Commit graph

8 commits

Author SHA1 Message Date
Vic
0eb4bb6bab
constrain WorldQuery::get_state to only use &Components (#13343)
# Objective

Passing `&World` in the `WorldQuery::get_state` method is unnecessary,
as all implementations of this method in the engine either only access
`Components` in `&World`, or do nothing with it.
It can introduce UB by necessitating the creation of a `&World` from a
`UnsafeWorldCell`.
This currently happens in `Query::transmute_lens`, which obtains a
`&World` from the internal `UnsafeWorldCell` solely to pass to
`get_state`. `Query::join` suffers from the same issue.
Other cases of UB come from allowing implementors of `WorldQuery` to
freely access `&World`, like in the `bevy-trait-query` crate, where a
[reference to a resource is
obtained](0c0e7dd646/src/lib.rs (L445))
inside of
[`get_state`](0c0e7dd646/src/one.rs (L245)),
potentially aliasing with a `ResMut` parameter in the same system.

`WorldQuery::init_state` currently requires `&mut World`, which doesn't
suffer from these issues.
But that too can be changed to receive a wrapper around `&mut
Components` and `&mut Storages` for consistency in a follow-up PR.

## Solution

Replace the `&World` parameter in `get_state` with `&Components`.

## Changelog

 `WorldQuery::get_state` now takes `&Components` instead of `&World`.
The `transmute`, `transmute_filtered`, `join` and `join_filtered`
methods on `QueryState` now similarly take `&Components` instead of
`&World`.

## Migration Guide

Users of `WorldQuery::get_state` or `transmute`, `transmute_filtered`,
`join` and `join_filtered` methods on `QueryState` now need to pass
`&Components` instead of `&World`.
`&Components` can be trivially obtained from either `components` method
on `&World` or `UnsafeWorldCell`.
For implementors of `WorldQuery::get_state` that were accessing more
than the `Components` inside `&World` and its methods, this is no longer
allowed.
2024-05-13 21:00:01 +00:00
Charles Bournhonesque
e33b93e312
Update ecs query docs (#12595)
# Objective

I'm reading through the ecs query code for the first time, and updating
the docs:
- fixed some typos
- added some docs about things I was confused about (in particular what
the difference between `matches_component_set` and
`update_component_access` was)
2024-03-22 13:28:41 +00:00
Tristan Guichaoua
33c7a2251e
bevy_ecs address trivial cases of unsafe_op_in_unsafe_fn (#11861)
# Objective

- Part of #11590
- Fix `unsafe_op_in_unsafe_fn` for trivial cases in bevy_ecs

## Solution

Fix `unsafe_op_in_unsafe_fn` in bevy_ecs for trivial cases, i.e., add an
`unsafe` block when the safety comment already exists or add a comment
like "The invariants are uphold by the caller".

---------

Co-authored-by: James Liu <contact@jamessliu.com>
2024-02-22 00:04:38 +00:00
Kristoffer Søholm
6026c08c04
Update documentation for WorldQuery and filters (#11952)
# Objective

`update_archetype_component_access` was removed from queries in #9774,
but some documentation still refers to it.

## Solution

Update the documentation. Since a bunch of these were in SAFETY comments
it would be nice if someone who knows the details better could check
that the rest of those comments are still valid.
2024-02-18 21:58:26 +00:00
James O'Brien
ea42d14344
Dynamic queries and builder API (#9774)
# Objective
Expand the existing `Query` API to support more dynamic use cases i.e.
scripting.

## Prior Art
 - #6390 
 - #8308 
- #10037

## Solution
- Create a `QueryBuilder` with runtime methods to define the set of
component accesses for a built query.
- Create new `WorldQueryData` implementations `FilteredEntityMut` and
`FilteredEntityRef` as variants of `EntityMut` and `EntityRef` that
provide run time checked access to the components included in a given
query.
- Add new methods to `Query` to create "query lens" with a subset of the
access of the initial query.

