mirror of
https://github.com/bevyengine/bevy
synced 2025-01-02 08:18:59 +00:00
96 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
JoJoJet
|
3ac06b57e9 |
Respect alignment for zero-sized types stored in the world (#6618)
# Objective Fixes #6615. `BlobVec` does not respect alignment for zero-sized types, which results in UB whenever a ZST with alignment other than 1 is used in the world. ## Solution Add the fn `bevy_ptr::dangling_with_align`. --- ## Changelog + Added the function `dangling_with_align` to `bevy_ptr`, which creates a well-aligned dangling pointer to a type whose alignment is not known at compile time. |
||
James Liu
|
ec8c8fbc8a |
Remove unnecesary branches/panics from Query accesses (#6461)
# Objective Supercedes #6452. Upon inspection of the [generated assembly](https://gist.github.com/james7132/c2740c6941b80d7912f1e8888e223cbb#file-original-s) of a [simple Bevy binary](https://gist.github.com/james7132/c2740c6941b80d7912f1e8888e223cbb#file-source-rs) compiled with `cargo rustc --release -- --emit asm`, it's apparent that there are multiple unnecessary branches in the generated assembly: ```assembly .LBB5_5: cmpq %r10, %r11 je .LBB5_15 movq (%r11), %rcx movq 328(%r15), %rdx cmpq %rdx, %rcx jae .LBB5_14 movq 312(%r15), %rdi leaq (%rcx,%rcx,2), %rcx shlq $5, %rcx movq 336(%r12), %rdx movq 64(%rdi,%rcx), %rax cmpq %rdx, %rax jbe .LBB5_4 leaq (%rdi,%rcx), %rsi movq 48(%rsi), %rbp shlq $4, %rdx cmpq $0, (%rbp,%rdx) je .LBB5_4 movq 344(%r12), %rbx cmpq %rbx, %rax jbe .LBB5_4 shlq $4, %rbx cmpq $0, (%rbp,%rbx) je .LBB5_4 addq $8, %r11 movq 88(%rdi,%rcx), %rcx testq %rcx, %rcx je .LBB5_5 movq (%rsi), %rax movq 8(%rbp,%rdx), %rdx leaq (%rdx,%rdx,4), %rdi shlq $4, %rdi movq 32(%rax,%rdi), %rdx movq 56(%rax,%rdi), %r8 movq 8(%rbp,%rbx), %rbp leaq (%rbp,%rbp,4), %rbp shlq $4, %rbp movq 32(%rax,%rbp), %r9 xorl %ebp, %ebp jmp .LBB5_13 .p2align 4, 0x90 ``` Almost every one of the instructions starting with `j` is a potential branch, which can significantly slow down accesses. Of these, two labels are both common and never used: ```asm .LBB5_14: leaq __unnamed_2(%rip), %r8 callq _ZN4core9panicking18panic_bounds_check17h70367088e72af65aE ud2 .LBB5_4: callq _ZN8bevy_ecs5query25debug_checked_unreachable17h0855ff520ceaea77E ud2 .seh_endproc ``` These correpsond to subprocedure calls to panicking due to out of bounds from indexing `Tables` and `debug_checked_unreadable`. Both of which should be inlined and optimized out, but are not. ## Solution Make `debug_checked_unreachable` a macro to forcibly inline either `unreachable!()` in debug builds, and `std::hint::unreachable_unchecked()` in release mode. Replace the `Tables` and `Archetype` index access with `get(id).unwrap_or_else(|| debug_checked_unreachable!())` to assume that the table or archetype provided exists. This has no external breaking change of any kind. The equivalent section of code with these changes removes most of the conditional jump instructions: ```asm .LBB5_5: movss (%rbx,%rbp,4), %xmm0 movl %r14d, 4(%r8,%rbp,8) addss (%rdi,%rbp,4), %xmm0 movss %xmm0, (%rdi,%rbp,4) incq %rbp .LBB5_1: cmpq %rdx, %rbp jne .LBB5_5 .p2align 4, 0x90 .LBB5_2: cmpq %rcx, %rax je .LBB5_6 movq (%rax), %rdx addq $8, %rax movq 312(%rsi), %rbp leaq (%rdx,%rdx,2), %rbx shlq $5, %rbx movq 88(%rbp,%rbx), %rdx testq %rdx, %rdx je .LBB5_2 leaq (%rbx,%rbp), %r8 movq 336(%r15), %rdi movq 344(%r15), %r9 movq 48(%rbp,%rbx), %r10 shlq $4, %rdi movq (%r8), %rbx movq 8(%r10,%rdi), %rdi leaq (%rdi,%rdi,4), %rbp shlq $4, %rbp movq 32(%rbx,%rbp), %rdi movq 56(%rbx,%rbp), %r8 shlq $4, %r9 movq 8(%r10,%r9), %rbp leaq (%rbp,%rbp,4), %rbp shlq $4, %rbp movq 32(%rbx,%rbp), %rbx xorl %ebp, %ebp jmp .LBB5_5 .LBB5_6: addq $40, %rsp popq %rbx popq %rbp popq %rdi popq %rsi popq %r14 popq %r15 retq .seh_endproc ``` ## Performance Microbenchmarks results: <details> ``` group main no-panic-query ----- ---- -------------- busy_systems/01x_entities_03_systems 1.20 42.4±2.66µs ? ?/sec 1.00 35.3±1.68µs ? ?/sec busy_systems/01x_entities_06_systems 1.32 83.8±3.50µs ? ?/sec 1.00 63.6±1.72µs ? ?/sec busy_systems/01x_entities_09_systems 1.15 113.3±8.90µs ? ?/sec 1.00 98.2±6.15µs ? ?/sec busy_systems/01x_entities_12_systems 1.27 160.8±32.44µs ? ?/sec 1.00 126.6±4.70µs ? ?/sec busy_systems/01x_entities_15_systems 1.12 179.6±3.71µs ? ?/sec 1.00 160.3±11.03µs ? ?/sec busy_systems/02x_entities_03_systems 1.18 76.8±3.14µs ? ?/sec 1.00 65.2±3.17µs ? ?/sec busy_systems/02x_entities_06_systems 1.16 144.6±6.10µs ? ?/sec 1.00 124.5±5.14µs ? ?/sec busy_systems/02x_entities_09_systems 1.19 215.3±9.18µs ? ?/sec 1.00 181.5±5.67µs ? ?/sec busy_systems/02x_entities_12_systems 1.20 266.7±8.33µs ? ?/sec 1.00 222.0±9.53µs ? ?/sec busy_systems/02x_entities_15_systems 1.23 338.8±10.53µs ? ?/sec 1.00 276.3±6.94µs ? ?/sec busy_systems/03x_entities_03_systems 1.43 113.5±5.06µs ? ?/sec 1.00 79.6±1.49µs ? ?/sec busy_systems/03x_entities_06_systems 1.38 217.3±12.67µs ? ?/sec 1.00 157.5±3.07µs ? ?/sec busy_systems/03x_entities_09_systems 1.23 308.8±24.75µs ? ?/sec 1.00 251.6±8.93µs ? ?/sec busy_systems/03x_entities_12_systems 1.05 347.7±12.43µs ? ?/sec 1.00 330.6±11.43µs ? ?/sec busy_systems/03x_entities_15_systems 1.13 455.5±13.88µs ? ?/sec 1.00 401.7±17.29µs ? ?/sec busy_systems/04x_entities_03_systems 1.24 144.7±5.89µs ? ?/sec 1.00 116.9±6.29µs ? ?/sec busy_systems/04x_entities_06_systems 1.24 282.8±21.40µs ? ?/sec 1.00 228.6±21.31µs ? ?/sec busy_systems/04x_entities_09_systems 1.35 431.8±14.10µs ? ?/sec 1.00 319.6±9.83µs ? ?/sec busy_systems/04x_entities_12_systems 1.16 493.8±22.87µs ? ?/sec 1.00 424.9±15.24µs ? ?/sec busy_systems/04x_entities_15_systems 1.10 587.5±23.25µs ? ?/sec 1.00 531.7±16.32µs ? ?/sec busy_systems/05x_entities_03_systems 1.14 148.2±9.61µs ? ?/sec 1.00 129.5±4.32µs ? ?/sec busy_systems/05x_entities_06_systems 1.31 359.7±17.46µs ? ?/sec 1.00 273.6±10.55µs ? ?/sec busy_systems/05x_entities_09_systems 1.22 473.5±23.11µs ? ?/sec 1.00 389.3±13.62µs ? ?/sec busy_systems/05x_entities_12_systems 1.05 562.9±20.76µs ? ?/sec 1.00 536.5±24.35µs ? ?/sec busy_systems/05x_entities_15_systems 1.23 818.5±28.70µs ? ?/sec 1.00 666.6±45.87µs ? ?/sec contrived/01x_entities_03_systems 1.27 27.5±0.49µs ? ?/sec 1.00 21.6±1.71µs ? ?/sec contrived/01x_entities_06_systems 1.22 49.9±1.18µs ? ?/sec 1.00 40.7±2.62µs ? ?/sec contrived/01x_entities_09_systems 1.30 72.3±2.39µs ? ?/sec 1.00 55.4±2.60µs ? ?/sec contrived/01x_entities_12_systems 1.28 94.3±9.44µs ? ?/sec 1.00 73.7±3.62µs ? ?/sec contrived/01x_entities_15_systems 1.25 118.0±2.43µs ? ?/sec 1.00 94.1±3.99µs ? ?/sec contrived/02x_entities_03_systems 1.23 41.6±1.71µs ? ?/sec 1.00 33.7±2.30µs ? ?/sec contrived/02x_entities_06_systems 1.19 78.6±2.63µs ? ?/sec 1.00 65.9±2.35µs ? ?/sec contrived/02x_entities_09_systems 1.28 113.6±3.60µs ? ?/sec 1.00 88.6±3.60µs ? ?/sec contrived/02x_entities_12_systems 1.20 146.4±5.75µs ? ?/sec 1.00 121.7±3.35µs ? ?/sec contrived/02x_entities_15_systems 1.23 178.5±4.86µs ? ?/sec 1.00 145.7±4.00µs ? ?/sec contrived/03x_entities_03_systems 1.42 58.3±2.77µs ? ?/sec 1.00 41.1±1.54µs ? ?/sec contrived/03x_entities_06_systems 1.32 108.5±7.30µs ? ?/sec 1.00 82.4±4.86µs ? ?/sec contrived/03x_entities_09_systems 1.23 153.7±4.61µs ? ?/sec 1.00 125.0±4.76µs ? ?/sec contrived/03x_entities_12_systems 1.18 197.5±5.12µs ? ?/sec 1.00 166.8±8.14µs ? ?/sec contrived/03x_entities_15_systems 1.23 238.8±6.38µs ? ?/sec 1.00 194.6±4.55µs ? ?/sec contrived/04x_entities_03_systems 1.34 66.4±3.42µs ? ?/sec 1.00 49.5±1.98µs ? ?/sec contrived/04x_entities_06_systems 1.27 134.3±4.86µs ? ?/sec 1.00 105.8±3.58µs ? ?/sec contrived/04x_entities_09_systems 1.26 193.2±3.83µs ? ?/sec 1.00 153.0±5.60µs ? ?/sec contrived/04x_entities_12_systems 1.16 237.1±5.78µs ? ?/sec 1.00 204.9±18.77µs ? ?/sec contrived/04x_entities_15_systems 1.17 289.2±4.76µs ? ?/sec 1.00 246.3±8.57µs ? ?/sec contrived/05x_entities_03_systems 1.26 80.4±2.90µs ? ?/sec 1.00 63.7±3.07µs ? ?/sec contrived/05x_entities_06_systems 1.27 161.6±13.47µs ? ?/sec 1.00 127.2±5.59µs ? ?/sec contrived/05x_entities_09_systems 1.22 228.0±7.76µs ? ?/sec 1.00 186.2±7.68µs ? ?/sec contrived/05x_entities_12_systems 1.20 289.5±6.21µs ? ?/sec 1.00 241.8±7.52µs ? ?/sec contrived/05x_entities_15_systems 1.18 357.3±11.24µs ? ?/sec 1.00 302.7±7.21µs ? ?/sec heavy_compute/base 1.01 302.4±3.52µs ? ?