Commit graph

5 commits

Author SHA1 Message Date
Gino Valente
d21c7a1911
bevy_reflect: Function Overloading (Generic & Variadic Functions) (#15074)
# Objective

Currently function reflection requires users to manually monomorphize
their generic functions. For example:

```rust
fn add<T: Add<Output=T>>(a: T, b: T) -> T {
    a + b
}

// We have to specify the type of `T`:
let reflect_add = add::<i32>.into_function();
```

This PR doesn't aim to solve that problem—this is just a limitation in
Rust. However, it also means that reflected functions can only ever work
for a single monomorphization. If we wanted to support other types for
`T`, we'd have to create a separate function for each one:

```rust
let reflect_add_i32 = add::<i32>.into_function();
let reflect_add_u32 = add::<u32>.into_function();
let reflect_add_f32 = add::<f32>.into_function();
// ...
```

So in addition to requiring manual monomorphization, we also lose the
benefit of having a single function handle multiple argument types.

If a user wanted to create a small modding script that utilized function
reflection, they'd have to either:
- Store all sets of supported monomorphizations and require users to
call the correct one
- Write out some logic to find the correct function based on the given
arguments

While the first option would work, it wouldn't be very ergonomic. The
second option is better, but it adds additional complexity to the user's
logic—complexity that `bevy_reflect` could instead take on.

## Solution

Introduce [function
overloading](https://en.wikipedia.org/wiki/Function_overloading).

A `DynamicFunction` can now be overloaded with other `DynamicFunction`s.
We can rewrite the above code like so:

```rust
let reflect_add = add::<i32>
    .into_function()
    .with_overload(add::<u32>)
    .with_overload(add::<f32>);
```

When invoked, the `DynamicFunction` will attempt to find a matching
overload for the given set of arguments.

And while I went into this PR only looking to improve generic function
reflection, I accidentally added support for variadic functions as well
(hence why I use the broader term "overload" over "generic").

```rust
// Supports 1 to 4 arguments
let multiply_all = (|a: i32| a)
    .into_function()
    .with_overload(|a: i32, b: i32| a * b)
    .with_overload(|a: i32, b: i32, c: i32| a * b * c)
    .with_overload(|a: i32, b: i32, c: i32, d: i32| a * b * c * d);
```

This is simply an added bonus to this particular implementation. ~~Full
variadic support (i.e. allowing for an indefinite number of arguments)
will be added in a later PR.~~ I actually decided to limit the maximum
number of arguments to 63 to supplement faster lookups, a reduced memory
footprint, and faster cloning.

### Alternatives & Rationale

I explored a few options for handling generic functions. This PR is the
one I feel the most confident in, but I feel I should mention the others
and why I ultimately didn't move forward with them.

#### Adding `GenericDynamicFunction`

**TL;DR:** Adding a distinct `GenericDynamicFunction` type unnecessarily
splits and complicates the API.

<details>
<summary>Details</summary>

My initial explorations involved a dedicated `GenericDynamicFunction` to
contain and handle the mappings.

This was initially started back when `DynamicFunction` was distinct from
`DynamicClosure`. My goal was to not prevent us from being able to
somehow make `DynamicFunction` implement `Copy`. But once we reverted
back to a single `DynamicFunction`, that became a non-issue.

But that aside, the real problem was that it created a split in the API.
If I'm using a third-party library that uses function reflection, I have
to know whether to request a `DynamicFunction` or a
`GenericDynamicFunction`. I might not even know ahead of time which one
I want. It might need to be determined at runtime.

And if I'm creating a library, I might want a type to contain both
`DynamicFunction` and `GenericDynamicFunction`. This might not be
possible if, for example, I need to store the function in a `HashMap`.

The other concern is with `IntoFunction`. Right now `DynamicFunction`
trivially implements `IntoFunction` since it can just return itself. But
what should `GenericDynamicFunction` do? It could return itself wrapped
into a `DynamicFunction`, but then the API for `DynamicFunction` would
have to account for this. So then what was the point of having a
separate `GenericDynamicFunction` anyways?

