Commit graph

11 commits

Author SHA1 Message Date
Gino Valente
1042f09c2e
bevy_reflect: Add DynamicClosure and DynamicClosureMut (#14141)
# Objective

As mentioned in
[this](https://github.com/bevyengine/bevy/pull/13152#issuecomment-2198387297)
comment, creating a function registry (see #14098) is a bit difficult
due to the requirements of `DynamicFunction`. Internally, a
`DynamicFunction` contains a `Box<dyn FnMut>` (the function that reifies
reflected arguments and calls the actual function), which requires `&mut
self` in order to be called.

This means that users would require a mutable reference to the function
registry for it to be useful— which isn't great. And they can't clone
the `DynamicFunction` either because cloning an `FnMut` isn't really
feasible (wrapping it in an `Arc` would allow it to be cloned but we
wouldn't be able to call the clone since we need a mutable reference to
the `FnMut`, which we can't get with multiple `Arc`s still alive,
requiring us to also slap in a `Mutex`, which adds additional overhead).

And we don't want to just replace the `dyn FnMut` with `dyn Fn` as that
would prevent reflecting closures that mutate their environment.

Instead, we need to introduce a new type to split the requirements of
`DynamicFunction`.

## Solution

Introduce new types for representing closures.

Specifically, this PR introduces `DynamicClosure` and
`DynamicClosureMut`. Similar to how `IntoFunction` exists for
`DynamicFunction`, two new traits were introduced: `IntoClosure` and
`IntoClosureMut`.

Now `DynamicFunction` stores a `dyn Fn` with a `'static` lifetime.
`DynamicClosure` also uses a `dyn Fn` but has a lifetime, `'env`, tied
to its environment. `DynamicClosureMut` is most like the old
`DynamicFunction`, keeping the `dyn FnMut` and also typing its lifetime,
`'env`, to the environment

Here are some comparison tables:

|   | `DynamicFunction` | `DynamicClosure` | `DynamicClosureMut` |
| - | ----------------- | ---------------- | ------------------- |
| Callable with `&self` |  |  |  |
| Callable with `&mut self` |  |  |  |
| Allows for non-`'static` lifetimes |  |  |  |

|   | `IntoFunction` | `IntoClosure` | `IntoClosureMut` |
| - | -------------- | ------------- | ---------------- |
| Convert `fn` functions |  |  |  |
| Convert `fn` methods |  |  |  |
| Convert anonymous functions |  |  |  |
| Convert closures that capture immutable references |  |  |  |
| Convert closures that capture mutable references |  |  |  |
| Convert closures that capture owned values | [^1] |  |  |

[^1]: Due to limitations in Rust, `IntoFunction` can't be implemented
for just functions (unless we forced users to manually coerce them to
function pointers first). So closures that meet the trait requirements
_can technically_ be converted into a `DynamicFunction` as well. To both
future-proof and reduce confusion, though, we'll just pretend like this
isn't a thing.

```rust
let mut list: Vec<i32> = vec![1, 2, 3];

// `replace` is a closure that captures a mutable reference to `list`
let mut replace = |index: usize, value: i32| -> i32 {
  let old_value = list[index];
  list[index] = value;
  old_value
};

// Convert the closure into a dynamic closure using `IntoClosureMut::into_closure_mut`
let mut func: DynamicClosureMut = replace.into_closure_mut();

// Dynamically call the closure:
let args = ArgList::default().push_owned(1_usize).push_owned(-2_i32);
let value = func.call_once(args).unwrap().unwrap_owned();

// Check the result:
assert_eq!(value.take::<i32>().unwrap(), 2);
assert_eq!(list, vec![1, -2, 3]);
```

### `ReflectFn`/`ReflectFnMut`

To make extending the function reflection system easier (the blanket
impls for `IntoFunction`, `IntoClosure`, and `IntoClosureMut` are all
incredibly short), this PR generalizes callables with two new traits:
`ReflectFn` and `ReflectFnMut`.

These traits mimic `Fn` and `FnMut` but allow for being called via
reflection. In fact, their blanket implementations are identical save
for `ReflectFn` being implemented over `Fn` types and `ReflectFnMut`
being implemented over `FnMut` types.

And just as `Fn` is a subtrait of `FnMut`, `ReflectFn` is a subtrait of
`ReflectFnMut`. So anywhere that expects a `ReflectFnMut` can also be
given a `ReflectFn`.

To reiterate, these traits aren't 100% necessary. They were added in
purely for extensibility. If we decide to split things up differently or
add new traits/types in the future, then those changes should be much
simpler to implement.