/sec 1.00 300.2±3.40µs ? ?/sec iter_fragmented/base 1.00 348.1±7.51ns ? ?/sec 1.01 351.9±8.32ns ? ?/sec iter_fragmented/foreach 1.03 239.8±23.78ns ? ?/sec 1.00 233.8±18.12ns ? ?/sec iter_fragmented/foreach_wide 1.00 3.9±0.13µs ? ?/sec 1.02 4.0±0.22µs ? ?/sec iter_fragmented/wide 1.18 4.6±0.15µs ? ?/sec 1.00 3.9±0.10µs ? ?/sec iter_fragmented_sparse/base 1.02 8.1±0.15ns ? ?/sec 1.00 7.9±0.56ns ? ?/sec iter_fragmented_sparse/foreach 1.00 7.8±0.22ns ? ?/sec 1.01 7.9±0.62ns ? ?/sec iter_fragmented_sparse/foreach_wide 1.00 37.2±1.17ns ? ?/sec 1.10 40.9±0.95ns ? ?/sec iter_fragmented_sparse/wide 1.09 48.4±2.13ns ? ?/sec 1.00 44.5±18.34ns ? ?/sec iter_simple/base 1.02 8.4±0.10µs ? ?/sec 1.00 8.2±0.14µs ? ?/sec iter_simple/foreach 1.01 8.3±0.07µs ? ?/sec 1.00 8.2±0.09µs ? ?/sec iter_simple/foreach_sparse_set 1.00 25.3±0.32µs ? ?/sec 1.02 25.7±0.42µs ? ?/sec iter_simple/foreach_wide 1.03 41.1±0.94µs ? ?/sec 1.00 39.9±0.41µs ? ?/sec iter_simple/foreach_wide_sparse_set 1.05 123.6±2.05µs ? ?/sec 1.00 118.1±2.78µs ? ?/sec iter_simple/sparse_set 1.14 30.5±1.40µs ? ?/sec 1.00 26.9±0.64µs ? ?/sec iter_simple/system 1.01 8.4±0.25µs ? ?/sec 1.00 8.4±0.11µs ? ?/sec iter_simple/wide 1.18 48.2±0.62µs ? ?/sec 1.00 40.7±0.38µs ? ?/sec iter_simple/wide_sparse_set 1.12 140.8±21.56µs ? ?/sec 1.00 126.0±2.30µs ? ?/sec query_get/50000_entities_sparse 1.17 378.6±7.60µs ? ?/sec 1.00 324.1±23.17µs ? ?/sec query_get/50000_entities_table 1.08 330.9±10.90µs ? ?/sec 1.00 306.8±4.98µs ? ?/sec query_get_component/50000_entities_sparse 1.00 976.7±19.55µs ? ?/sec 1.00 979.8±35.87µs ? ?/sec query_get_component/50000_entities_table 1.00 1029.0±15.11µs ? ?/sec 1.05 1080.0±59.18µs ? ?/sec query_get_component_simple/system 1.13 839.7±14.18µs ? ?/sec 1.00 742.8±10.72µs ? ?/sec query_get_component_simple/unchecked 1.01 909.0±15.17µs ? ?/sec 1.00 898.0±13.56µs ? ?/sec query_get_many_10/50000_calls_sparse 1.04 5.5±0.54ms ? ?/sec 1.00 5.3±0.67ms ? ?/sec query_get_many_10/50000_calls_table 1.01 4.9±0.49ms ? ?/sec 1.00 4.8±0.45ms ? ?/sec query_get_many_2/50000_calls_sparse 1.28 848.4±210.89µs ? ?/sec 1.00 664.8±47.69µs ? ?/sec query_get_many_2/50000_calls_table 1.05 779.0±73.85µs ? ?/sec 1.00 739.2±83.02µs ? ?/sec query_get_many_5/50000_calls_sparse 1.05 2.4±0.37ms ? ?/sec 1.00 2.3±0.33ms ? ?/sec query_get_many_5/50000_calls_table 1.00 1939.9±75.22µs ? ?/sec 1.04 2.0±0.19ms ? ?/sec run_criteria/yes_using_query/001_systems 1.00 3.7±0.38µs ? ?/sec 1.30 4.9±0.14µs ? ?/sec run_criteria/yes_using_query/006_systems 1.00 8.9±0.40µs ? ?/sec 1.17 10.3±0.57µs ? ?/sec run_criteria/yes_using_query/011_systems 1.00 13.9±0.49µs ? ?/sec 1.08 15.0±0.89µs ? ?/sec run_criteria/yes_using_query/016_systems 1.00 18.8±0.74µs ? ?/sec 1.00 18.8±1.43µs ? ?/sec run_criteria/yes_using_query/021_systems 1.07 24.1±0.87µs ? ?/sec 1.00 22.6±1.58µs ? ?/sec run_criteria/yes_using_query/026_systems 1.04 27.9±0.62µs ? ?/sec 1.00 26.8±1.71µs ? ?/sec run_criteria/yes_using_query/031_systems 1.09 33.3±1.03µs ? ?/sec 1.00 30.5±2.18µs ? ?/sec run_criteria/yes_using_query/036_systems 1.14 38.7±0.80µs ? ?/sec 1.00 33.9±1.75µs ? ?/sec run_criteria/yes_using_query/041_systems 1.18 43.7±1.07µs ? ?/sec 1.00 37.0±2.39µs ? ?/sec run_criteria/yes_using_query/046_systems 1.14 47.6±1.16µs ? ?/sec 1.00 41.9±2.09µs ? ?/sec run_criteria/yes_using_query/051_systems 1.17 52.9±2.04µs ? ?/sec 1.00 45.3±1.75µs ? ?/sec run_criteria/yes_using_query/056_systems 1.25 59.2±2.38µs ? ?/sec 1.00 47.2±2.01µs ? ?/sec run_criteria/yes_using_query/061_systems 1.28 66.1±15.84µs ? ?/sec 1.00 51.5±2.47µs ? ?/sec run_criteria/yes_using_query/066_systems 1.28 70.2±2.57µs ? ?/sec 1.00 54.7±2.58µs ? ?/sec run_criteria/yes_using_query/071_systems 1.30 75.5±2.27µs ? ?/sec 1.00 58.2±3.31µs ? ?/sec run_criteria/yes_using_query/076_systems 1.26 81.5±2.66µs ? ?/sec 1.00 64.5±3.13µs ? ?/sec run_criteria/yes_using_query/081_systems 1.29 89.7±2.58µs ? ?/sec 1.00 69.3±3.47µs ? ?/sec run_criteria/yes_using_query/086_systems 1.33 95.6±3.39µs ? ?/sec 1.00 71.8±3.48µs ? ?/sec run_criteria/yes_using_query/091_systems 1.25 102.0±3.67µs ? ?/sec 1.00 81.4±4.82µs ? ?/sec run_criteria/yes_using_query/096_systems 1.33 111.7±3.29µs ? ?/sec 1.00 83.8±4.15µs ? ?/sec run_criteria/yes_using_query/101_systems 1.29 113.2±12.04µs ? ?/sec 1.00 87.7±5.15µs ? ?/sec world_query_for_each/50000_entities_sparse 1.00 47.4±0.51µs ? ?/sec 1.00 47.3±0.33µs ? ?/sec world_query_for_each/50000_entities_table 1.00 27.2±0.50µs ? ?/sec 1.00 27.2±0.17µs ? ?/sec world_query_get/50000_entities_sparse_wide 1.09 210.5±1.78µs ? ?/sec 1.00 192.5±2.61µs ? ?/sec world_query_get/50000_entities_table 1.00 127.7±2.09µs ? ?/sec 1.07 136.2±5.95µs ? ?/sec world_query_get/50000_entities_table_wide 1.00 209.8±2.37µs ? ?/sec 1.15 240.6±2.04µs ? ?/sec world_query_iter/50000_entities_sparse 1.00 54.2±0.36µs ? ?/sec 1.01 54.7±0.61µs ? ?/sec world_query_iter/50000_entities_table 1.00 27.2±0.31µs ? ?/sec 1.00 27.3±0.64µs ? ?/sec ``` </details> NOTE: This PR includes a change to enable LTO on our benchmarks to get a "fully optimized" baseline for our benchmarks. Both the main and the current PR's results were with LTO enabled. |
||
Edvin Kjell
|
a8a62fcf3d |
[Fixes #6059] `Entity `'s “ID” should be named “index” instead (#6107)
# Objective Fixes #6059, changing all incorrect occurrences of ``id`` in the ``entity`` module to ``index``: * struct level documentation, * ``id`` struct field, * ``id`` method and its documentation. ## Solution Renaming and verifying using CI. Co-authored-by: Edvin Kjell <43633999+Edwox@users.noreply.github.com> |
||
James Liu
|
2b96530947 |
Extract Resources into their own dedicated storage (#4809)
# Objective At least partially addresses #6282. Resources are currently stored as a dedicated Resource archetype (ID 1). This allows for easy code reusability, but unnecessarily adds 72 bytes (on 64-bit systems) to the struct that is only used for that one archetype. It also requires several fields to be `pub(crate)` which isn't ideal. This should also remove one sparse-set lookup from fetching, inserting, and removing resources from a `World`. ## Solution - Add `Resources` parallel to `Tables` and `SparseSets` and extract the functionality used by `Archetype` in it. - Remove `unique_components` from `Archetype` - Remove the `pub(crate)` on `Archetype::components`. - Remove `ArchetypeId::RESOURCE` - Remove `Archetypes::resource` and `Archetypes::resource_mut` --- ## Changelog Added: `Resources` type to store resources. Added: `Storages::resource` Removed: `ArchetypeId::RESOURCE` Removed: `Archetypes::resource` and `Archetypes::resources` Removed: `Archetype::unique_components` and `Archetypes::unique_components_mut` ## Migration Guide Resources have been moved to `Resources` under `Storages` in `World`. All code dependent on `Archetype::unique_components(_mut)` should access it via `world.storages().resources()` instead. All APIs accessing the raw data of individual resources (mutable *and* read-only) have been removed as these APIs allowed for unsound unsafe code. All usages of these APIs should be changed to use `World::{get, insert, remove}_resource`. |
||
JoJoJet
|
89c4b77bdd |
Add a method for accessing the width of a Table (#6249)
# Objective There is currently no good way of getting the width (# of components) of a table outside of `bevy_ecs`. # Solution Added the methods `Table::{component_count, component_capacity}` For consistency and clarity, renamed `Table::{len, capacity}` to `entity_count` and `entity_capacity`. ## Changelog - Added the methods `Table::component_count` and `Table::component_capacity` - Renamed `Table::len` and `Table::capacity` to `entity_count` and `entity_capacity` ## Migration Guide Any use of `Table::len` should now be `Table::entity_count`. Any use of `Table::capacity` should now be `Table::entity_capacity`. |
||
Boxy
|
df31b7d762 |
Remove insert_resource_with_id (#5608)