### Query Builder
The `QueryBuilder` API allows you to define a query at runtime. At it's
most basic use it will simply create a query with the corresponding type
signature:
```rust
let query = QueryBuilder::<Entity, With<A>>::new(&mut world).build();
// is equivalent to
let query = QueryState::<Entity, With<A>>::new(&mut world);
```
Before calling `.build()` you also have the opportunity to add
additional accesses and filters. Here is a simple example where we add
additional filter terms:
```rust
let entity_a = world.spawn((A(0), B(0))).id();
let entity_b = world.spawn((A(0), C(0))).id();

let mut query_a = QueryBuilder::<Entity>::new(&mut world)
    .with::<A>()
    .without::<C>()
    .build();
            
assert_eq!(entity_a, query_a.single(&world));
```
This alone is useful in that allows you to decide which archetypes your
query will match at runtime. However it is also very limited, consider a
case like the following:
```rust
let query_a = QueryBuilder::<&A>::new(&mut world)
// Add an additional access
    .data::<&B>()
    .build();
```
This will grant the query an additional read access to component B
however we have no way of accessing the data while iterating as the type
signature still only includes &A. For an even more concrete example of
this consider dynamic components:
```rust
let query_a = QueryBuilder::<Entity>::new(&mut world)
// Adding a filter is easy since it doesn't need be read later
    .with_id(component_id_a)
// How do I access the data of this component?
    .ref_id(component_id_b)
    .build();
```
With this in mind the `QueryBuilder` API seems somewhat incomplete by
itself, we need some way method of accessing the components dynamically.
So here's one:
### Query Transmutation
If the problem is not having the component in the type signature why not
just add it? This PR also adds transmute methods to `QueryBuilder` and
`QueryState`. Here's a simple example:
```rust
world.spawn(A(0));
world.spawn((A(1), B(0)));
let mut query = QueryBuilder::<()>::new(&mut world)
    .with::<B>()
    .transmute::<&A>()
    .build();

query.iter(&world).for_each(|a| assert_eq!(a.0, 1));
```
The `QueryState` and `QueryBuilder` transmute methods look quite similar
but are different in one respect. Transmuting a builder will always
succeed as it will just add the additional accesses needed for the new
terms if they weren't already included. Transmuting a `QueryState` will
panic in the case that the new type signature would give it access it
didn't already have, for example:
```rust
let query = QueryState::<&A, Option<&B>>::new(&mut world);
/// This is fine, the access for Option<&A> is less restrictive than &A
query.transmute::<Option<&A>>(&world);
/// Oh no, this would allow access to &B on entities that might not have it, so it panics
query.transmute::<&B>(&world);
/// This is right out
query.transmute::<&C>(&world);
```
This is quite an appealing API to also have available on `Query` however
it does pose one additional wrinkle: In order to to change the iterator
we need to create a new `QueryState` to back it. `Query` doesn't own
it's own state though, it just borrows it, so we need a place to borrow
it from. This is why `QueryLens` exists, it is a place to store the new
state so it can be borrowed when you call `.query()` leaving you with an
API like this:
```rust
fn function_that_takes_a_query(query: &Query<&A>) {
    // ...
}

fn system(query: Query<(&A, &B)>) {
    let lens = query.transmute_lens::<&A>();
    let q = lens.query();
    function_that_takes_a_query(&q);
}
```
Now you may be thinking: Hey, wait a second, you introduced the problem
with dynamic components and then described a solution that only works
for static components! Ok, you got me, I guess we need a bit more:
### Filtered Entity References
Currently the only way you can access dynamic components on entities
through a query is with either `EntityMut` or `EntityRef`, however these
can access all components and so conflict with all other accesses. This
PR introduces `FilteredEntityMut` and `FilteredEntityRef` as
alternatives that have additional runtime checking to prevent accessing
components that you shouldn't. This way you can build a query with a
`QueryBuilder` and actually access the components you asked for:
```rust
let mut query = QueryBuilder::<FilteredEntityRef>::new(&mut world)
    .ref_id(component_id_a)
    .with(component_id_b)
    .build();

let entity_ref = query.single(&world);

// Returns Some(Ptr) as we have that component and are allowed to read it
let a = entity_ref.get_by_id(component_id_a);
// Will return None even though the entity does have the component, as we are not allowed to read it
let b = entity_ref.get_by_id(component_id_b);
```
For the most part these new structs have the exact same methods as their
non-filtered equivalents.