### `TypedFunction`

Because of the split into `ReflectFn` and `ReflectFnMut`, we needed a
new way to access the function type information. This PR moves that
concept over into `TypedFunction`.

Much like `Typed`, this provides a way to access a function's
`FunctionInfo`.

By splitting this trait out, it helps to ensure the other traits are
focused on a single responsibility.

### Internal Macros

The original function PR (#13152) implemented `IntoFunction` using a
macro which was passed into an `all_tuples!` macro invocation. Because
we needed the same functionality for these new traits, this PR has
copy+pasted that code for `ReflectFn`, `ReflectFnMut`, and
`TypedFunction`— albeit with some differences between them.

Originally, I was going to try and macro-ify the impls and where clauses
such that we wouldn't have to straight up duplicate a lot of this logic.
However, aside from being more complex in general, autocomplete just
does not play nice with such heavily nested macros (tried in both
RustRover and VSCode). And both of those problems told me that it just
wasn't worth it: we need to ensure the crate is easily maintainable,
even at the cost of duplicating code.

So instead, I made sure to simplify the macro code by removing all
fully-qualified syntax and cutting the where clauses down to the bare
essentials, which helps to clean up a lot of the visual noise. I also
tried my best to document the macro logic in certain areas (I may even
add a bit more) to help with maintainability for future devs.

### Documentation

Documentation for this module was a bit difficult for me. So many of
these traits and types are very interconnected. And each trait/type has
subtle differences that make documenting it in a single place, like at
the module level, difficult to do cleanly. Describing the valid
signatures is also challenging to do well.

Hopefully what I have here is okay. I think I did an okay job, but let
me know if there any thoughts on ways to improve it. We can also move
such a task to a followup PR for more focused discussion.

## Testing

You can test locally by running:

```
cargo test --package bevy_reflect
```

---

## Changelog

- Added `DynamicClosure` struct
- Added `DynamicClosureMut` struct
- Added `IntoClosure` trait
- Added `IntoClosureMut` trait
- Added `ReflectFn` trait
- Added `ReflectFnMut` trait
- Added `TypedFunction` trait
- `IntoFunction` now only works for standard Rust functions
- `IntoFunction` no longer takes a lifetime parameter
- `DynamicFunction::call` now only requires `&self`
- Removed `DynamicFunction::call_once`
- Changed the `IntoReturn::into_return` signature to include a where
clause

## Internal Migration Guide

> [!important]
> Function reflection was introduced as part of the 0.15 dev cycle. This
migration guide was written for developers relying on `main` during this
cycle, and is not a breaking change coming from 0.14.

### `IntoClosure`

`IntoFunction` now only works for standard Rust functions. Calling
`IntoFunction::into_function` on a closure that captures references to
its environment (either mutable or immutable), will no longer compile.

Instead, you will need to use either `IntoClosure::into_closure` to
create a `DynamicClosure` or `IntoClosureMut::into_closure_mut` to
create a `DynamicClosureMut`, depending on your needs:

```rust
let punct = String::from("!");
let print = |value: String| {
    println!("{value}{punct}");
};

// BEFORE
let func: DynamicFunction = print.into_function();

// AFTER
let func: DynamicClosure = print.into_closure();
```

### `IntoFunction` lifetime

Additionally, `IntoFunction` no longer takes a lifetime parameter as it
always expects a `'static` lifetime. Usages will need to remove any
lifetime parameters:

```rust
// BEFORE
fn execute<'env, F: IntoFunction<'env, Marker>, Marker>(f: F) {/* ... */}

// AFTER
fn execute<F: IntoFunction<Marker>, Marker>(f: F) {/* ... */}
```

### `IntoReturn`

`IntoReturn::into_return` now has a where clause. Any manual
implementors will need to add this where clause to their implementation.
2024-07-16 03:22:43 +00:00
Brezak
6522795889
Specify test group names in github summary for compile fail tests (#14330)
# Objective

The github action summary titles every compile test group as
`compile_fail_utils`.


![image](https://github.com/user-attachments/assets/9d00a113-6772-430c-8da9-bffe6a60a8f8)

## Solution

Manually specify group names for compile fail tests.

## Testing

- Wait for compile fail tests to run.
- Observe the generated summary.
2024-07-15 16:13:03 +00:00
Gino Valente
aa241672e1
bevy_reflect: Nested TypeInfo getters (#13321)
# Objective

Right now, `TypeInfo` can be accessed directly from a type using either
`Typed::type_info` or `Reflect::get_represented_type_info`.