# Objective remove `insert_resource_with_id` because `insert_resource_by_id` exists and does almost exactly the same thing blocked on #5587 because otherwise we will leak a resource when it's inserted ## Solution remove the function and also add a safety invariant of to `insert_resource_by_id` that the id be valid for the world. I didn't see any discussion in #4447 about this safety invariant being left off in favor of a panic so I'm curious if there was one or if it just seemed nicer to have less safety invariants for callers to uphold 😅 --- ## Changelog - safety invariant added to `insert_resource_by_id` requiring the id to be valid for world ## Migration Guide - audit any calls to `insert_resource_by_id` making sure that the id is valid for the world Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Rob Parrett
|
cfee0e882e |
Fix various typos (#5417)
## Objective - Fix some typos ## Solution - Fix em. - My favorite was `maxizimed` |
||
ira
|
4847f7e3ad |
Update codebase to use IntoIterator where possible. (#5269)
Remove unnecessary calls to `iter()`/`iter_mut()`. Mainly updates the use of queries in our code, docs, and examples. ```rust // From for _ in list.iter() { for _ in list.iter_mut() { // To for _ in &list { for _ in &mut list { ``` We already enable the pedantic lint [clippy::explicit_iter_loop](https://rust-lang.github.io/rust-clippy/stable/) inside of Bevy. However, this only warns for a few known types from the standard library. ## Note for reviewers As you can see the additions and deletions are exactly equal. Maybe give it a quick skim to check I didn't sneak in a crypto miner, but you don't have to torture yourself by reading every line. I already experienced enough pain making this PR :) Co-authored-by: devil-ira <justthecooldude@gmail.com> |
||
Jakob Hellermann
|
d38a8dfdd7 |
add more SAFETY comments and lint for missing ones in bevy_ecs (#4835)
# Objective `SAFETY` comments are meant to be placed before `unsafe` blocks and should contain the reasoning of why in this case the usage of unsafe is okay. This is useful when reading the code because it makes it clear which assumptions are required for safety, and makes it easier to spot possible unsoundness holes. It also forces the code writer to think of something to write and maybe look at the safety contracts of any called unsafe methods again to double-check their correct usage. There's a clippy lint called `undocumented_unsafe_blocks` which warns when using a block without such a comment. ## Solution - since clippy expects `SAFETY` instead of `SAFE`, rename those - add `SAFETY` comments in more places - for the last remaining 3 places, add an `#[allow()]` and `// TODO` since I wasn't comfortable enough with the code to justify their safety - add ` #![warn(clippy::undocumented_unsafe_blocks)]` to `bevy_ecs` ### Note for reviewers The first commit only renames `SAFETY` to `SAFE` so it doesn't need a thorough review. |
||
Boxy
|
a1a07945d6 |
fix some memory leaks detected by miri (#4959)
The first leak: ```rust #[test] fn blob_vec_drop_empty_capacity() { let item_layout = Layout:🆕:<Foo>(); let drop = drop_ptr::<Foo>; let _ = unsafe { BlobVec::new(item_layout, Some(drop), 0) }; } ``` this is because we allocate the swap scratch in blobvec regardless of what the capacity is, but we only deallocate if capacity is > 0 The second leak: ```rust #[test] fn panic_while_overwriting_component() { let helper = DropTestHelper::new(); let res = panic::catch_unwind(|| { let mut world = World::new(); world .spawn() .insert(helper.make_component(true, 0)) .insert(helper.make_component(false, 1)); println!("Done inserting! Dropping world..."); }); let drop_log = helper.finish(res); assert_eq!( &*drop_log, [ DropLogItem::Create(0), DropLogItem::Create(1), DropLogItem::Drop(0), ] ); } ``` this is caused by us not running the drop impl on the to-be-inserted component if the drop impl of the overwritten component panics --- managed to figure out where the leaks were by using this 10/10 command ``` cargo --quiet test --lib -- --list | sed 's/: test$//' | MIRIFLAGS="-Zmiri-disable-isolation" xargs -n1 cargo miri test --lib -- --exact ``` which runs every test one by one rather than all at once which let miri actually tell me which test had the leak 🙃 |
||
James Liu
|
9eb69282ef |
Directly copy moved Table components to the target location (#5056)
# Objective Speed up entity moves between tables by reducing the number of copies conducted. Currently three separate copies are conducted: `src[index] -> swap scratch`, `src[last] -> src[index]`, and `swap scratch -> dst[target]`. The first and last copies can be merged by directly using the copy `src[index] -> dst[target]`, which can save quite some time if the component(s) in question are large. ## Solution This PR does the following: - Adds `BlobVec::swap_remove_unchecked(usize, PtrMut<'_>)`, which is identical to `swap_remove_and_forget_unchecked`, but skips the `swap_scratch` and directly copies the component into the provided `PtrMut<'_>`. - Build `Column::initialize_from_unchecked(&mut Column, usize, usize)` on top of it, which uses the above to directly initialize a row from another column. - Update most of the table move APIs to use `initialize_from_unchecked` instead of a combination of `swap_remove_and_forget_unchecked` and `initialize`. This is an alternative, though orthogonal, approach to achieve the same performance gains as seen in #4853. This (hopefully) shouldn't run into the same Miri limitations that said PR currently does. After this PR, `swap_remove_and_forget_unchecked` is still in use for Resources and swap_scratch likely still should be removed, so #4853 still has use, even if this PR is merged. ## Performance TODO: Microbenchmark This PR shows similar improvements to commands that add or remove table components that result in a table move. When tested on `many_cubes sphere`, some of the more command heavy systems saw notable improvements. In particular, `prepare_uniform_components<T>`, this saw a reduction in time from 1.35ms to 1.13ms (a 16.3% improvement) on my local machine, a similar if not slightly better gain than what #4853 showed [here](https://github.com/bevyengine/bevy/pull/4853#issuecomment-1159346106). ![image](https://user-images.githubusercontent.com/3137680/174570088-1c4c6fd7-3215-478c-9eb7-8bd9fe486b32.png) The command heavy `Extract` stage also saw a smaller overall improvement: ![image](https://user-images.githubusercontent.com/3137680/174572261-8a48f004-ab9f-4cb2-b304-a882b6d78065.png) --- ## Changelog Added: `BlobVec::swap_remove_unchecked`. Added: `Column::initialize_from_unchecked`. |
||
James Liu
|
c988264180 |
Mark mutable APIs under ECS storage as pub(crate) (#5065)
# Objective Closes #1557. Partially addresses #3362. Cleanup the public facing API for storage types. Most of these APIs are difficult to use safely when directly interfacing with these types, and is also currently impossible to interact with in normal ECS use as there is no `World::storages_mut`. The majority of these types should be easy enough to read, and perhaps mutate the contents, but never structurally altered without the same checks in the rest of bevy_ecs code. This both cleans up the public facing types and helps use unused code detection to remove a few of the APIs we're not using internally. ## Solution - Mark all APIs that take `&mut T` under `bevy_ecs::storage` as `pub(crate)` or `pub(super)` - Cleanup after it all. Entire type visibility changes: - `BlobVec` is `pub(super)`, only storage code should be directly interacting with it. - `SparseArray` is now `pub(crate)` for the entire type. It's an implementation detail for `Table` and `(Component)SparseSet`. - `TableMoveResult` is now `pub(crate) --- ## Changelog TODO ## Migration Guide Dear God, I hope not. |
||
James Liu
|
cdb62af4bf |
Replace ComponentSparseSet's internals with a Column (#4909)
# Objective Following #4855, `Column` is just a parallel `BlobVec`/`Vec<UnsafeCell<ComponentTicks>>` pair, which is identical to the dense and ticks vecs in `ComponentSparseSet`, which has some code duplication with `Column`. ## Solution Replace dense and ticks in `ComponentSparseSet` with a `Column`. |
||
Félix Lescaudey de Maneville
|
f000c2b951 |
Clippy improvements (#4665)