And even apart from `IntoFunction`, there's nothing stopping someone
from manually creating a generic `DynamicFunction` through lying about
its `FunctionInfo` and wrapping a `GenericDynamicFunction`.

That being said, this is probably the "best" alternative if we added a
`Function` trait and stored functions as `Box<dyn Function>`.

However, I'm not convinced we gain much from this. Sure, we could keep
the API for `DynamicFunction` the same, but consumers of `Function` will
need to account for `GenericDynamicFunction` regardless (e.g. handling
multiple `FunctionInfo`, a ranged argument count, etc.). And for all
cases, except where using `DynamicFunction` directly, you end up
treating them all like `GenericDynamicFunction`.

Right now, if we did go with `GenericDynamicFunction`, the only major
benefit we'd gain would be saving 24 bytes. If memory ever does become
an issue here, we could swap over. But I think for the time being it's
better for us to pursue a clearer mental model and end-user ergonomics
through unification.

</details>

##### Using the `FunctionRegistry`

**TL;DR:** Having overloads only exist in the `FunctionRegistry`
unnecessarily splits and complicates the API.

<details>
<summary>Details</summary>

Another idea was to store the overloads in the `FunctionRegistry`. Users
would then just call functions directly through the registry (i.e.
`registry.call("my_func", my_args)`).

I didn't go with this option because of how it specifically relies on
the functions being registered. You'd not only always need access to the
registry, but you'd need to ensure that the functions you want to call
are even registered.

It also means you can't just store a generic `DynamicFunction` on a
type. Instead, you'll need to store the function's name and use that to
look up the function in the registry—even if it's only ever used by that
type.

Doing so also removes all the benefits of `DynamicFunction`, such as the
ability to pass it to functions accepting `IntoFunction`, modify it if
needed, and so on.

Like `GenericDynamicFunction` this introduces a split in the ecosystem:
you either store `DynamicFunction`, store a string to look up the
function, or force `DynamicFunction` to wrap your generic function
anyways. Or worse yet: have `DynamicFunction` wrap the lookup function
using `FunctionRegistryArc`.

</details>

#### Generic `ArgInfo`

**TL;DR:** Allowing `ArgInfo` and `ReturnInfo` to store the generic
information introduces a footgun when interpreting `FunctionInfo`.

<details>
<summary>Details</summary>

Regardless of how we represent a generic function, one thing is clear:
we need to be able to represent the information for such a function.

This PR does so by introducing a `FunctionInfoType` enum to wrap one or
more `FunctionInfo` values.

Originally, I didn't do this. I had `ArgInfo` and `ReturnInfo` allow for
generic types. This allowed us to have a single `FunctionInfo` to
represent our function, but then I realized that it actually lies about
our function.

If we have two `ArgInfo` that both allow for either `i32` or `u32`, what
does this tell us about our function? It turns out: nothing! We can't
know whether our function takes `(i32, i32)`, `(u32, u32)`, `(i32,
u32)`, or `(u32, i32)`.

It therefore makes more sense to just represent a function with multiple
`FunctionInfo` since that's really what it's made up of.

</details>

#### Flatten `FunctionInfo`

**TL;DR:** Flattening removes additional per-overload information some
users may desire and prevents us from adding more information in the
future.

<details>
<summary>Details</summary>

Why don't we just flatten multiple `FunctionInfo` into just one that can
contain multiple signatures?

This is something we could do, but I decided against it for a few
reasons:
- The only thing we'd be able to get rid of for each signature would be
the `name`. While not enough to not do it, it doesn't really suggest we
*have* to either.
- Some consumers may want access to the names of the functions that make
up the overloaded function. For example, to track a bug where an
undesirable function is being added as an overload. Or to more easily
locate the original function of an overload.
- We may eventually allow for more information to be stored on
`FunctionInfo`. For example, we may allow for documentation to be stored
like we do for `TypeInfo`. Consumers of this documentation may want
access to the documentation of each overload as they may provide
documentation specific to that overload.