However, once that `TypeInfo` is accessed, any nested types must be
accessed via the `TypeRegistry`.

```rust
#[derive(Reflect)]
struct Foo {
  bar: usize
}

let registry = TypeRegistry::default();

let TypeInfo::Struct(type_info) = Foo::type_info() else {
  panic!("expected struct info");
};

let field = type_info.field("bar").unwrap();

let field_info = registry.get_type_info(field.type_id()).unwrap();
assert!(field_info.is::<usize>());;
```

## Solution

Enable nested types within a `TypeInfo` to be retrieved directly.

```rust
#[derive(Reflect)]
struct Foo {
  bar: usize
}

let TypeInfo::Struct(type_info) = Foo::type_info() else {
  panic!("expected struct info");
};

let field = type_info.field("bar").unwrap();

let field_info = field.type_info().unwrap();
assert!(field_info.is::<usize>());;
```

The particular implementation was chosen for two reasons.

Firstly, we can't just store `TypeInfo` inside another `TypeInfo`
directly. This is because some types are recursive and would result in a
deadlock when trying to create the `TypeInfo` (i.e. it has to create the
`TypeInfo` before it can use it, but it also needs the `TypeInfo` before
it can create it). Therefore, we must instead store the function so it
can be retrieved lazily.

I had considered also using a `OnceLock` or something to lazily cache
the info, but I figured we can look into optimizations later. The API
should remain the same with or without the `OnceLock`.

Secondly, a new wrapper trait had to be introduced: `MaybeTyped`. Like
`RegisterForReflection`, this trait is `#[doc(hidden)]` and only exists
so that we can properly handle dynamic type fields without requiring
them to implement `Typed`. We don't want dynamic types to implement
`Typed` due to the fact that it would make the return type
`Option<&'static TypeInfo>` for all types even though only the dynamic
types ever need to return `None` (see #6971 for details).

Users should never have to interact with this trait as it has a blanket
impl for all `Typed` types. And `Typed` is automatically implemented
when deriving `Reflect` (as it is required).

The one downside is we do need to return `Option<&'static TypeInfo>`
from all these new methods so that we can handle the dynamic cases. If
we didn't have to, we'd be able to get rid of the `Option` entirely. But
I think that's an okay tradeoff for this one part of the API, and keeps
the other APIs intact.

## Testing

This PR contains tests to verify everything works as expected. You can
test locally by running:

```
cargo test --package bevy_reflect
```

---

## Changelog

### Public Changes

- Added `ArrayInfo::item_info` method
- Added `NamedField::type_info` method
- Added `UnnamedField::type_info` method
- Added `ListInfo::item_info` method
- Added `MapInfo::key_info` method
- Added `MapInfo::value_info` method
- All active fields now have a `Typed` bound (remember that this is
automatically satisfied for all types that derive `Reflect`)

### Internal Changes

- Added `MaybeTyped` trait

## Migration Guide

All active fields for reflected types (including lists, maps, tuples,
etc.), must implement `Typed`. For the majority of users this won't have
any visible impact.

However, users implementing `Reflect` manually may need to update their
types to implement `Typed` if they weren't already.

Additionally, custom dynamic types will need to implement the new hidden
`MaybeTyped` trait.
2024-07-15 00:40:07 +00:00
Gino Valente
99c9218b56
bevy_reflect: Feature-gate function reflection (#14174)
# Objective

Function reflection requires a lot of macro code generation in the form
of several `all_tuples!` invocations, as well as impls generated in the
`Reflect` derive macro.

Seeing as function reflection is currently a bit more niche, it makes
sense to gate it all behind a feature.

## Solution

Add a `functions` feature to `bevy_reflect`, which can be enabled in
Bevy using the `reflect_functions` feature.

## Testing

You can test locally by running:

```
cargo test --package bevy_reflect
```

That should ensure that everything still works with the feature
disabled.

To test with the feature on, you can run:

```
cargo test --package bevy_reflect --features functions
```

---

## Changelog

- Moved function reflection behind a Cargo feature
(`bevy/reflect_functions` and `bevy_reflect/functions`)
- Add `IntoFunction` export in `bevy_reflect::prelude`

## Internal Migration Guide

> [!important]
> Function reflection was introduced as part of the 0.15 dev cycle. This
migration guide was written for developers relying on `main` during this
cycle, and is not a breaking change coming from 0.14.

Function reflection is now gated behind a feature. To use function
reflection, enable the feature:
- If using `bevy_reflect` directly, enable the `functions` feature
- If using `bevy`, enable the `reflect_functions` feature
2024-07-14 15:55:31 +00:00
Gino Valente
09d86bfb96
bevy_reflect: Re-enable reflection compile fail tests (#14165)
# Objective

Looks like I accidentally disabled the reflection compile fail tests in
#13152. These should be re-enabled.

