWeights` control mesh's morph target weights, blending between
various poses defined as morph targets.
- `MorphWeights` are directly inherited by direct children (single level
of hierarchy) of an entity. This allows controlling several mesh
primitives through a unique entity _as per GLTF spec_.
- Add `MorphTargetNames` component, naming each indices of loaded morph
targets.
- Load morph targets weights and buffers in `bevy_gltf`
- handle morph targets animations in `bevy_animation` (previously, it
was a `warn!` log)
- Add the `MorphStressTest.gltf` asset for morph targets testing, taken
from the glTF samples repo, CC0.
- Add morph target manipulation to `scene_viewer`
- Separate the animation code in `scene_viewer` from the rest of the
code, reducing `#[cfg(feature)]` noise
- Add the `morph_targets.rs` example to show off how to manipulate morph
targets, loading `MorpStressTest.gltf`
## Migration Guide
- (very specialized, unlikely to be touched by 3rd parties)
- `MeshPipeline` now has a single `mesh_layouts` field rather than
separate `mesh_layout` and `skinned_mesh_layout` fields. You should
handle all possible mesh bind group layouts in your implementation
- You should also handle properly the new `MORPH_TARGETS` shader def and
mesh pipeline key. A new function is exposed to make this easier:
`setup_moprh_and_skinning_defs`
- The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are
now accessed through the `get` method.
[1]: https://en.wikipedia.org/wiki/Morph_target_animation
[2]:
https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets
---------
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Links in the api docs are nice. I noticed that there were several places
where structs / functions and other things were referenced in the docs,
but weren't linked. I added the links where possible / logical.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
# Objective
The clippy lint `type_complexity` is known not to play well with bevy.
It frequently triggers when writing complex queries, and taking the
lint's advice of using a type alias almost always just obfuscates the
code with no benefit. Because of this, this lint is currently ignored in
CI, but unfortunately it still shows up when viewing bevy code in an
IDE.
As someone who's made a fair amount of pull requests to this repo, I
will say that this issue has been a consistent thorn in my side. Since
bevy code is filled with spurious, ignorable warnings, it can be very
difficult to spot the *real* warnings that must be fixed -- most of the
time I just ignore all warnings, only to later find out that one of them
was real after I'm done when CI runs.
## Solution
Suppress this lint in all bevy crates. This was previously attempted in
#7050, but the review process ended up making it more complicated than
it needs to be and landed on a subpar solution.
The discussion in https://github.com/rust-lang/rust-clippy/pull/10571
explores some better long-term solutions to this problem. Since there is
no timeline on when these solutions may land, we should resolve this
issue in the meantime by locally suppressing these lints.
### Unresolved issues
Currently, these lints are not suppressed in our examples, since that
would require suppressing the lint in every single source file. They are
still ignored in CI.
# Objective
NOTE: This depends on #7267 and should not be merged until #7267 is merged. If you are reviewing this before that is merged, I highly recommend viewing the Base Sets commit instead of trying to find my changes amongst those from #7267.
"Default sets" as described by the [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) have some [unfortunate consequences](https://github.com/bevyengine/bevy/discussions/7365).
## Solution
This adds "base sets" as a variant of `SystemSet`:
A set is a "base set" if `SystemSet::is_base` returns `true`. Typically this will be opted-in to using the `SystemSet` derive:
```rust
#[derive(SystemSet, Clone, Hash, Debug, PartialEq, Eq)]
#[system_set(base)]
enum MyBaseSet {
A,
B,
}
```
**Base sets are exclusive**: a system can belong to at most one "base set". Adding a system to more than one will result in an error. When possible we fail immediately during system-config-time with a nice file + line number. For the more nested graph-ey cases, this will fail at the final schedule build.
**Base sets cannot belong to other sets**: this is where the word "base" comes from
Systems and Sets can only be added to base sets using `in_base_set`. Calling `in_set` with a base set will fail. As will calling `in_base_set` with a normal set.