</details>

## Testing

This PR adds lots of tests and benchmarks, and also adds to the example.

To run the tests:

```
cargo test --package bevy_reflect --all-features
```

To run the benchmarks:

```
cargo bench --bench reflect_function --all-features
```

To run the example:

```
cargo run --package bevy --example function_reflection --all-features
```

### Benchmarks

One of my goals with this PR was to leave the typical case of
non-overloaded functions largely unaffected by the changes introduced in
this PR. ~~And while the static size of `DynamicFunction` has increased
by 17% (from 136 to 160 bytes), the performance has generally stayed the
same~~ The static size of `DynamicFunction` has decreased from 136 to
112 bytes, while calling performance has generally stayed the same:

|                                     | `main` | 7d293ab | 252f3897d |
|-------------------------------------|--------|---------|-----------|
| `into/function`                     | 37 ns  | 46 ns   | 142 ns    |
| `with_overload/01_simple_overload`  | -      | 149 ns  | 268 ns    |
| `with_overload/01_complex_overload` | -      | 332 ns  | 431 ns    |
| `with_overload/10_simple_overload`  | -      | 1266 ns | 2618 ns   |
| `with_overload/10_complex_overload` | -      | 2544 ns | 4170 ns   |
| `call/function`                     | 57 ns  | 58 ns   | 61 ns     |
| `call/01_simple_overload`           | -      | 255 ns  | 242 ns    |
| `call/01_complex_overload`          | -      | 595 ns  | 431 ns    |
| `call/10_simple_overload`           | -      | 740 ns  | 699 ns    |
| `call/10_complex_overload`          | -      | 1824 ns | 1618 ns   |

For the overloaded function tests, the leading number indicates how many
overloads there are: `01` indicates 1 overload, `10` indicates 10
overloads. The `complex` cases have 10 unique generic types and 10
arguments, compared to the `simple` 1 generic type and 2 arguments.

I aimed to prioritize the performance of calling the functions over
creating them, hence creation speed tends to be a bit slower.

There may be other optimizations we can look into but that's probably
best saved for a future PR.

The important bit is that the standard ~~`into/function`~~ and
`call/function` benchmarks show minimal regressions. Since the latest
changes, `into/function` does have some regressions, but again the
priority was `call/function`. We can probably optimize `into/function`
if needed in the future.

---

## Showcase

Function reflection now supports [function
overloading](https://en.wikipedia.org/wiki/Function_overloading)! This
can be used to simulate generic functions:

```rust
fn add<T: Add<Output=T>>(a: T, b: T) -> T {
    a + b
}

let reflect_add = add::<i32>
    .into_function()
    .with_overload(add::<u32>)
    .with_overload(add::<f32>);

let args = ArgList::default().push_owned(25_i32).push_owned(75_i32);  
let result = func.call(args).unwrap().unwrap_owned();  
assert_eq!(result.try_take::<i32>().unwrap(), 100);  
  
let args = ArgList::default().push_owned(25.0_f32).push_owned(75.0_f32);  
let result = func.call(args).unwrap().unwrap_owned();  
assert_eq!(result.try_take::<f32>().unwrap(), 100.0);
```