## Solution

Re-enable reflection compile fail tests.

## Testing

CI should pass. You can also test locally by navigating to
`crates/bevy_reflect/compile_fail/` and running:

```
cargo test --target-dir ../../../target
```
2024-07-05 20:49:03 +00:00
Gino Valente
276dd04001
bevy_reflect: Function reflection (#13152)
# Objective

We're able to reflect types sooooooo... why not functions?

The goal of this PR is to make functions callable within a dynamic
context, where type information is not readily available at compile
time.

For example, if we have a function:

```rust
fn add(left: i32, right: i32) -> i32 {
  left + right
}
```

And two `Reflect` values we've already validated are `i32` types:

```rust
let left: Box<dyn Reflect> = Box::new(2_i32);
let right: Box<dyn Reflect> = Box::new(2_i32);
```

We should be able to call `add` with these values:

```rust
// ?????
let result: Box<dyn Reflect> = add.call_dynamic(left, right);
```

And ideally this wouldn't just work for functions, but methods and
closures too!

Right now, users have two options:

1. Manually parse the reflected data and call the function themselves
2. Rely on registered type data to handle the conversions for them

For a small function like `add`, this isn't too bad. But what about for
more complex functions? What about for many functions?

At worst, this process is error-prone. At best, it's simply tedious.

And this is assuming we know the function at compile time. What if we
want to accept a function dynamically and call it with our own
arguments?

It would be much nicer if `bevy_reflect` could alleviate some of the
problems here.

## Solution

Added function reflection!

This adds a `DynamicFunction` type to wrap a function dynamically. This
can be called with an `ArgList`, which is a dynamic list of
`Reflect`-containing `Arg` arguments. It returns a `FunctionResult`
which indicates whether or not the function call succeeded, returning a
`Reflect`-containing `Return` type if it did succeed.

Many functions can be converted into this `DynamicFunction` type thanks
to the `IntoFunction` trait.

Taking our previous `add` example, this might look something like
(explicit types added for readability):

```rust
fn add(left: i32, right: i32) -> i32 {
  left + right
}

let mut function: DynamicFunction = add.into_function();
let args: ArgList = ArgList::new().push_owned(2_i32).push_owned(2_i32);
let result: Return = function.call(args).unwrap();
let value: Box<dyn Reflect> = result.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
```

And it also works on closures:

```rust
let add = |left: i32, right: i32| left + right;

let mut function: DynamicFunction = add.into_function();
let args: ArgList = ArgList::new().push_owned(2_i32).push_owned(2_i32);
let result: Return = function.call(args).unwrap();
let value: Box<dyn Reflect> = result.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
```

As well as methods:

```rust
#[derive(Reflect)]
struct Foo(i32);

impl Foo {
  fn add(&mut self, value: i32) {
    self.0 += value;
  }
}

let mut foo = Foo(2);

let mut function: DynamicFunction = Foo::add.into_function();
let args: ArgList = ArgList::new().push_mut(&mut foo).push_owned(2_i32);
function.call(args).unwrap();
assert_eq!(foo.0, 4);
```

### Limitations

While this does cover many functions, it is far from a perfect system
and has quite a few limitations. Here are a few of the limitations when
using `IntoFunction`:

1. The lifetime of the return value is only tied to the lifetime of the
first argument (useful for methods). This means you can't have a
function like `(a: i32, b: &i32) -> &i32` without creating the
`DynamicFunction` manually.
2. Only 15 arguments are currently supported. If the first argument is a
(mutable) reference, this number increases to 16.
3. Manual implementations of `Reflect` will need to implement the new
`FromArg`, `GetOwnership`, and `IntoReturn` traits in order to be used
as arguments/return types.

And some limitations of `DynamicFunction` itself:

1. All arguments share the same lifetime, or rather, they will shrink to
the shortest lifetime.
2. Closures that capture their environment may need to have their
`DynamicFunction` dropped before accessing those variables again (there
is a `DynamicFunction::call_once` to make this a bit easier)
3. All arguments and return types must implement `Reflect`. While not a
big surprise coming from `bevy_reflect`, this implementation could
actually still work by swapping `Reflect` out with `Any`. Of course,
that makes working with the arguments and return values a bit harder.
4. Generic functions are not supported (unless they have been manually
monomorphized)

And general, reflection gotchas:

1. `&str` does not implement `Reflect`. Rather, `&'static str`
implements `Reflect` (the same is true for `&Path` and similar types).
This means that `&'static str` is considered an "owned" value for the
sake of generating arguments. Additionally, arguments and return types
containing `&str` will assume it's `&'static str`, which is almost never
the desired behavior. In these cases, the only solution (I believe) is
to use `&String` instead.