# Objective Follow up to my previous MR #3718 to add new clippy warnings to bevy: - [x] [~~option_if_let_else~~](https://rust-lang.github.io/rust-clippy/master/#option_if_let_else) (reverted) - [x] [redundant_else](https://rust-lang.github.io/rust-clippy/master/#redundant_else) - [x] [match_same_arms](https://rust-lang.github.io/rust-clippy/master/#match_same_arms) - [x] [semicolon_if_nothing_returned](https://rust-lang.github.io/rust-clippy/master/#semicolon_if_nothing_returned) - [x] [explicit_iter_loop](https://rust-lang.github.io/rust-clippy/master/#explicit_iter_loop) - [x] [map_flatten](https://rust-lang.github.io/rust-clippy/master/#map_flatten) There is one commit per clippy warning, and the matching flags are added to the CI execution. To test the CI execution you may run `cargo run -p ci -- clippy` at the root. I choose the add the flags in the `ci` tool crate to avoid having them in every `lib.rs` but I guess it could become an issue with suprise warnings coming up after a commit/push Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
James Liu
|
c174945208 |
Fix release builds: Move asserts under #[cfg(debug_assertions)] (#4871)
# Objective `debug_assert!` macros must still compile properly in release mode due to how they're implemented. This is causing release builds to fail. ## Solution Change them to `assert!` macros inside `#[cfg(debug_assertions)]` blocks. |
||
James Liu
|
8e4e5a5634 |
Use u32 over usize for ComponentSparseSet indicies (#4723)
# Objective Use less memory to store SparseSet components. ## Solution Change `ComponentSparseSet` to only use `Entity::id` in it's key internally, and change the usize value in it's SparseArray to use u32 instead, as it cannot have more than u32::MAX live entities stored at once. This should reduce the overhead of storing components in sparse set storage by 50%. |
||
James Liu
|
f59ea7e6e8 |
Remove redundant ComponentId in Column (#4855)
# Objective The `ComponentId` in `Column` is redundant as it's stored in parallel in the surrounding `SparseSet` all the time. ## Solution Remove it. Add `SparseSet::iter(_mut)` to parallel `HashMap::iter(_mut)` to allow iterating pairs of columns and their IDs. --- ## Changelog Added: `SparseSet::iter` and `SparseSet::iter_mut`. |
||
Jakob Hellermann
|
60584139de |
untyped APIs for components and resources (#4447)
# Objective Even if bevy itself does not provide any builtin scripting or modding APIs, it should have the foundations for building them yourself. For that it should be enough to have APIs that are not tied to the actual rust types with generics, but rather accept `ComponentId`s and `bevy_ptr` ptrs. ## Solution Add the following APIs to bevy ```rust fn EntityRef::get_by_id(ComponentId) -> Option<Ptr<'w>>; fn EntityMut::get_by_id(ComponentId) -> Option<Ptr<'_>>; fn EntityMut::get_mut_by_id(ComponentId) -> Option<MutUntyped<'_>>; fn World::get_resource_by_id(ComponentId) -> Option<Ptr<'_>>; fn World::get_resource_mut_by_id(ComponentId) -> Option<MutUntyped<'_>>; // Safety: `value` must point to a valid value of the component unsafe fn World::insert_resource_by_id(ComponentId, value: OwningPtr); fn ComponentDescriptor::new_with_layout(..) -> Self; fn World::init_component_with_descriptor(ComponentDescriptor) -> ComponentId; ``` ~~This PR would definitely benefit from #3001 (lifetime'd pointers) to make sure that the lifetimes of the pointers are valid and the my-move pointer in `insert_resource_by_id` could be an `OwningPtr`, but that can be adapter later if/when #3001 is merged.~~ ### Not in this PR - inserting components on entities (this is very tied to types with bundles and the `BundleInserter`) - an untyped version of a query (needs good API design, has a large implementation complexity, can be done in a third-party crate) Co-authored-by: Jakob Hellermann <hellermann@sipgate.de> |
||
Daniel McNab
|
b1b3bd533b |
Skip drop when needs_drop is false (#4773)
# Objective - We do a lot of function pointer calls in a hot loop (clearing entities in render). This is slow, since calling function pointers cannot be optimised out. We can avoid that in the cases where the function call is a no-op. - Alternative to https://github.com/bevyengine/bevy/pull/2897 - On my machine, in `many_cubes`, this reduces dropping time from ~150μs to ~80μs. ## Solution - Make `drop` in `BlobVec` an `Option`, recording whether the given drop impl is required or not. - Note that this does add branching in some cases - we could consider splitting this into two fields, i.e. unconditionally call the `drop` fn pointer. - My intuition of how often types stored in `World` should have non-trivial drops makes me think that would be slower, however. N.B. Even once this lands, we should still test having a 'drop_multiple' variant - for types with a real `Drop` impl, the current implementation is definitely optimal. |
||
Joy
|
4c878ef790 |
Add comparison methods to FilteredAccessSet (#4211)
# Objective - (Eventually) reduce noise in reporting access conflicts between unordered systems. - `SystemStage` only looks at unfiltered `ComponentId` access, any conflicts reported are potentially `false`. - the systems could still be accessing disjoint archetypes - Comparing systems' filtered access sets can maybe avoid that (for statically known component types). - #4204 ## Solution - Modify `SparseSetIndex` trait to require `PartialEq`, `Eq`, and `Hash` (all internal types except `BundleId` already did). - Add `is_compatible` and `get_conflicts` methods to `FilteredAccessSet<T>` - (existing method renamed to `get_conflicts_single`) - Add docs for those and all the other methods while I'm at it. |
||
Jakob Hellermann
|
d63b7e9568 |
some cleanup for bevy_ptr (#4668)
1. change `PtrMut::as_ptr(self)` and `OwnedPtr::as_ptr(self)` to take `&self`, otherwise printing the pointer will prevent doing anything else afterwards 2. make all `as_ptr` methods safe. There's nothing unsafe about obtaining a pointer, these kinds of methods are safe in std as well [str::as_ptr](https://doc.rust-lang.org/stable/std/primitive.str.html#method.as_ptr), [Rc::as_ptr](https://doc.rust-lang.org/stable/std/rc/struct.Rc.html#method.as_ptr) 3. rename `offset`/`add` to `byte_offset`/`byte_add`. The unprefixed methods in std add in increments of `std::mem::size_of::<T>`, not in bytes. There's a PR for rust to add these byte_ methods https://github.com/rust-lang/rust/pull/95643 and at the call site it makes it much more clear that you need to do `.byte_add(i * layout_size)` instead of `.add(i)` |
||
Jakob Hellermann
|
1e322d9f76 |
bevy_ptr standalone crate (#4653)
# Objective The pointer types introduced in #3001 are useful not just in `bevy_ecs`, but also in crates like `bevy_reflect` (#4475) or even outside of bevy. ## Solution Extract `Ptr<'a>`, `PtrMut<'a>`, `OwnedPtr<'a>`, `ThinSlicePtr<'a, T>` and `UnsafeCellDeref` from `bevy_ecs::ptr` into `bevy_ptr`. **Note:** `bevy_ecs` still reexports the `bevy_ptr` as `bevy_ecs::ptr` so that crates like `bevy_transform` can use the `Bundle` derive without needing to depend on `bevy_ptr` themselves. |
||
James Liu
|
3e24b725af |
Pointerfication followup: Type safety and cleanup (#4621)
# Objective The `Ptr` types gives free access to the underlying `NonNull<u8>`, which adds more publicly visible pointer wrangling than there needs to be. There are also a few edge cases where Ptr types could be more readily utilized for properly validating the soundness of ECS operations. ## Solution - Replace `*Ptr(Mut)::inner` with `cast` which requires a concrete type to give the pointer. This function could also have a `debug_assert` with an alignment check to ensure that the pointer is aligned properly, but is currently not included. - Use `OwningPtr::read` in ECS macros over casting the inner pointer around. |
||
TheRawMeatball
|
73c78c3667 |
Use lifetimed, type erased pointers in bevy_ecs (#3001)
# Objective
`bevy_ecs` has large amounts of unsafe code which is hard to get right and makes it difficult to audit for soundness.
## Solution
Introduce lifetimed, type-erased pointers: `Ptr<'a>` `PtrMut<'a>` `OwningPtr<'a>'` and `ThinSlicePtr<'a, T>` which are newtypes around a raw pointer with a lifetime and conceptually representing strong invariants about the pointee and validity of the pointer.
The process of converting bevy_ecs to use these has already caught multiple cases of unsound behavior.
## Changelog
TL;DR for release notes: `bevy_ecs` now uses lifetimed, type-erased pointers internally, significantly improving safety and legibility without sacrificing performance. This should have approximately no end user impact, unless you were meddling with the (unfortunately public) internals of `bevy_ecs`.