```rust
app.add_system(foo.in_base_set(MyBaseSet::A))
// X must be a normal set ... base sets cannot be added to base sets
.configure_set(X.in_base_set(MyBaseSet::A))
```
Base sets can still be configured like normal sets:
```rust
app.add_system(MyBaseSet::B.after(MyBaseSet::Ap))
```
The primary use case for base sets is enabling a "default base set":
```rust
schedule.set_default_base_set(CoreSet::Update)
// this will belong to CoreSet::Update by default
.add_system(foo)
// this will override the default base set with PostUpdate
.add_system(bar.in_base_set(CoreSet::PostUpdate))
```
This allows us to build apis that work by default in the standard Bevy style. This is a rough analog to the "default stage" model, but it use the new "stageless sets" model instead, with all of the ordering flexibility (including exclusive systems) that it provides.
---
## Changelog
- Added "base sets" and ported CoreSet to use them.
## Migration Guide
TODO
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.
# Objective
- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45
## Solution
- [x] Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests
## Changelog
### Added
- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`
### Removed
- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.
### Changed
- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
- `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied.
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.
## Migration Guide
- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
- Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
- Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
- For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with
- `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`
## TODO
- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
- [x] unbreak directional lights
- [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
- [x] game menu example shows loading screen and menu simultaneously
- [x] display settings menu is a blank screen
- [x] `without_winit` example panics
- [x] ensure all tests pass
- [x] SubApp doc test fails
- [x] runs_spawn_local tasks fails
- [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)
## Points of Difficulty and Controversy
**Reviewers, please give feedback on these and look closely**
1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.
## Future Work (ideally before 0.10)
- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
# Objective
I found several words in code and docs are incorrect. This should be fixed.
## Solution
- Fix several minor typos
Co-authored-by: Chris Ohk <utilforever@gmail.com>
# Objective
Fixes#3184. Fixes#6640. Fixes#4798. Using `Query::par_for_each(_mut)` currently requires a `batch_size` parameter, which affects how it chunks up large archetypes and tables into smaller chunks to run in parallel. Tuning this value is difficult, as the performance characteristics entirely depends on the state of the `World` it's being run on. Typically, users will just use a flat constant and just tune it by hand until it performs well in some benchmarks. However, this is both error prone and risks overfitting the tuning on that benchmark.
This PR proposes a naive automatic batch-size computation based on the current state of the `World`.
## Background
`Query::par_for_each(_mut)` schedules a new Task for every archetype or table that it matches. Archetypes/tables larger than the batch size are chunked into smaller tasks. Assuming every entity matched by the query has an identical workload, this makes the worst case scenario involve using a batch size equal to the size of the largest matched archetype or table. Conversely, a batch size of `max {archetype, table} size / thread count * COUNT_PER_THREAD` is likely the sweetspot where the overhead of scheduling tasks is minimized, at least not without grouping small archetypes/tables together.
There is also likely a strict minimum batch size below which the overhead of scheduling these tasks is heavier than running the entire thing single-threaded.
## Solution
- [x] Remove the `batch_size` from `Query(State)::par_for_each` and friends.
- [x] Add a check to compute `batch_size = max {archeytpe/table} size / thread count * COUNT_PER_THREAD`
- [x] ~~Panic if thread count is 0.~~ Defer to `for_each` if the thread count is 1 or less.
- [x] Early return if there is no matched table/archetype.
- [x] Add override option for users have queries that strongly violate the initial assumption that all iterated entities have an equal workload.
---
## Changelog
Changed: `Query::par_for_each(_mut)` has been changed to `Query::par_iter(_mut)` and will now automatically try to produce a batch size for callers based on the current `World` state.
## Migration Guide
The `batch_size` parameter for `Query(State)::par_for_each(_mut)` has been removed. These calls will automatically compute a batch size for you. Remove these parameters from all calls to these functions.
Before:
```rust
fn parallel_system(query: Query<&MyComponent>) {
query.par_for_each(32, |comp| {
...
});
}
```
After:
```rust
fn parallel_system(query: Query<&MyComponent>) {
query.par_iter().for_each(|comp| {
...
});
}
```
Co-authored-by: Arnav Choubey <56453634+x-52@users.noreply.github.com>
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: Corey Farwell <coreyf@rwell.org>
Co-authored-by: Aevyrie <aevyrie@gmail.com>
# Objective
- Fixes https://github.com/bevyengine/bevy/discussions/6338
This PR allows for smooth transitions between different animations.
## Solution
- This PR uses very simple linear blending of animations.
- When starting a new animation, you can give it a duration, and throughout that duration, the previous and the new animation are being linearly blended, until only the new animation is running.