### Followup Work

This PR is the first of two PRs I intend to work on. The second PR will
aim to integrate this new function reflection system into the existing
reflection traits and `TypeInfo`. The goal would be to register and call
a reflected type's methods dynamically.

I chose not to do that in this PR since the diff is already quite large.
I also want the discussion for both PRs to be focused on their own
implementation.

Another followup I'd like to do is investigate allowing common container
types as a return type, such as `Option<&[mut] T>` and `Result<&[mut] T,
E>`. This would allow even more functions to opt into this system. I
chose to not include it in this one, though, for the same reasoning as
previously mentioned.

### Alternatives

One alternative I had considered was adding a macro to convert any
function into a reflection-based counterpart. The idea would be that a
struct that wraps the function would be created and users could specify
which arguments and return values should be `Reflect`. It could then be
called via a new `Function` trait.

I think that could still work, but it will be a fair bit more involved,
requiring some slightly more complex parsing. And it of course is a bit
more work for the user, since they need to create the type via macro
invocation.

It also makes registering these functions onto a type a bit more
complicated (depending on how it's implemented).

For now, I think this is a fairly simple, yet powerful solution that
provides the least amount of friction for users.

---

## Showcase

Bevy now adds support for storing and calling functions dynamically
using reflection!

```rust
// 1. Take a standard Rust function
fn add(left: i32, right: i32) -> i32 {
  left + right
}

// 2. Convert it into a type-erased `DynamicFunction` using the `IntoFunction` trait
let mut function: DynamicFunction = add.into_function();
// 3. Define your arguments from reflected values
let args: ArgList = ArgList::new().push_owned(2_i32).push_owned(2_i32);
// 4. Call the function with your arguments
let result: Return = function.call(args).unwrap();
// 5. Extract the return value
let value: Box<dyn Reflect> = result.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
```

## Changelog

#### TL;DR

- Added support for function reflection
- Added a new `Function Reflection` example:
ba727898f2/examples/reflection/function_reflection.rs (L1-L157)

#### Details

Added the following items:

- `ArgError` enum
- `ArgId` enum
- `ArgInfo` struct
- `ArgList` struct
- `Arg` enum
- `DynamicFunction` struct
- `FromArg` trait (derived with `derive(Reflect)`)
- `FunctionError` enum
- `FunctionInfo` struct
- `FunctionResult` alias
- `GetOwnership` trait (derived with `derive(Reflect)`)
- `IntoFunction` trait (with blanket implementation)
- `IntoReturn` trait (derived with `derive(Reflect)`)
- `Ownership` enum
- `ReturnInfo` struct
- `Return` enum

---------

Co-authored-by: Periwink <charlesbour@gmail.com>
2024-07-01 13:49:08 +00:00
Alice Cecile
ec7b3490f6
Add on_unimplemented Diagnostics to Most Public Traits (#13347) (#13662)
# Objective

- #13414 did not have the intended effect.
- #13404 is still blocked

## Solution

- Re-adds #13347.

Co-authored-by: Zachary Harrold <zac@harrold.com.au>
Co-authored-by: Jamie Ridding <Themayu@users.noreply.github.com>
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
2024-06-04 00:31:34 +00:00
Alice Cecile
ee6dfd35c9
Revert "Add on_unimplemented Diagnostics to Most Public Traits" (#13413)
# Objective

- Rust 1.78 breaks all Android support, see
https://github.com/bevyengine/bevy/issues/13331
- We should not bump the MSRV to 1.78 until that's resolved in #13366.

## Solution

- Temporarily revert https://github.com/bevyengine/bevy/pull/13347

Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
2024-05-17 17:00:43 +00:00
Zachary Harrold
11f0a2dcde
Add on_unimplemented Diagnostics to Most Public Traits (#13347)
# Objective

- Fixes #12377

## Solution

Added simple `#[diagnostic::on_unimplemented(...)]` attributes to some
critical public traits providing a more approachable initial error
message. Where appropriate, a `note` is added indicating that a `derive`
macro is available.

## Examples

<details>
<summary>Examples hidden for brevity</summary>

Below is a collection of examples showing the new error messages
produced by this change. In general, messages will start with a more
Bevy-centric error message (e.g., _`MyComponent` is not a `Component`_),
and a note directing the user to an available derive macro where
appropriate.