You can also simulate variadic functions:

```rust
#[derive(Reflect, PartialEq, Debug)]
struct Player {
    name: Option<String>,
    health: u32,
}

// Creates a `Player` with one of the following:  
// - No name and 100 health  
// - A name and 100 health  
// - No name and custom health  
// - A name and custom health
let create_player = (|| Player {
        name: None,
        health: 100,
    })
    .into_function()
    .with_overload(|name: String| Player {
        name: Some(name),
        health: 100,
    })
    .with_overload(|health: u32| Player {
        name: None,
        health
    })
    .with_overload(|name: String, health: u32| Player {
        name: Some(name),
        health,
    });

let args = ArgList::default()
    .push_owned(String::from("Urist"))
    .push_owned(55_u32);
    
let player = create_player
    .call(args)
    .unwrap()
    .unwrap_owned()
    .try_take::<Player>()
    .unwrap();
	
assert_eq!(
    player,
    Player {
        name: Some(String::from("Urist")),
        health: 55
    }
);
```
2024-12-10 01:51:47 +00:00
Benjamin Brienen
27bea6abf7
Bubbling observers traversal should use query data (#15385)
# Objective

Fixes #14331

## Solution

- Make `Traversal` a subtrait of `ReadOnlyQueryData`
- Update implementations and usages

## Testing

- Updated unit tests

## Migration Guide

Update implementations of `Traversal`.

---------

Co-authored-by: Christian Hughes <9044780+ItsDoot@users.noreply.github.com>
2024-09-23 18:08:36 +00:00
Gino Valente
59c0521690
bevy_reflect: Add Function trait (#15205)
# Objective

While #13152 added function reflection, it didn't really make functions
reflectable. Instead, it made it so that they can be called with
reflected arguments and return reflected data. But functions themselves
cannot be reflected.

In other words, we can't go from `DynamicFunction` to `dyn
PartialReflect`.

## Solution

Allow `DynamicFunction` to actually be reflected.

This PR adds the `Function` reflection subtrait (and corresponding
`ReflectRef`, `ReflectKind`, etc.). With this new trait, we're able to
implement `PartialReflect` on `DynamicFunction`.

### Implementors

`Function` is currently only implemented for `DynamicFunction<'static>`.
This is because we can't implement it generically over all
functions—even those that implement `IntoFunction`.

What about `DynamicFunctionMut`? Well, this PR does **not** implement
`Function` for `DynamicFunctionMut`.

The reasons for this are a little complicated, but it boils down to
mutability. `DynamicFunctionMut` requires `&mut self` to be invoked
since it wraps a `FnMut`. However, we can't really model this well with
`Function`. And if we make `DynamicFunctionMut` wrap its internal
`FnMut` in a `Mutex` to allow for `&self` invocations, then we run into
either concurrency issues or recursion issues (or, in the worst case,
both).

So for the time-being, we won't implement `Function` for
`DynamicFunctionMut`. It will be better to evaluate it on its own. And
we may even consider the possibility of removing it altogether if it
adds too much complexity to the crate.

### Dynamic vs Concrete

One of the issues with `DynamicFunction` is the fact that it's both a
dynamic representation (like `DynamicStruct` or `DynamicList`) and the
only way to represent a function.

Because of this, it's in a weird middle ground where we can't easily
implement full-on `Reflect`. That would require `Typed`, but what static
`TypeInfo` could it provide? Just that it's a `DynamicFunction`? None of
the other dynamic types implement `Typed`.

However, by not implementing `Reflect`, we lose the ability to downcast
back to our `DynamicStruct`. Our only option is to call
`Function::clone_dynamic`, which clones the data rather than by simply
downcasting. This works in favor of the `PartialReflect::try_apply`
implementation since it would have to clone anyways, but is definitely
not ideal. This is also the reason I had to add `Debug` as a supertrait
on `Function`.

For now, this PR chooses not to implement `Reflect` for
`DynamicFunction`. We may want to explore this in a followup PR (or even
this one if people feel strongly that it's strictly required).

The same is true for `FromReflect`. We may decide to add an
implementation there as well, but it's likely out-of-scope of this PR.