- I'm aware of https://github.com/bevyengine/rfcs/pull/49 and https://github.com/bevyengine/rfcs/pull/51, which are more complete solutions to this problem, but they seem still far from being implemented. Until they're ready, this PR allows for the most basic use case of blending, i.e. smoothly transitioning between different animations.
## Migration Guide
- no bc breaking changes
# Objective
Speed up animation by leveraging all threads in `ComputeTaskPool`.
## Solution
This PR parallelizes animation sampling across all threads.
To ensure that this is safely done, all animation is predicated with an ancestor query to ensure that there is no conflicting `AnimationPlayer` above each animated hierarchy that may cause this to alias.
Unlike the RFC, this does not add support for reflect based "animate anything", but only extends the existing `AnimationPlayer` to support high numbers of animated characters on screen at once.
## Performance
This cuts `many_foxes`'s frame time on my machine by a full millisecond, from 7.49ms to 6.5ms. (yellow is this PR, red is main).
![image](https://user-images.githubusercontent.com/3137680/204219698-ffe0136c-5e9b-436f-b8d9-b23f0b8d7d36.png)
---
## Changelog
Changed: Animation sampling now runs fully multi-threaded using threads from `ComputeTaskPool`.
Changed: `AnimationPlayer` that are on a child or descendant of another entity with another player will no longer be run.
This reverts commit 53d387f340.
# Objective
Reverts #6448. This didn't have the intended effect: we're now getting bevy::prelude shown in the docs again.
Co-authored-by: Alejandro Pascual <alejandro.pascual.pozo@gmail.com>
# Objective
- Right now re-exports are completely hidden in prelude docs.
- Fixes#6433
## Solution
- We could show the re-exports without inlining their documentation.
# Objective
![image](https://user-images.githubusercontent.com/22177966/189350194-639a0211-e984-4f73-ae62-0ede44891eb9.png)
^ enable this
Concretely, I need to
- list all handle ids for an asset type
- fetch the asset as `dyn Reflect`, given a `HandleUntyped`
- when encountering a `Handle<T>`, find out what asset type that handle refers to (`T`'s type id) and turn the handle into a `HandleUntyped`
## Solution
- add `ReflectAsset` type containing function pointers for working with assets
```rust
pub struct ReflectAsset {
type_uuid: Uuid,
assets_resource_type_id: TypeId, // TypeId of the `Assets<T>` resource
get: fn(&World, HandleUntyped) -> Option<&dyn Reflect>,
get_mut: fn(&mut World, HandleUntyped) -> Option<&mut dyn Reflect>,
get_unchecked_mut: unsafe fn(&World, HandleUntyped) -> Option<&mut dyn Reflect>,
add: fn(&mut World, &dyn Reflect) -> HandleUntyped,
set: fn(&mut World, HandleUntyped, &dyn Reflect) -> HandleUntyped,
len: fn(&World) -> usize,
ids: for<'w> fn(&'w World) -> Box<dyn Iterator<Item = HandleId> + 'w>,
remove: fn(&mut World, HandleUntyped) -> Option<Box<dyn Reflect>>,
}
```
- add `ReflectHandle` type relating the handle back to the asset type and providing a way to create a `HandleUntyped`
```rust
pub struct ReflectHandle {
type_uuid: Uuid,
asset_type_id: TypeId,
downcast_handle_untyped: fn(&dyn Any) -> Option<HandleUntyped>,
}
```
- add the corresponding `FromType` impls
- add a function `app.register_asset_reflect` which is supposed to be called after `.add_asset` and registers `ReflectAsset` and `ReflectHandle` in the type registry
---
## Changelog
- add `ReflectAsset` and `ReflectHandle` types, which allow code to use reflection to manipulate arbitrary assets without knowing their types at compile time
# Objective
- You usually want to say that a given animation *should* be playing, doing nothing if it's already playing.
## Solution
- Rename play to start and add new play method that won't overwrite the existing animation if it's already playing #6350
---
## Changelog
### Changed
`AnimationPlayer::play` will now not restart the animation if it's already playing
### Added
An `AnimationPlayer ::start` method, which has the old behavior of `play`
## Migration guide
- If you were using `play` to restart an animation that was already playing, that functionality has been moved to `start`. Now, `play` won't have any effect if the requested animation is already playing.
# Objective
The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move.
This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns).
## Solution
This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity).