Putting all of this together we can do some truly dynamic ECS queries,
check out the `dynamic` example to see it in action:
```
Commands:
    comp, c   Create new components
    spawn, s  Spawn entities
    query, q  Query for entities
Enter a command with no parameters for usage.

> c A, B, C, Data 4  
Component A created with id: 0
Component B created with id: 1
Component C created with id: 2
Component Data created with id: 3

> s A, B, Data 1
Entity spawned with id: 0v0

> s A, C, Data 0
Entity spawned with id: 1v0

> q &Data
0v0: Data: [1, 0, 0, 0]
1v0: Data: [0, 0, 0, 0]

> q B, &mut Data                                                                                     
0v0: Data: [2, 1, 1, 1]

> q B || C, &Data 
0v0: Data: [2, 1, 1, 1]
1v0: Data: [0, 0, 0, 0]
```
## Changelog
 - Add new `transmute_lens` methods to `Query`.
- Add new types `QueryBuilder`, `FilteredEntityMut`, `FilteredEntityRef`
and `QueryLens`
- `update_archetype_component_access` has been removed, archetype
component accesses are now determined by the accesses set in
`update_component_access`
- Added method `set_access` to `WorldQuery`, this is called before
`update_component_access` for queries that have a restricted set of
accesses, such as those built by `QueryBuilder` or `QueryLens`. This is
primarily used by the `FilteredEntity*` variants and has an empty trait
implementation.
- Added method `get_state` to `WorldQuery` as a fallible version of
`init_state` when you don't have `&mut World` access.

## Future Work
Improve performance of `FilteredEntityMut` and `FilteredEntityRef`,
currently they have to determine the accesses a query has in a given
archetype during iteration which is far from ideal, especially since we
already did the work when matching the archetype in the first place. To
avoid making more internal API changes I have left it out of this PR.

---------

Co-authored-by: Mike Hsu <mike.hsu@gmail.com>
2024-01-16 19:16:49 +00:00
Mantas
5af2f022d8
Rename WorldQueryData & WorldQueryFilter to QueryData & QueryFilter (#10779)
# Rename `WorldQueryData` & `WorldQueryFilter` to `QueryData` &
`QueryFilter`

Fixes #10776 

## Solution

Traits `WorldQueryData` & `WorldQueryFilter` were renamed to `QueryData`
and `QueryFilter`, respectively. Related Trait types were also renamed.

---

## Changelog

- Trait `WorldQueryData` has been renamed to `QueryData`. Derive macro's
`QueryData` attribute `world_query_data` has been renamed to
`query_data`.
- Trait `WorldQueryFilter` has been renamed to `QueryFilter`. Derive
macro's `QueryFilter` attribute `world_query_filter` has been renamed to
`query_filter`.
- Trait's `ExtractComponent` type `Query` has been renamed to `Data`.
- Trait's `GetBatchData` types `Query` & `QueryFilter` has been renamed
to `Data` & `Filter`, respectively.
- Trait's `ExtractInstance` type `Query` has been renamed to `Data`.
- Trait's `ViewNode` type `ViewQuery` has been renamed to `ViewData`.
- Trait's `RenderCommand` types `ViewWorldQuery` & `ItemWorldQuery` has
been renamed to `ViewData` & `ItemData`, respectively.

## Migration Guide

Note: if merged before 0.13 is released, this should instead modify the
migration guide of #10776 with the updated names.