- `Fetch`, `FilterFetch` and `ReadOnlyFetch` trait no longer have a `'state` lifetime
- this was unneeded
- `ReadOnly/Fetch` associated types on `WorldQuery` are now on a new `WorldQueryGats<'world>` trait
- was required to work around lack of Generic Associated Types (we wish to express `type Fetch<'a>: Fetch<'a>`)
- `derive(WorldQuery)` no longer requires `'w` lifetime on struct
- this was unneeded, and improves the end user experience
- `EntityMut::get_unchecked_mut` returns `&'_ mut T` not `&'w mut T`
- allows easier use of unsafe API with less footguns, and can be worked around via lifetime transmutery as a user
- `Bundle::from_components` now takes a `ctx` parameter to pass to the `FnMut` closure
- required because closure return types can't borrow from captures
- `Fetch::init` takes `&'world World`, `Fetch::set_archetype` takes `&'world Archetype` and `&'world Tables`, `Fetch::set_table` takes `&'world Table`
- allows types implementing `Fetch` to store borrows into world
- `WorldQuery` trait now has a `shrink` fn to shorten the lifetime in `Fetch::<'a>::Item`
- this works around lack of subtyping of assoc types, rust doesnt allow you to turn `<T as Fetch<'static>>::Item'` into `<T as Fetch<'a>>::Item'`
- `QueryCombinationsIter` requires this
- Most types implementing `Fetch` now have a lifetime `'w`
- allows the fetches to store borrows of world data instead of using raw pointers
## Migration guide
- `EntityMut::get_unchecked_mut` returns a more restricted lifetime, there is no general way to migrate this as it depends on your code
- `Bundle::from_components` implementations must pass the `ctx` arg to `func`
- `Bundle::from_components` callers have to use a fn arg instead of closure captures for borrowing from world
- Remove lifetime args on `derive(WorldQuery)` structs as it is nonsensical
- `<Q as WorldQuery>::ReadOnly/Fetch` should be changed to either `RO/QueryFetch<'world>` or `<Q as WorldQueryGats<'world>>::ReadOnly/Fetch`
- `<F as Fetch<'w, 's>>` should be changed to `<F as Fetch<'w>>`
- Change the fn sigs of `Fetch::init/set_archetype/set_table` to match respective trait fn sigs
- Implement the required `fn shrink` on any `WorldQuery` implementations
- Move assoc types `Fetch` and `ReadOnlyFetch` on `WorldQuery` impls to `WorldQueryGats` impls
- Pass an appropriate `'world` lifetime to whatever fetch struct you are for some reason using
### Type inference regression
in some cases rustc may give spurrious errors when attempting to infer the `F` parameter on a query/querystate this can be fixed by manually specifying the type, i.e. `QueryState:🆕:<_, ()>(world)`. The error is rather confusing:
```rust=
error[E0271]: type mismatch resolving `<() as Fetch<'_>>::Item == bool`
--> crates/bevy_pbr/src/render/light.rs:1413:30
|
1413 | main_view_query: QueryState::new(world),
| ^^^^^^^^^^^^^^^ expected `bool`, found `()`
|
= note: required because of the requirements on the impl of `for<'x> FilterFetch<'x>` for `<() as WorldQueryGats<'x>>::Fetch`
note: required by a bound in `bevy_ecs::query::QueryState::<Q, F>::new`
--> crates/bevy_ecs/src/query/state.rs:49:32
|
49 | for<'x> QueryFetch<'x, F>: FilterFetch<'x>,
| ^^^^^^^^^^^^^^^ required by this bound in `bevy_ecs::query::QueryState::<Q, F>::new`
```
---
Made with help from @BoxyUwU and @alice-i-cecile
Co-authored-by: Boxy <supbscripter@gmail.com>
|
||
Carter Anderson
|
b3a1db60f2 |
Proper prehashing (#3963)
For some keys, it is too expensive to hash them on every lookup. Historically in Bevy, we have regrettably done the "wrong" thing in these cases (pre-computing hashes, then re-hashing them) because Rust's built in hashed collections don't give us the tools we need to do otherwise. Doing this is "wrong" because two different values can result in the same hash. Hashed collections generally get around this by falling back to equality checks on hash collisions. You can't do that if the key _is_ the hash. Additionally, re-hashing a hash increase the odds of collision! #3959 needs pre-hashing to be viable, so I decided to finally properly solve the problem. The solution involves two different changes: 1. A new generalized "pre-hashing" solution in bevy_utils: `Hashed<T>` types, which store a value alongside a pre-computed hash. And `PreHashMap<K, V>` (which uses `Hashed<T>` internally) . `PreHashMap` is just an alias for a normal HashMap that uses `Hashed<T>` as the key and a new `PassHash` implementation as the Hasher. 2. Replacing the `std::collections` re-exports in `bevy_utils` with equivalent `hashbrown` impls. Avoiding re-hashes requires the `raw_entry_mut` api, which isn't stabilized yet (and may never be ... `entry_ref` has favor now, but also isn't available yet). If std's HashMap ever provides the tools we need, we can move back to that. The latest version of `hashbrown` adds support for the `entity_ref` api, so we can move to that in preparation for an std migration, if thats the direction they seem to be going in. Note that adding hashbrown doesn't increase our dependency count because it was already in our tree. In addition to providing these core tools, I also ported the "table identity hashing" in `bevy_ecs` to `raw_entry_mut`, which was a particularly egregious case. The biggest outstanding case is `AssetPathId`, which stores a pre-hash. We need AssetPathId to be cheaply clone-able (and ideally Copy), but `Hashed<AssetPath>` requires ownership of the AssetPath, which makes cloning ids way more expensive. We could consider doing `Hashed<Arc<AssetPath>>`, but cloning an arc is still a non-trivial expensive that needs to be considered. I would like to handle this in a separate PR. And given that we will be re-evaluating the Bevy Assets implementation in the very near future, I'd prefer to hold off until after that conversation is concluded. |
||
danieleades
|
d8974e7c3d |
small and mostly pointless refactoring (#2934)
What is says on the tin. This has got more to do with making `clippy` slightly more *quiet* than it does with changing anything that might greatly impact readability or performance. that said, deriving `Default` for a couple of structs is a nice easy win |
||
Michael Dorst
|
507441d96f |
Fix doc_markdown lints in bevy_ecs (#3473)
#3457 adds the `doc_markdown` clippy lint, which checks doc comments to make sure code identifiers are escaped with backticks. This causes a lot of lint errors, so this is one of a number of PR's that will fix those lint errors one crate at a time. This PR fixes lints in the `bevy_ecs` crate. |
||
David Sugar
|
8a8293b266 |
Renamed Entity::new to Entity::from_raw (#3465)
# Objective - Rename `Entity::new(id: u32)` to `Entity::from_raw(id: u32)`. - Add further documentation. - fixes #3108 ## Solution - Renamed `Entity::new(id: u32)` to `Entity::from_raw(id: u32)`. - Docs extended. I derived the examples from the discussion of issue #3108 . The [first case](https://github.com/bevyengine/bevy/issues/3108#issuecomment-966669781) mentioned in the linked issue is quite obvious but the [second one](https://github.com/bevyengine/bevy/issues/3108#issuecomment-967093902) probably needs further explanation. Co-authored-by: r4gus <david@thesugar.de> |
||
Alice Cecile
|
1ef028d2af |
Basic docs for Storages (#3391)
# Objective - Storages are used to store the ECS data. - They're undocumented. ## Solution - Add some very basic docs. ## Notes - Some of this was hard to immediately understand when reading the code, so suggestions on improvements / things to add are particularly welcome. |
||
sapir
|
8c250919e3 |
Fix double drop in BlobVec::replace_unchecked (#2597) (#2848)
# Objective I thought I'd have a go a trying to fix #2597. Hopefully fixes #2597. ## Solution I reused the memory pointed to by the value parameter, that is already required by `insert` to not be dropped, to contain the extracted value while dropping it. |
||
Paweł Grabarz
|
07ed1d053e |
Implement and require #[derive(Component)] on all component structs (#2254)
This implements the most minimal variant of #1843 - a derive for marker trait. This is a prerequisite to more complicated features like statically defined storage type or opt-out component reflection. In order to make component struct's purpose explicit and avoid misuse, it must be annotated with `#[derive(Component)]` (manual impl is discouraged for compatibility). Right now this is just a marker trait, but in the future it might be expanded. Making this change early allows us to make further changes later without breaking backward compatibility for derive macro users. This already prevents a lot of issues, like using bundles in `insert` calls. Primitive types are no longer valid components as well. This can be easily worked around by adding newtype wrappers and deriving `Component` for them. One funny example of prevented bad code (from our own tests) is when an newtype struct or enum variant is used. Previously, it was possible to write `insert(Newtype)` instead of `insert(Newtype(value))`. That code compiled, because function pointers (in this case newtype struct constructor) implement `Send + Sync + 'static`, so we allowed them to be used as components. This is no longer the case and such invalid code will trigger a compile error. Co-authored-by: = <=> Co-authored-by: TheRawMeatball <therawmeatball@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Federico Rinaldi
|
615d43b998 |
Improve bevy_ecs and bevy_app API docs where referenced by the new Bevy Book (#2365)
## Objective The upcoming Bevy Book makes many references to the API documentation of bevy. Most references belong to the first two chapters of the Bevy Book: - bevyengine/bevy-website#176 - bevyengine/bevy-website#182 This PR attempts to improve the documentation of `bevy_ecs` and `bevy_app` in order to help readers of the Book who want to delve deeper into technical details. ## Solution - Add crate and level module documentation - Document the most important items (basically those included in the preludes), with the following style, where applicable: - **Summary.** Short description of the item. - **Second paragraph.** Detailed description of the item, without going too much in the implementation. - **Code example(s).** - **Safety or panic notes.** ## Collaboration Any kind of collaboration is welcome, especially corrections, wording, new ideas and guidelines on where the focus should be put in. --- ### Related issues - Fixes #2246 |
||
Carter Anderson
|
b47217bfab |
Spawn specific entities: spawn or insert operations, refactor spawn internals, world clearing (#2673)
This upstreams the code changes used by the new renderer to enable cross-app Entity reuse: * Spawning at specific entities * get_or_spawn: spawns an entity if it doesn't already exist and returns an EntityMut * insert_or_spawn_batch: the batched equivalent to `world.get_or_spawn(entity).insert_bundle(bundle)` * Clearing entities and storages * Allocating Entities with "invalid" archetypes. These entities cannot be queried / are treated as "non existent". They serve as "reserved" entities that won't show up when calling `spawn()`. They must be "specifically spawned at" using apis like `get_or_spawn(entity)`. In combination, these changes enable the "render world" to clear entities / storages each frame and reserve all "app world entities". These can then be spawned during the "render extract step". This refactors "spawn" and "insert" code in a way that I think is a massive improvement to legibility and re-usability. It also yields marginal performance wins by reducing some duplicate lookups (less than a percentage point improvement on insertion benchmarks). There is also some potential for future unsafe reduction (by making BatchSpawner and BatchInserter generic). But for now I want to cut down generic usage to a minimum to encourage smaller binaries and faster compiles. This is currently a draft because it needs more tests (although this code has already had some real-world testing on my custom-shaders branch). I also fixed the benchmarks (which currently don't compile!) / added new ones to illustrate batching wins. After these changes, Bevy ECS is basically ready to accommodate the new renderer. I think the biggest missing piece at this point is "sub apps". |