### Missing `#[derive(Resource)]`

<details>
<summary>Example Code</summary>

```rust
use bevy::prelude::*;

struct MyResource;

fn main() {
    App::new()
        .insert_resource(MyResource)
        .run();
}
```

</details>

<details>
<summary>Error Generated</summary>

```error
error[E0277]: `MyResource` is not a `Resource`
   --> examples/app/empty.rs:7:26
    |
7   |         .insert_resource(MyResource)
    |          --------------- ^^^^^^^^^^ invalid `Resource`
    |          |
    |          required by a bound introduced by this call
    |
    = help: the trait `Resource` is not implemented for `MyResource`       
    = note: consider annotating `MyResource` with `#[derive(Resource)]`    
    = help: the following other types implement trait `Resource`:
              AccessibilityRequested
              ManageAccessibilityUpdates
              bevy::bevy_a11y::Focus
              DiagnosticsStore
              FrameCount
              bevy::prelude::State<S>
              SystemInfo
              bevy::prelude::Axis<T>
            and 141 others
note: required by a bound in `bevy::prelude::App::insert_resource`
   --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:419:31
    |
419 |     pub fn insert_resource<R: Resource>(&mut self, resource: R) -> &mut Self {
    |                               ^^^^^^^^ required by this bound in `App::insert_resource`
```

</details>

### Putting A `QueryData` in a `QueryFilter` Slot

<details>
<summary>Example Code</summary>

```rust
use bevy::prelude::*;

#[derive(Component)]
struct A;

#[derive(Component)]
struct B;

fn my_system(_query: Query<&A, &B>) {}

fn main() {
    App::new()
        .add_systems(Update, my_system)
        .run();
}
```

</details>

<details>
<summary>Error Generated</summary>

```error
error[E0277]: `&B` is not a valid `Query` filter
   --> examples/app/empty.rs:9:22
    |
9   | fn my_system(_query: Query<&A, &B>) {}
    |                      ^^^^^^^^^^^^^ invalid `Query` filter
    |
    = help: the trait `QueryFilter` is not implemented for `&B`
    = help: the following other types implement trait `QueryFilter`:
              With<T>
              Without<T>
              bevy::prelude::Or<()>
              bevy::prelude::Or<(F0,)>
              bevy::prelude::Or<(F0, F1)>
              bevy::prelude::Or<(F0, F1, F2)>
              bevy::prelude::Or<(F0, F1, F2, F3)>
              bevy::prelude::Or<(F0, F1, F2, F3, F4)>
            and 28 others
note: required by a bound in `bevy::prelude::Query`
   --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_ecs\src\system\query.rs:349:51
    |
349 | pub struct Query<'world, 'state, D: QueryData, F: QueryFilter = ()> {
    |                                                   ^^^^^^^^^^^ required by this bound in `Query`
```

</details>

### Missing `#[derive(Component)]`

<details>
<summary>Example Code</summary>

```rust
use bevy::prelude::*;

struct A;

fn my_system(mut commands: Commands) {
    commands.spawn(A);
}

fn main() {
    App::new()
        .add_systems(Startup, my_system)
        .run();
}
```

</details>

<details>
<summary>Error Generated</summary>

```error
error[E0277]: `A` is not a `Bundle`
   --> examples/app/empty.rs:6:20
    |
6   |     commands.spawn(A);
    |              ----- ^ invalid `Bundle`
    |              |
    |              required by a bound introduced by this call
    |
    = help: the trait `bevy::prelude::Component` is not implemented for `A`, which is required by `A: Bundle`
    = note: consider annotating `A` with `#[derive(Component)]` or `#[derive(Bundle)]`
    = help: the following other types implement trait `Bundle`:
              TransformBundle
              SceneBundle
              DynamicSceneBundle
              AudioSourceBundle<Source>
              SpriteBundle
              SpriteSheetBundle
              Text2dBundle
              MaterialMesh2dBundle<M>
            and 34 others
    = note: required for `A` to implement `Bundle`
note: required by a bound in `bevy::prelude::Commands::<'w, 's>::spawn`
   --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_ecs\src\system\commands\mod.rs:243:21
    |
243 |     pub fn spawn<T: Bundle>(&mut self, bundle: T) -> EntityCommands {
    |                     ^^^^^^ required by this bound in `Commands::<'w, 's>::spawn`
```

</details>

### Missing `#[derive(Asset)]`

<details>
<summary>Example Code</summary>

```rust
use bevy::prelude::*;

struct A;

fn main() {
    App::new()
        .init_asset::<A>()
        .run();
}
```