- Rename `WorldQueryData` & `WorldQueryFilter` trait usages to
`QueryData` & `QueryFilter` and their respective derive macro attributes
`world_query_data` & `world_query_filter` to `query_data` &
`query_filter`.
- Rename the following trait type usages:
  - Trait's `ExtractComponent` type `Query` to `Data`.
  - Trait's `GetBatchData` type `Query` to `Data`.
  - Trait's `ExtractInstance` type `Query` to `Data`.
  - Trait's `ViewNode` type `ViewQuery` to `ViewData`'
- Trait's `RenderCommand` types `ViewWolrdQuery` & `ItemWorldQuery` to
`ViewData` & `ItemData`, respectively.

```rust
// Before
#[derive(WorldQueryData)]
#[world_query_data(derive(Debug))]
struct EmptyQuery {
    empty: (),
}

// After
#[derive(QueryData)]
#[query_data(derive(Debug))]
struct EmptyQuery {
    empty: (),
}

// Before
#[derive(WorldQueryFilter)]
struct CustomQueryFilter<T: Component, P: Component> {
    _c: With<ComponentC>,
    _d: With<ComponentD>,
    _or: Or<(Added<ComponentC>, Changed<ComponentD>, Without<ComponentZ>)>,
    _generic_tuple: (With<T>, With<P>),
}

// After
#[derive(QueryFilter)]
struct CustomQueryFilter<T: Component, P: Component> {
    _c: With<ComponentC>,
    _d: With<ComponentD>,
    _or: Or<(Added<ComponentC>, Changed<ComponentD>, Without<ComponentZ>)>,
    _generic_tuple: (With<T>, With<P>),
}

// Before
impl ExtractComponent for ContrastAdaptiveSharpeningSettings {
    type Query = &'static Self;
    type Filter = With<Camera>;
    type Out = (DenoiseCAS, CASUniform);

    fn extract_component(item: QueryItem<Self::Query>) -> Option<Self::Out> {
        //...
    }
}

// After
impl ExtractComponent for ContrastAdaptiveSharpeningSettings {
    type Data = &'static Self;
    type Filter = With<Camera>;
    type Out = (DenoiseCAS, CASUniform);

    fn extract_component(item: QueryItem<Self::Data>) -> Option<Self::Out> {
        //...
    }
}

// Before
impl GetBatchData for MeshPipeline {
    type Param = SRes<RenderMeshInstances>;
    type Query = Entity;
    type QueryFilter = With<Mesh3d>;
    type CompareData = (MaterialBindGroupId, AssetId<Mesh>);
    type BufferData = MeshUniform;

    fn get_batch_data(
        mesh_instances: &SystemParamItem<Self::Param>,
        entity: &QueryItem<Self::Query>,
    ) -> (Self::BufferData, Option<Self::CompareData>) {
        // ....
    }
}

// After
impl GetBatchData for MeshPipeline {
    type Param = SRes<RenderMeshInstances>;
    type Data = Entity;
    type Filter = With<Mesh3d>;
    type CompareData = (MaterialBindGroupId, AssetId<Mesh>);
    type BufferData = MeshUniform;

    fn get_batch_data(
        mesh_instances: &SystemParamItem<Self::Param>,
        entity: &QueryItem<Self::Data>,
    ) -> (Self::BufferData, Option<Self::CompareData>) {
        // ....
    }
}

// Before
impl<A> ExtractInstance for AssetId<A>
where
    A: Asset,
{
    type Query = Read<Handle<A>>;
    type Filter = ();

    fn extract(item: QueryItem<'_, Self::Query>) -> Option<Self> {
        Some(item.id())
    }
}

// After
impl<A> ExtractInstance for AssetId<A>
where
    A: Asset,
{
    type Data = Read<Handle<A>>;
    type Filter = ();

    fn extract(item: QueryItem<'_, Self::Data>) -> Option<Self> {
        Some(item.id())
    }
}

// Before
impl ViewNode for PostProcessNode {
    type ViewQuery = (
        &'static ViewTarget,
        &'static PostProcessSettings,
    );

    fn run(
        &self,
        _graph: &mut RenderGraphContext,
        render_context: &mut RenderContext,
        (view_target, _post_process_settings): QueryItem<Self::ViewQuery>,
        world: &World,
    ) -> Result<(), NodeRunError> {
        // ...
    }
}

// After
impl ViewNode for PostProcessNode {
    type ViewData = (
        &'static ViewTarget,
        &'static PostProcessSettings,
    );

    fn run(
        &self,
        _graph: &mut RenderGraphContext,
        render_context: &mut RenderContext,
        (view_target, _post_process_settings): QueryItem<Self::ViewData>,
        world: &World,
    ) -> Result<(), NodeRunError> {
        // ...
    }
}

// Before
impl<P: CachedRenderPipelinePhaseItem> RenderCommand<P> for SetItemPipeline {
    type Param = SRes<PipelineCache>;
    type ViewWorldQuery = ();
    type ItemWorldQuery = ();
    #[inline]
    fn render<'w>(
        item: &P,
        _view: (),
        _entity: (),
        pipeline_cache: SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        // ...
    }
}

// After
impl<P: CachedRenderPipelinePhaseItem> RenderCommand<P> for SetItemPipeline {
    type Param = SRes<PipelineCache>;
    type ViewData = ();
    type ItemData = ();
    #[inline]
    fn render<'w>(
        item: &P,
        _view: (),
        _entity: (),
        pipeline_cache: SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        // ...
    }
}
```
2023-12-12 19:45:50 +00:00
tygyh
fd308571c4
Remove unnecessary path prefixes (#10749)
# Objective

- Shorten paths by removing unnecessary prefixes

## Solution

- Remove the prefixes from many paths which do not need them. Finding
the paths was done automatically using built-in refactoring tools in
Jetbrains RustRover.
2023-11-28 23:43:40 +00:00
Mark Wainwright
f0a8994f55
Split WorldQuery into WorldQueryData and WorldQueryFilter (#9918)
# Objective

- Fixes #7680
- This is an updated for https://github.com/bevyengine/bevy/pull/8899
which had the same objective but fell a long way behind the latest
changes


## Solution

The traits `WorldQueryData : WorldQuery` and `WorldQueryFilter :
WorldQuery` have been added and some of the types and functions from
`WorldQuery` has been moved into them.