This means you can remove all cases of `exclusive_system()`:
```rust
// before
commands.add_system(some_system.exclusive_system());
// after
commands.add_system(some_system);
```
I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems:
```rust
fn some_exclusive_system(
world: &mut World,
transforms: &mut QueryState<&Transform>,
state: &mut SystemState<(Res<Time>, Query<&Player>)>,
) {
for transform in transforms.iter(world) {
println!("{transform:?}");
}
let (time, players) = state.get(world);
for player in players.iter() {
println!("{player:?}");
}
}
```
Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system.
I added some targeted SystemParam `static` constraints, which removed the need for this:
``` rust
fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {}
```
## Related
- #2923
- #3001
- #3946
## Changelog
- `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait.
- `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems
- `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam`
- Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api.
## Migration Guide
Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems:
```rust
// Old (0.8)
app.add_system(some_exclusive_system.exclusive_system());
// New (0.9)
app.add_system(some_exclusive_system);
```
Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis:
```rust
// Old (0.8)
app.add_system(some_system.exclusive_system().at_end());
// New (0.9)
app.add_system(some_system.at_end());
```
Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons:
```rust
// Old (0.8)
fn some_system(world: &mut World) {
let mut transforms = world.query::<&Transform>();
for transform in transforms.iter(world) {
}
}
// New (0.9)
fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) {
for transform in transforms.iter(world) {
}
}
```
Remove unnecessary calls to `iter()`/`iter_mut()`.
Mainly updates the use of queries in our code, docs, and examples.
```rust
// From
for _ in list.iter() {
for _ in list.iter_mut() {
// To
for _ in &list {
for _ in &mut list {
```
We already enable the pedantic lint [clippy::explicit_iter_loop](https://rust-lang.github.io/rust-clippy/stable/) inside of Bevy. However, this only warns for a few known types from the standard library.
## Note for reviewers
As you can see the additions and deletions are exactly equal.
Maybe give it a quick skim to check I didn't sneak in a crypto miner, but you don't have to torture yourself by reading every line.
I already experienced enough pain making this PR :)
Co-authored-by: devil-ira <justthecooldude@gmail.com>
## Objective
Implement absolute minimum viable product for the changes proposed in bevyengine/rfcs#53.
## Solution
- Remove public mutative access to `Parent` (Children is already publicly read-only). This includes public construction methods like `Copy`, `Clone`, and `Default`.
- Remove `PreviousParent`
- Remove `parent_update_system`
- Update all hierarchy related commands to immediately update both `Parent` and `Children` references.
## Remaining TODOs
- [ ] Update documentation for both `Parent` and `Children`. Discourage using `EntityCommands::remove`
- [x] Add `HierarchyEvent` to notify listeners of hierarchy updates. This is meant to replace listening on `PreviousParent`
## Followup
- These changes should be best moved to the hooks mentioned in #3742.
- Backing storage for both might be best moved to indexes mentioned in the same relations.
# Objective
Users often ask for help with rotations as they struggle with `Quat`s.
`Quat` is rather complex and has a ton of verbose methods.
## Solution
Add rotation helper methods to `Transform`.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
Reduce the catch-all grab-bag of functionality in bevy_core by minimally splitting off time functionality into bevy_time. Functionality like that provided by #3002 would increase the complexity of bevy_time, so this is a good candidate for pulling into its own unit.
A step in addressing #2931 and splitting bevy_core into more specific locations.
## Solution
Pull the time module of bevy_core into a new crate, bevy_time.
# Migration guide
- Time related types (e.g. `Time`, `Timer`, `Stopwatch`, `FixedTimestep`, etc.) should be imported from `bevy::time::*` rather than `bevy::core::*`.
- If you were adding `CorePlugin` manually, you'll also want to add `TimePlugin` from `bevy::time`.
- The `bevy::core::CorePlugin::Time` system label is replaced with `bevy::time::TimeSystem`.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Small change that better facilitates custom animation systems
## Solution
- Added a public access function to `bevy::animation::AnimationClip`, making duration publicly readable
---
# Objective
- While playing with animated models, I noticed some were a little off
## Solution
- Some animations curves only have one keyframe, they are used to set a transform to a given value
- Those were ignored as we're never exactly at the ts 0.0 of an animation. going there explicitly (`.set_elapsed(0.0).pause()`) would crash
- Special case this as there isn't much to animate in this case