</details>

<details>
<summary>Error Generated</summary>

```error
error[E0277]: `A` is not an `Asset`
   --> examples/app/empty.rs:7:23
    |
7   |         .init_asset::<A>()
    |          ----------   ^ invalid `Asset`
    |          |
    |          required by a bound introduced by this call
    |
    = help: the trait `Asset` is not implemented for `A`
    = note: consider annotating `A` with `#[derive(Asset)]`
    = help: the following other types implement trait `Asset`:
              Font
              AnimationGraph
              DynamicScene
              Scene
              AudioSource
              Pitch
              bevy::bevy_gltf::Gltf
              GltfNode
            and 17 others
note: required by a bound in `init_asset`
   --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_asset\src\lib.rs:307:22
    |
307 |     fn init_asset<A: Asset>(&mut self) -> &mut Self;
    |                      ^^^^^ required by this bound in `AssetApp::init_asset`
```

</details>

### Mismatched Input and Output on System Piping

<details>
<summary>Example Code</summary>

```rust
use bevy::prelude::*;

fn producer() -> u32 {
    123
}

fn consumer(_: In<u16>) {}

fn main() {
    App::new()
        .add_systems(Update, producer.pipe(consumer))
        .run();
}
```

</details>

<details>
<summary>Error Generated</summary>

```error
error[E0277]: `fn(bevy::prelude::In<u16>) {consumer}` is not a valid system with input `u32` and output `_`
   --> examples/app/empty.rs:11:44
    |
11  |         .add_systems(Update, producer.pipe(consumer))
    |                                       ---- ^^^^^^^^ invalid system
    |                                       |
    |                                       required by a bound introduced by this call
    |
    = help: the trait `bevy::prelude::IntoSystem<u32, _, _>` is not implemented for fn item `fn(bevy::prelude::In<u16>) {consumer}`
    = note: expecting a system which consumes `u32` and produces `_`
note: required by a bound in `pipe`
   --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_ecs\src\system\mod.rs:168:12
    |
166 |     fn pipe<B, Final, MarkerB>(self, system: B) -> PipeSystem<Self::System, B::System>
    |        ---- required by a bound in this associated function
167 |     where
168 |         B: IntoSystem<Out, Final, MarkerB>,
    |            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ required by this bound in `IntoSystem::pipe`
```

</details>

### Missing Reflection

<details>
<summary>Example Code</summary>

```rust
use bevy::prelude::*;

#[derive(Component)]
struct MyComponent;

fn main() {
    App::new()
        .register_type::<MyComponent>()
        .run();
}
```

</details>

<details>
<summary>Error Generated</summary>

```error
error[E0277]: `MyComponent` does not provide type registration information
   --> examples/app/empty.rs:8:26
    |
8   |         .register_type::<MyComponent>()
    |          -------------   ^^^^^^^^^^^ the trait `GetTypeRegistration` is not implemented for `MyComponent`
    |          |
    |          required by a bound introduced by this call
    |
    = note: consider annotating `MyComponent` with `#[derive(Reflect)]`
    = help: the following other types implement trait `GetTypeRegistration`:
              bool
              char
              isize
              i8
              i16
              i32
              i64
              i128
            and 443 others
note: required by a bound in `bevy::prelude::App::register_type`
   --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:619:29
    |
619 |     pub fn register_type<T: bevy_reflect::GetTypeRegistration>(&mut self) -> &mut Self {
    |                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ required by this bound in `App::register_type`
```

</details>

### Missing `#[derive(States)]` Implementation

<details>
<summary>Example Code</summary>

```rust
use bevy::prelude::*;

#[derive(Debug, Clone, Copy, Default, Eq, PartialEq, Hash)]
enum AppState {
    #[default]
    Menu,
    InGame {
        paused: bool,
        turbo: bool,
    },
}

fn main() {
    App::new()
        .init_state::<AppState>()
        .run();
}
```

</details>

<details>
<summary>Error Generated</summary>

```error
error[E0277]: the trait bound `AppState: FreelyMutableState` is not satisfied
   --> examples/app/empty.rs:15:23
    |
15  |         .init_state::<AppState>()
    |          ----------   ^^^^^^^^ the trait `FreelyMutableState` is not implemented for `AppState`
    |          |
    |          required by a bound introduced by this call
    |
    = note: consider annotating `AppState` with `#[derive(States)]`
note: required by a bound in `bevy::prelude::App::init_state`
   --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:282:26
    |
282 |     pub fn init_state<S: FreelyMutableState + FromWorld>(&mut self) -> &mut Self {
    |                          ^^^^^^^^^^^^^^^^^^ required by this bound in `App::init_state`
```