||
bjorn3
|
86cc70b902 |
Refactor ECS to reduce the dependency on a 1-to-1 mapping between components and real rust types (#2490)
# Objective There is currently a 1-to-1 mapping between components and real rust types. This means that it is impossible for multiple components to be represented by the same rust type or for a component to not have a rust type at all. This means that component types can't be defined in languages other than rust like necessary for scripting or sandboxed (wasm?) plugins. ## Solution Refactor `ComponentDescriptor` and `Bundle` to remove `TypeInfo`. `Bundle` now uses `ComponentId` instead. `ComponentDescriptor` is now always created from a rust type instead of through the `TypeInfo` indirection. A future PR may make it possible to construct a `ComponentDescriptor` from it's fields without a rust type being involved. |
||
thebluefish
|
f45dbe5bac |
Fixes dropping empty BlobVec (#2295)
When dropping the data, we originally only checked the size of an individual item instead of the size of the allocation. However with a capacity of 0, we attempt to deallocate a pointer which was not the result of allocation. That is, an item of `Layout { size_: 8, align_: 8 }` produces an array of `Layout { size_: 0, align_: 8 }` when `capacity = 0`. Fixes #2294 |
||
Paweł Grabarz
|
1214ddabb7 |
drop overwritten component data on double insert (#2227)
Continuing the work on reducing the safety footguns in the code, I've removed one extra `UnsafeCell` in favour of safe `Cell` usage inisde `ComponentTicks`. That change led to discovery of misbehaving component insert logic, where data wasn't properly dropped when overwritten. Apart from that being fixed, some method names were changed to better convey the "initialize new allocation" and "replace existing allocation" semantic. Depends on #2221, I will rebase this PR after the dependency is merged. For now, review just the last commit. Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Paweł Grabarz
|
052094757a |
reduce tricky unsafety and simplify table structure (#2221)
I've noticed that we are overusing interior mutability of the Table data, where in many cases we already own a unique reference to it. That prompted a slight refactor aiming to reduce number of safety constraints that must be manually upheld. Now the majority of those are just about avoiding bound checking, which is relatively easy to prove right. Another aspect is reducing the complexity of Table struct. Notably, we don't ever use archetypes stored there, so this whole thing goes away. Capacity and grow amount were mostly superficial, as we are already using Vecs inside anyway, so I've got rid of those too. Now the overall table capacity is being driven by the internal entity Vec capacity. This has a side effect of automatically implementing exponential growth pattern for BitVecs reallocations inside Table, which to my measurements slightly improves performance in tests that are heavy on inserts. YMMV, but I hope that those tests were at least remotely correct. |
||
Paweł Grabarz
|
93cc7219bc |
small ecs cleanup and remove_bundle drop bugfix (#2172)
- simplified code around archetype generations a little bit, as the special case value is not actually needed - removed unnecessary UnsafeCell around pointer value that is never updated through shared references - fixed and added a test for correct drop behaviour when removing sparse components through remove_bundle command |
||
Nathan Ward
|
883abbb27a |
[bevy_ecs] Cleanup SparseSetIndex impls (#2099)
Problem: - SparseSetIndex trait implementations had a lot of duplicated code. Solution: - Utilize a macro to implement the trait for a generic type. |
||
Alice Cecile
|
e4e32598a9 |
Cargo fmt with unstable features (#1903)
Fresh version of #1670 off the latest main. Mostly fixing documentation wrapping. |
||
Carter Anderson
|
80961d1bd0 |
Fix sparse insert (#1748)
Removing the checks on this line https://github.com/bevyengine/bevy/blob/main/crates/bevy_sprite/src/frustum_culling.rs#L64 and running the "many_sprites" example revealed two corner case bugs in bevy_ecs. The first, a simple and honest missed line introduced in #1471. The other, an insidious monster that has been there since the ECS v2 rewrite, just waiting for the time to strike: 1. #1471 accidentally removed the "insert" line for sparse set components with the "mutated" bundle state. Re-adding it fixes the problem. I did a slight refactor here to make the implementation simpler and remove a branch. 2. The other issue is nastier. ECS v2 added an "archetype graph". When determining what components were added/mutated during an archetype change, we read the FromBundle edge (which encodes this state) on the "new" archetype. The problem is that unlike "add edges" which are guaranteed to be unique for a given ("graph node", "bundle id") pair, FromBundle edges are not necessarily unique: ```rust // OLD_ARCHETYPE -> NEW_ARCHETYPE // [] -> [usize] e.insert(2usize); // [usize] -> [usize, i32] e.insert(1i32); // [usize, i32] -> [usize, i32] e.insert(1i32); // [usize, i32] -> [usize] e.remove::<i32>(); // [usize] -> [usize, i32] e.insert(1i32); ``` Note that the second `e.insert(1i32)` command has a different "archetype graph edge" than the first, but they both lead to the same "new archetype". The fix here is simple: just remove FromBundle edges because they are broken and store the information in the "add edges", which are guaranteed to be unique. FromBundle edges were added to cut down on the number of archetype accesses / make the archetype access patterns nicer. But benching this change resulted in no significant perf changes and the addition of get_2_mut() for archetypes resolves the access pattern issue. |
||
Carter Anderson
|
b6be8a5314 |
Fix table reserve logic (#1698)
Fixes #1692 Alternative to #1696 This ensures that the capacity actually grows in increments of grow_amount, and also ensures that Table capacity is always <= column and entity vec capacity. Debug logs that describe the new logic (running the example in #1692) [out.txt](https://github.com/bevyengine/bevy/files/6173808/out.txt) |
||
Alice Cecile
|
6121e5f933 |
Reliable change detection (#1471)
# Problem Definition The current change tracking (via flags for both components and resources) fails to detect changes made by systems that are scheduled to run earlier in the frame than they are. This issue is discussed at length in [#68](https://github.com/bevyengine/bevy/issues/68) and [#54](https://github.com/bevyengine/bevy/issues/54). This is very much a draft PR, and contributions are welcome and needed. # Criteria 1. Each change is detected at least once, no matter the ordering. 2. Each change is detected at most once, no matter the ordering. 3. Changes should be detected the same frame that they are made. 4. Competitive ergonomics. Ideally does not require opting-in. 5. Low CPU overhead of computation. 6. Memory efficient. This must not increase over time, except where the number of entities / resources does. 7. Changes should not be lost for systems that don't run. 8. A frame needs to act as a pure function. Given the same set of entities / components it needs to produce the same end state without side-effects. **Exact** change-tracking proposals satisfy criteria 1 and 2. **Conservative** change-tracking proposals satisfy criteria 1 but not 2. **Flaky** change tracking proposals satisfy criteria 2 but not 1. # Code Base Navigation There are three types of flags: - `Added`: A piece of data was added to an entity / `Resources`. - `Mutated`: A piece of data was able to be modified, because its `DerefMut` was accessed - `Changed`: The bitwise OR of `Added` and `Changed` The special behavior of `ChangedRes`, with respect to the scheduler is being removed in [#1313](https://github.com/bevyengine/bevy/pull/1313) and does not need to be reproduced. `ChangedRes` and friends can be found in "bevy_ecs/core/resources/resource_query.rs". The `Flags` trait for Components can be found in "bevy_ecs/core/query.rs". `ComponentFlags` are stored in "bevy_ecs/core/archetypes.rs", defined on line 446. # Proposals **Proposal 5 was selected for implementation.** ## Proposal 0: No Change Detection The baseline, where computations are performed on everything regardless of whether it changed. **Type:** Conservative **Pros:** - already implemented - will never miss events - no overhead **Cons:** - tons of repeated work - doesn't allow users to avoid repeating work (or monitoring for other changes) ## Proposal 1: Earlier-This-Tick Change Detection The current approach as of Bevy 0.4. Flags are set, and then flushed at the end of each frame. **Type:** Flaky **Pros:** - already implemented - simple to understand - low memory overhead (2 bits per component) - low time overhead (clear every flag once per frame) **Cons:** - misses systems based on ordering - systems that don't run every frame miss changes - duplicates detection when looping - can lead to unresolvable circular dependencies ## Proposal 2: Two-Tick Change Detection Flags persist for two frames, using a double-buffer system identical to that used in events. A change is observed if it is found in either the current frame's list of changes or the previous frame's. **Type:** Conservative **Pros:** - easy to understand - easy to implement - low memory overhead (4 bits per component) - low time overhead (bit mask and shift every flag once per frame) **Cons:** - can result in a great deal of duplicated work - systems that don't run every frame miss changes - duplicates detection when looping ## Proposal 3: Last-Tick Change Detection Flags persist for two frames, using a double-buffer system identical to that used in events. A change is observed if it is found in the previous frame's list of changes. **Type:** Exact **Pros:** - exact - easy to understand - easy to implement - low memory overhead (4 bits per component) - low time overhead (bit mask and shift every flag once per frame) **Cons:** - change detection is always delayed, possibly causing painful chained delays - systems that don't run every frame miss changes - duplicates detection when looping ## Proposal 4: Flag-Doubling Change Detection Combine Proposal 2 and Proposal 3. Differentiate between `JustChanged` (current behavior) and `Changed` (Proposal 3). Pack this data into the flags according to [this implementation proposal](https://github.com/bevyengine/bevy/issues/68#issuecomment-769174804). **Type:** Flaky + Exact **Pros:** - allows users to acc - easy to implement - low memory overhead (4 bits per component) - low time overhead (bit mask and shift every flag once per frame) **Cons:** - users must specify the type of change detection required - still quite fragile to system ordering effects when using the flaky `JustChanged` form - cannot get immediate + exact results - systems that don't run every frame miss changes - duplicates detection when looping ## [SELECTED] Proposal 5: Generation-Counter Change Detection A global counter is increased after each system is run. Each component saves the time of last mutation, and each system saves the time of last execution. Mutation is detected when the component's counter is greater than the system's counter. Discussed [here](https://github.com/bevyengine/bevy/issues/68#issuecomment-769174804). How to handle addition detection is unsolved; the current proposal is to use the highest bit of the counter as in proposal 1. **Type:** Exact (for mutations), flaky (for additions) **Pros:** - low time overhead (set component counter on access, set system counter after execution) - robust to systems that don't run every frame - robust to systems that loop **Cons:** - moderately complex implementation - must be modified as systems are inserted dynamically - medium memory