## Testing

You can test locally by running:

```
cargo test --package bevy_reflect --all-features
```

---

## Showcase

You can now pass around a `DynamicFunction` as a `dyn PartialReflect`!
This also means you can use it as a field on a reflected type without
having to ignore it (though you do need to opt out of `FromReflect`).

```rust
#[derive(Reflect)]
#[reflect(from_reflect = false)]
struct ClickEvent {
    callback: DynamicFunction<'static>,
}

let event: Box<dyn Struct> = Box::new(ClickEvent {
    callback: (|| println!("Clicked!")).into_function(),
});

// We can access our `DynamicFunction` as a `dyn PartialReflect`
let callback: &dyn PartialReflect = event.field("callback").unwrap();

// And access function-related methods via the new `Function` trait
let ReflectRef::Function(callback) = callback.reflect_ref() else {
    unreachable!()
};

// Including calling the function
callback.reflect_call(ArgList::new()).unwrap(); // Prints: Clicked!
```
2024-09-22 14:19:12 +00:00
Gino Valente
2b4180ca8f
bevy_reflect: Function reflection terminology refactor (#14813)
# Objective

One of the changes in #14704 made `DynamicFunction` effectively the same
as `DynamicClosure<'static>`. This change meant that the de facto
function type would likely be `DynamicClosure<'static>` instead of the
intended `DynamicFunction`, since the former is much more flexible.

We _could_ explore ways of making `DynamicFunction` implement `Copy`
using some unsafe code, but it likely wouldn't be worth it. And users
would likely still reach for the convenience of
`DynamicClosure<'static>` over the copy-ability of `DynamicFunction`.

The goal of this PR is to fix this confusion between the two types.

## Solution

Firstly, the `DynamicFunction` type was removed. Again, it was no
different than `DynamicClosure<'static>` so it wasn't a huge deal to
remove.

Secondly, `DynamicClosure<'env>` and `DynamicClosureMut<'env>` were
renamed to `DynamicFunction<'env>` and `DynamicFunctionMut<'env>`,
respectively.

Yes, we still ultimately kept the naming of `DynamicFunction`, but
changed its behavior to that of `DynamicClosure<'env>`. We need a term
to refer to both functions and closures, and "function" was the best
option.


[Originally](https://discord.com/channels/691052431525675048/1002362493634629796/1274091992162242710),
I was going to go with "callable" as the replacement term to encompass
both functions and closures (e.g. `DynamciCallable<'env>`). However, it
was
[suggested](https://discord.com/channels/691052431525675048/1002362493634629796/1274653581777047625)
by @SkiFire13 that the simpler "function" term could be used instead.

While "callable" is perhaps the better umbrella term—being truly
ambiguous over functions and closures— "function" is more familiar, used
more often, easier to discover, and is subjectively just
"better-sounding".

## Testing

Most changes are purely swapping type names or updating documentation,
but you can verify everything still works by running the following
command:

```
cargo test --package bevy_reflect
```
2024-08-19 21:52:36 +00:00
Gino Valente
91fa4bb649
bevy_reflect: Function reflection benchmarks (#14647)
# Objective

It would be good to have benchmarks handy for function reflection as it
continues to be worked on.

## Solution

Add some basic benchmarks for function reflection.

## Testing

To test locally, run the following in the `benches` directory:

```
cargo bench --bench reflect_function
```

## Results

Here are a couple of the results (M1 Max MacBook Pro):

<img width="936" alt="Results of benching calling functions vs closures
via reflection. Closures average about 40ns, while functions average
about 55ns"
src="https://github.com/user-attachments/assets/b9a6c585-5fbe-43db-9a7b-f57dbd3815e3">
<img width="936" alt="Results of benching converting functions vs
closures into their dynamic representations. Closures average about
34ns, while functions average about 37ns"
src="https://github.com/user-attachments/assets/4614560a-7192-4c1e-9ade-7bc5a4ca68e3">

Currently, it seems `DynamicClosure` is just a bit more performant. This
is likely due to the fact that `DynamicFunction` stores its function
object in an `Arc` instead of a `Box` so that it can be `Send + Sync`
(and also `Clone`).

We'll likely need to do the same for `DynamicClosure` so I suspect these
results to change in the near future.
2024-08-11 03:02:06 +00:00