</details>

### Adding a `System` with Unhandled Output

<details>
<summary>Example Code</summary>

```rust
use bevy::prelude::*;

fn producer() -> u32 {
    123
}

fn main() {
    App::new()
        .add_systems(Update, consumer)
        .run();
}
```

</details>

<details>
<summary>Error Generated</summary>

```error
error[E0277]: `fn() -> u32 {producer}` does not describe a valid system configuration
   --> examples/app/empty.rs:9:30
    |
9   |         .add_systems(Update, producer)
    |          -----------         ^^^^^^^^ invalid system configuration
    |          |
    |          required by a bound introduced by this call
    |
    = help: the trait `IntoSystem<(), (), _>` is not implemented for fn item `fn() -> u32 {producer}`, which is required by `fn() -> u32 {producer}: IntoSystemConfigs<_>`
    = help: the following other types implement trait `IntoSystemConfigs<Marker>`:
              <Box<(dyn bevy::prelude::System<In = (), Out = ()> + 'static)> as IntoSystemConfigs<()>>
              <NodeConfigs<Box<(dyn bevy::prelude::System<In = (), Out = ()> + 'static)>> as IntoSystemConfigs<()>>
              <(S0,) as IntoSystemConfigs<(SystemConfigTupleMarker, P0)>>
              <(S0, S1) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1)>>
              <(S0, S1, S2) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1, P2)>>
              <(S0, S1, S2, S3) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1, P2, P3)>>
              <(S0, S1, S2, S3, S4) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1, P2, P3, P4)>>
              <(S0, S1, S2, S3, S4, S5) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1, P2, P3, P4, P5)>>
            and 14 others
    = note: required for `fn() -> u32 {producer}` to implement `IntoSystemConfigs<_>`
note: required by a bound in `bevy::prelude::App::add_systems`
   --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:342:23
    |
339 |     pub fn add_systems<M>(
    |            ----------- required by a bound in this associated function
...
342 |         systems: impl IntoSystemConfigs<M>,
    |                       ^^^^^^^^^^^^^^^^^^^^ required by this bound in `App::add_systems`
```

</details>
</details>

## Testing

CI passed locally.

## Migration Guide

Upgrade to version 1.78 (or higher) of Rust.

## Future Work

- Currently, hints are not supported in this diagnostic. Ideally,
suggestions like _"consider using ..."_ would be in a hint rather than a
note, but that is the best option for now.
- System chaining and other `all_tuples!(...)`-based traits have bad
error messages due to the slightly different error message format.

---------

Co-authored-by: Jamie Ridding <Themayu@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
2024-05-17 00:49:05 +00:00
Brezak
423a4732c3
Update compile test to use ui_test 0.23 (#13245)
# Objective

Closes #13241

## Solution

Update test utils to use `ui_test` 0.23.0.

## Testing

- Run compile tests for bevy_ecs.

cc @BD103
2024-05-05 22:17:56 +00:00
BD103
bdb4899978
Move compile fail tests (#13196)
# Objective

- Follow-up of #13184 :)
- We use `ui_test` to test compiler errors for our custom macros.
- There are four crates related to compile fail tests
- `bevy_ecs_compile_fail_tests`, `bevy_macros_compile_fail_tests`, and
`bevy_reflect_compile_fail_tests`, which actually test the macros.
-
[`bevy_compile_test_utils`](64c1c65783/crates/bevy_compile_test_utils),
which provides helpers and common patterns for these tests.
- All of these crates reside within the `crates` directory.
- This can be confusing, especially for newcomers. All of the other
folders in `crates` are actual published libraries, except for these 4.

## Solution

- Move all compile fail tests to a `compile_fail` folder under their
corresponding crate.
- E.g. `crates/bevy_ecs_compile_fail_tests` would be moved to
`crates/bevy_ecs/compile_fail`.
- Move `bevy_compile_test_utils` to `tools/compile_fail_utils`.

There are a few benefits to this approach:

1. An internal testing detail is less intrusive (and confusing) for
those who just want to browse the public Bevy interface.
2. Follows a pre-existing approach of organizing related crates inside a
larger crate's folder.
   - See `bevy_gizmos/macros` for an example.
4. Makes consistent the terms `compile_test`, `compile_fail`, and
`compile_fail_test` in code. It's all just `compile_fail` now, because
we are specifically testing the error messages on compiler failures.
- To be clear it can still be referred to by these terms in comments and
speech, just the names of the crates and the CI command are now
consistent.

## Testing

Run the compile fail CI command:

```shell
cargo run -p ci -- compile-fail
```

If it still passes, then my refactor was successful.
2024-05-03 13:35:21 +00:00