overhead (4 bytes per component + system) - unsolved addition detection ## Proposal 6: System-Data Change Detection For each system, track which system's changes it has seen. This approach is only worth fully designing and implementing if Proposal 5 fails in some way. **Type:** Exact **Pros:** - exact - conceptually simple **Cons:** - requires storing data on each system - implementation is complex - must be modified as systems are inserted dynamically ## Proposal 7: Total-Order Change Detection Discussed [here](https://github.com/bevyengine/bevy/issues/68#issuecomment-754326523). This proposal is somewhat complicated by the new scheduler, but I believe it should still be conceptually feasible. This approach is only worth fully designing and implementing if Proposal 5 fails in some way. **Type:** Exact **Pros:** - exact - efficient data storage relative to other exact proposals **Cons:** - requires access to the scheduler - complex implementation and difficulty grokking - must be modified as systems are inserted dynamically # Tests - We will need to verify properties 1, 2, 3, 7 and 8. Priority: 1 > 2 = 3 > 8 > 7 - Ideally we can use identical user-facing syntax for all proposals, allowing us to re-use the same syntax for each. - When writing tests, we need to carefully specify order using explicit dependencies. - These tests will need to be duplicated for both components and resources. - We need to be sure to handle cases where ambiguous system orders exist. `changing_system` is always the system that makes the changes, and `detecting_system` always detects the changes. The component / resource changed will be simple boolean wrapper structs. ## Basic Added / Mutated / Changed 2 x 3 design: - Resources vs. Components - Added vs. Changed vs. Mutated - `changing_system` runs before `detecting_system` - verify at the end of tick 2 ## At Least Once 2 x 3 design: - Resources vs. Components - Added vs. Changed vs. Mutated - `changing_system` runs after `detecting_system` - verify at the end of tick 2 ## At Most Once 2 x 3 design: - Resources vs. Components - Added vs. Changed vs. Mutated - `changing_system` runs once before `detecting_system` - increment a counter based on the number of changes detected - verify at the end of tick 2 ## Fast Detection 2 x 3 design: - Resources vs. Components - Added vs. Changed vs. Mutated - `changing_system` runs before `detecting_system` - verify at the end of tick 1 ## Ambiguous System Ordering Robustness 2 x 3 x 2 design: - Resources vs. Components - Added vs. Changed vs. Mutated - `changing_system` runs [before/after] `detecting_system` in tick 1 - `changing_system` runs [after/before] `detecting_system` in tick 2 ## System Pausing 2 x 3 design: - Resources vs. Components - Added vs. Changed vs. Mutated - `changing_system` runs in tick 1, then is disabled by run criteria - `detecting_system` is disabled by run criteria until it is run once during tick 3 - verify at the end of tick 3 ## Addition Causes Mutation 2 design: - Resources vs. Components - `adding_system_1` adds a component / resource - `adding system_2` adds the same component / resource - verify the `Mutated` flag at the end of the tick - verify the `Added` flag at the end of the tick First check tests for: https://github.com/bevyengine/bevy/issues/333 Second check tests for: https://github.com/bevyengine/bevy/issues/1443 ## Changes Made By Commands - `adding_system` runs in Update in tick 1, and sends a command to add a component - `detecting_system` runs in Update in tick 1 and 2, after `adding_system` - We can't detect the changes in tick 1, since they haven't been processed yet - If we were to track these changes as being emitted by `adding_system`, we can't detect the changes in tick 2 either, since `detecting_system` has already run once after `adding_system` :( # Benchmarks See: [general advice](https://github.com/bevyengine/bevy/blob/master/docs/profiling.md), [Criterion crate](https://github.com/bheisler/criterion.rs) There are several critical parameters to vary: 1. entity count (1 to 10^9) 2. fraction of entities that are changed (0% to 100%) 3. cost to perform work on changed entities, i.e. workload (1 ns to 1s) 1 and 2 should be varied between benchmark runs. 3 can be added on computationally. We want to measure: - memory cost - run time We should collect these measurements across several frames (100?) to reduce bootup effects and accurately measure the mean, variance and drift. Entity-component change detection is much more important to benchmark than resource change detection, due to the orders of magnitude higher number of pieces of data. No change detection at all should be included in benchmarks as a second control for cases where missing changes is unacceptable. ## Graphs 1. y: performance, x: log_10(entity count), color: proposal, facet: performance metric. Set cost to perform work to 0. 2. y: run time, x: cost to perform work, color: proposal, facet: fraction changed. Set number of entities to 10^6 3. y: memory, x: frames, color: proposal # Conclusions 1. Is the theoretical categorization of the proposals correct according to our tests? 2. How does the performance of the proposals compare without any load? 3. How does the performance of the proposals compare with realistic loads? 4. At what workload does more exact change tracking become worth the (presumably) higher overhead? 5. When does adding change-detection to save on work become worthwhile? 6. Is there enough divergence in performance between the best solutions in each class to ship more than one change-tracking solution? # Implementation Plan 1. Write a test suite. 2. Verify that tests fail for existing approach. 3. Write a benchmark suite. 4. Get performance numbers for existing approach. 5. Implement, test and benchmark various solutions using a Git branch per proposal. 6. Create a draft PR with all solutions and present results to team. 7. Select a solution and replace existing change detection. Co-authored-by: Brice DAVIER <bricedavier@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Carter Anderson
|
68606934e3 |
remove unsafe get_unchecked (and mut variant) from Tables and Archetypes (#1614)
Removes `get_unchecked` and `get_unchecked_mut` from `Tables` and `Archetypes` collections in favor of safe Index implementations. This fixes a safety error in `Archetypes::get_id_or_insert()` (which previously relied on TableId being valid to be safe ... the alternative was to make that method unsafe too). It also cuts down on a lot of unsafe and makes the code easier to look at. I'm not sure what changed since the last benchmark, but these numbers are more favorable than my last tests of similar changes. I didn't include the Components collection as those severely killed perf last time I tried. But this does inspire me to try again (just in a separate pr)! Note that the `simple_insert/bevy_unbatched` benchmark fluctuates a lot on both branches (this was also true for prior versions of bevy). It seems like the allocator has more variance for many small allocations. And `sparse_frag_iter/bevy` operates on such a small scale that 10% fluctuations are common. Some benches do take a small hit here, but I personally think its worth it. This also fixes a safety error in Query::for_each_mut, which needed to mutably borrow Query (aaahh!). ![image](https://user-images.githubusercontent.com/2694663/110726926-2b52eb80-81cf-11eb-9ea3-bff951060c7c.png) ![image](https://user-images.githubusercontent.com/2694663/110726991-4c1b4100-81cf-11eb-9199-ca79bef0b9bd.png) |
||
Carter Anderson
|
b17f8a4bce |
format comments (#1612)
Uses the new unstable comment formatting features added to rustfmt.toml. |
||
Carter Anderson
|
3a2a68852c |
Bevy ECS V2 (#1525)
# Bevy ECS V2 This is a rewrite of Bevy ECS (basically everything but the new executor/schedule, which are already awesome). The overall goal was to improve the performance and versatility of Bevy ECS. Here is a quick bulleted list of changes before we dive into the details: * Complete World rewrite * Multiple component storage types: * Tables: fast cache friendly iteration, slower add/removes (previously called Archetypes) * Sparse Sets: fast add/remove, slower iteration * Stateful Queries (caches query results for faster iteration. fragmented iteration is _fast_ now) * Stateful System Params (caches expensive operations. inspired by @DJMcNab's work in #1364) * Configurable System Params (users can set configuration when they construct their systems. once again inspired by @DJMcNab's work) * Archetypes are now "just metadata", component storage is separate * Archetype Graph (for faster archetype changes) * Component Metadata * Configure component storage type * Retrieve information about component size/type/name/layout/send-ness/etc * Components are uniquely identified by a densely packed ComponentId * TypeIds are now totally optional (which should make implementing scripting easier) * Super fast "for_each" query iterators * Merged Resources into World. Resources are now just a special type of component * EntityRef/EntityMut builder apis (more efficient and more ergonomic) * Fast bitset-backed `Access<T>` replaces old hashmap-based approach everywhere * Query conflicts are determined by component access instead of archetype component access (to avoid random failures at runtime) * With/Without are still taken into account for conflicts, so this should still be comfy to use * Much simpler `IntoSystem` impl * Significantly reduced the amount of hashing throughout the ecs in favor of Sparse Sets (indexed by densely packed ArchetypeId, ComponentId, BundleId, and TableId) * Safety Improvements * Entity reservation uses a normal world reference instead of unsafe transmute * QuerySets no longer transmute lifetimes * Made traits "unsafe" where relevant * More thorough safety docs * WorldCell * Exposes safe mutable access to multiple resources at a time in a World * Replaced "catch all" `System::update_archetypes(world: &World)` with `System::new_archetype(archetype: &Archetype)` * Simpler Bundle implementation * Replaced slow "remove_bundle_one_by_one" used as fallback for Commands::remove_bundle with fast "remove_bundle_intersection" * Removed `Mut<T>` query impl. it is better to only support one way: `&mut T` * Removed with() from `Flags<T>` in favor of `Option<Flags<T>>`, which allows querying for flags to be "filtered" by default * Components now have is_send property (currently only resources support non-send) * More granular module organization * New `RemovedComponents<T>` SystemParam that replaces `query.removed::<T>()` * `world.resource_scope()` for mutable access to resources and world at the same time * WorldQuery and QueryFilter traits unified. FilterFetch trait added to enable "short circuit" filtering. Auto impled for cases that don't need it * Significantly slimmed down SystemState in favor of individual SystemParam state * System Commands changed from `commands: &mut Commands` back to `mut commands: Commands` (to allow Commands to have a World reference) Fixes #1320 ## `World` Rewrite This is a from-scratch rewrite of `World` that fills the niche that `hecs` used to. Yes, this means Bevy ECS is no longer a "fork" of hecs. We're going out our own! (the only shared code between the projects is the entity id allocator, which is already basically ideal) A huge shout out to @SanderMertens (author of [flecs](https://github.com/SanderMertens/flecs)) for sharing some great ideas with me (specifically hybrid ecs storage and archetype graphs). He also helped advise on a number of implementation details. ## Component Storage (The Problem) Two ECS storage paradigms have gained a lot of traction over the years: * **Archetypal ECS**: * Stores components in "tables" with static schemas. Each "column" stores components of a given type. Each "row" is an entity. * Each "archetype" has its own table. Adding/removing an entity's component changes the archetype. * Enables super-fast Query iteration due to its cache-friendly data layout * Comes at the cost of more expensive add/remove operations for an Entity's components, because all components need to be copied to the new archetype's "table" * **Sparse Set ECS**: * Stores components of the same type in densely packed arrays, which are sparsely indexed by densely packed unsigned integers (Entity ids) * Query iteration is slower than Archetypal ECS because each entity's component could be at any position in the sparse set. This "random access" pattern isn't cache friendly. Additionally, there is an extra layer of indirection because you must first map the entity id to an index in the component array. * Adding/removing components is a cheap, constant time operation Bevy ECS V1, hecs, legion, flec, and Unity DOTS are all "archetypal ecs-es". I personally think "archetypal" storage is a good default for game engines. An entity's archetype doesn't need to change frequently in general, and it creates "fast by default" query iteration (which is a much more common operation). It is also "self optimizing". Users don't need to think about optimizing component layouts for iteration performance. It "just works" without any extra boilerplate. Shipyard and EnTT are "sparse set ecs-es". They employ "packing" as a way to work around the "suboptimal by default" iteration performance for specific sets of components. This helps, but I didn't think this was a good choice for a general purpose engine like Bevy because: 1. "packs" conflict with each other. If bevy decides to internally pack the Transform and GlobalTransform components, users are then blocked if they want to pack some custom component with Transform. 