`ReadOnlyWorldQuery` has been replaced with `ReadOnlyWorldQueryData`. 

`WorldQueryFilter` is safe (as long as `WorldQuery` is implemented
safely).

`WorldQueryData` is unsafe - safely implementing it requires that
`Self::ReadOnly` is a readonly version of `Self` (this used to be a
safety requirement of `WorldQuery`)

The type parameters `Q` and `F` of `Query` must now implement
`WorldQueryData` and `WorldQueryFilter` respectively.

This makes it impossible to accidentally use a filter in the data
position or vice versa which was something that could lead to bugs.
~~Compile failure tests have been added to check this.~~

It was previously sometimes useful to use `Option<With<T>>` in the data
position. Use `Has<T>` instead in these cases.

The `WorldQuery` derive macro has been split into separate derive macros
for `WorldQueryData` and `WorldQueryFilter`.

Previously it was possible to derive both `WorldQuery` for a struct that
had a mixture of data and filter items. This would not work correctly in
some cases but could be a useful pattern in others. *This is no longer
possible.*

---

## Notes

- The changes outside of `bevy_ecs` are all changing type parameters to
the new types, updating the macro use, or replacing `Option<With<T>>`
with `Has<T>`.

- All `WorldQueryData` types always returned `true` for `IS_ARCHETYPAL`
so I moved it to `WorldQueryFilter` and
replaced all calls to it with `true`. That should be the only logic
change outside of the macro generation code.

- `Changed<T>` and `Added<T>` were being generated by a macro that I
have expanded. Happy to revert that if desired.

- The two derive macros share some functions for implementing
`WorldQuery` but the tidiest way I could find to implement them was to
give them a ton of arguments and ask clippy to ignore that.

## Changelog

### Changed
- Split `WorldQuery` into `WorldQueryData` and `WorldQueryFilter` which
now have separate derive macros. It is not possible to derive both for
the same type.
- `Query` now requires that the first type argument implements
`WorldQueryData` and the second implements `WorldQueryFilter`

## Migration Guide

- Update derives

```rust
// old
#[derive(WorldQuery)]
#[world_query(mutable, derive(Debug))]
struct CustomQuery {
    entity: Entity,
    a: &'static mut ComponentA
}

#[derive(WorldQuery)]
struct QueryFilter {
    _c: With<ComponentC>
}

// new 
#[derive(WorldQueryData)]
#[world_query_data(mutable, derive(Debug))]
struct CustomQuery {
    entity: Entity,
    a: &'static mut ComponentA,
}

#[derive(WorldQueryFilter)]
struct QueryFilter {
    _c: With<ComponentC>
}
```
- Replace `Option<With<T>>` with `Has<T>`

```rust
/// old
fn my_system(query: Query<(Entity, Option<With<ComponentA>>)>)
{
  for (entity, has_a_option) in query.iter(){
    let has_a:bool = has_a_option.is_some();
    //todo!()
  }
}

/// new
fn my_system(query: Query<(Entity, Has<ComponentA>)>)
{
  for (entity, has_a) in query.iter(){
    //todo!()
  }
}
```

- Fix queries which had filters in the data position or vice versa.

```rust
// old
fn my_system(query: Query<(Entity, With<ComponentA>)>)
{
  for (entity, _) in query.iter(){
  //todo!()
  }
}

// new
fn my_system(query: Query<Entity, With<ComponentA>>)
{
  for entity in query.iter(){
  //todo!()
  }
}

// old
fn my_system(query: Query<AnyOf<(&ComponentA, With<ComponentB>)>>)
{
  for (entity, _) in query.iter(){
  //todo!()
  }
}

// new
fn my_system(query: Query<Option<&ComponentA>, Or<(With<ComponentA>, With<ComponentB>)>>)
{
  for entity in query.iter(){
  //todo!()
  }
}

```

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-11-28 03:56:07 +00:00