2. users need to take manual action to optimize Developers selecting an ECS framework are stuck with a hard choice. Select an "archetypal" framework with "fast iteration everywhere" but without the ability to cheaply add/remove components, or select a "sparse set" framework to cheaply add/remove components but with slower iteration performance. ## Hybrid Component Storage (The Solution) In Bevy ECS V2, we get to have our cake and eat it too. It now has _both_ of the component storage types above (and more can be added later if needed): * **Tables** (aka "archetypal" storage) * The default storage. If you don't configure anything, this is what you get * Fast iteration by default * Slower add/remove operations * **Sparse Sets** * Opt-in * Slower iteration * Faster add/remove operations These storage types complement each other perfectly. By default Query iteration is fast. If developers know that they want to add/remove a component at high frequencies, they can set the storage to "sparse set": ```rust world.register_component( ComponentDescriptor:🆕:<MyComponent>(StorageType::SparseSet) ).unwrap(); ``` ## Archetypes Archetypes are now "just metadata" ... they no longer store components directly. They do store: * The `ComponentId`s of each of the Archetype's components (and that component's storage type) * Archetypes are uniquely defined by their component layouts * For example: entities with "table" components `[A, B, C]` _and_ "sparse set" components `[D, E]` will always be in the same archetype. * The `TableId` associated with the archetype * For now each archetype has exactly one table (which can have no components), * There is a 1->Many relationship from Tables->Archetypes. A given table could have any number of archetype components stored in it: * Ex: an entity with "table storage" components `[A, B, C]` and "sparse set" components `[D, E]` will share the same `[A, B, C]` table as an entity with `[A, B, C]` table component and `[F]` sparse set components. * This 1->Many relationship is how we preserve fast "cache friendly" iteration performance when possible (more on this later) * A list of entities that are in the archetype and the row id of the table they are in * ArchetypeComponentIds * unique densely packed identifiers for (ArchetypeId, ComponentId) pairs * used by the schedule executor for cheap system access control * "Archetype Graph Edges" (see the next section) ## The "Archetype Graph" Archetype changes in Bevy (and a number of other archetypal ecs-es) have historically been expensive to compute. First, you need to allocate a new vector of the entity's current component ids, add or remove components based on the operation performed, sort it (to ensure it is order-independent), then hash it to find the archetype (if it exists). And thats all before we get to the _already_ expensive full copy of all components to the new table storage. The solution is to build a "graph" of archetypes to cache these results. @SanderMertens first exposed me to the idea (and he got it from @gjroelofs, who came up with it). They propose adding directed edges between archetypes for add/remove component operations. If `ComponentId`s are densely packed, you can use sparse sets to cheaply jump between archetypes. Bevy takes this one step further by using add/remove `Bundle` edges instead of `Component` edges. Bevy encourages the use of `Bundles` to group add/remove operations. This is largely for "clearer game logic" reasons, but it also helps cut down on the number of archetype changes required. `Bundles` now also have densely-packed `BundleId`s. This allows us to use a _single_ edge for each bundle operation (rather than needing to traverse N edges ... one for each component). Single component operations are also bundles, so this is strictly an improvement over a "component only" graph. As a result, an operation that used to be _heavy_ (both for allocations and compute) is now two dirt-cheap array lookups and zero allocations. ## Stateful Queries World queries are now stateful. This allows us to: 1. Cache archetype (and table) matches * This resolves another issue with (naive) archetypal ECS: query performance getting worse as the number of archetypes goes up (and fragmentation occurs). 2. Cache Fetch and Filter state * The expensive parts of fetch/filter operations (such as hashing the TypeId to find the ComponentId) now only happen once when the Query is first constructed 3. Incrementally build up state * When new archetypes are added, we only process the new archetypes (no need to rebuild state for old archetypes) As a result, the direct `World` query api now looks like this: ```rust let mut query = world.query::<(&A, &mut B)>(); for (a, mut b) in query.iter_mut(&mut world) { } ``` Requiring `World` to generate stateful queries (rather than letting the `QueryState` type be constructed separately) allows us to ensure that _all_ queries are properly initialized (and the relevant world state, such as ComponentIds). This enables QueryState to remove branches from its operations that check for initialization status (and also enables query.iter() to take an immutable world reference because it doesn't need to initialize anything in world). However in systems, this is a non-breaking change. State management is done internally by the relevant SystemParam. ## Stateful SystemParams Like Queries, `SystemParams` now also cache state. For example, `Query` system params store the "stateful query" state mentioned above. Commands store their internal `CommandQueue`. This means you can now safely use as many separate `Commands` parameters in your system as you want. `Local<T>` system params store their `T` value in their state (instead of in Resources). SystemParam state also enabled a significant slim-down of SystemState. It is much nicer to look at now. Per-SystemParam state naturally insulates us from an "aliased mut" class of errors we have hit in the past (ex: using multiple `Commands` system params). (credit goes to @DJMcNab for the initial idea and draft pr here #1364) ## Configurable SystemParams @DJMcNab also had the great idea to make SystemParams configurable. This allows users to provide some initial configuration / values for system parameters (when possible). Most SystemParams have no config (the config type is `()`), but the `Local<T>` param now supports user-provided parameters: ```rust fn foo(value: Local<usize>) { } app.add_system(foo.system().config(|c| c.0 = Some(10))); ``` ## Uber Fast "for_each" Query Iterators Developers now have the choice to use a fast "for_each" iterator, which yields ~1.5-3x iteration speed improvements for "fragmented iteration", and minor ~1.2x iteration speed improvements for unfragmented iteration. ```rust fn system(query: Query<(&A, &mut B)>) { // you now have the option to do this for a speed boost query.for_each_mut(|(a, mut b)| { }); // however normal iterators are still available for (a, mut b) in query.iter_mut() { } } ``` I think in most cases we should continue to encourage "normal" iterators as they are more flexible and more "rust idiomatic". But when that extra "oomf" is needed, it makes sense to use `for_each`. We should also consider using `for_each` for internal bevy systems to give our users a nice speed boost (but that should be a separate pr). ## Component Metadata `World` now has a `Components` collection, which is accessible via `world.components()`. This stores mappings from `ComponentId` to `ComponentInfo`, as well as `TypeId` to `ComponentId` mappings (where relevant). `ComponentInfo` stores information about the component, such as ComponentId, TypeId, memory layout, send-ness (currently limited to resources), and storage type. ## Significantly Cheaper `Access<T>` We used to use `TypeAccess<TypeId>` to manage read/write component/archetype-component access. This was expensive because TypeIds must be hashed and compared individually. The parallel executor got around this by "condensing" type ids into bitset-backed access types. This worked, but it had to be re-generated from the `TypeAccess<TypeId>`sources every time archetypes changed. This pr removes TypeAccess in favor of faster bitset access everywhere. We can do this thanks to the move to densely packed `ComponentId`s and `ArchetypeComponentId`s. ## Merged Resources into World Resources had a lot of redundant functionality with Components. They stored typed data, they had access control, they had unique ids, they were queryable via SystemParams, etc. In fact the _only_ major difference between them was that they were unique (and didn't correlate to an entity). Separate resources also had the downside of requiring a separate set of access controls, which meant the parallel executor needed to compare more bitsets per system and manage more state. I initially got the "separate resources" idea from `legion`. I think that design was motivated by the fact that it made the direct world query/resource lifetime interactions more manageable. It certainly made our lives easier when using Resources alongside hecs/bevy_ecs. However we already have a construct for safely and ergonomically managing in-world lifetimes: systems (which use `Access<T>` internally). This pr merges Resources into World: ```rust world.insert_resource(1); world.insert_resource(2.0); let a = world.get_resource::<i32>().unwrap(); let mut b = world.get_resource_mut::<f64>().unwrap(); *b = 3.0; ``` Resources are now just a special kind of component. They have their own ComponentIds (and their own resource TypeId->ComponentId scope, so they don't conflict wit components of the same type). They are stored in a special "resource archetype", which stores components inside the archetype using a new `unique_components` sparse set (note that this sparse set could later be used to implement Tags). This allows us to keep the code size small by reusing existing datastructures (namely Column, Archetype, ComponentFlags, and ComponentInfo). This allows us the executor to use a single `Access<ArchetypeComponentId>` per system. It should also make scripting language integration easier. _But_ this merge did create problems for people directly interacting with `World`. What if you need mutable access to multiple resources at the same time? `world.get_resource_mut()` borrows World mutably! ## WorldCell WorldCell applies the `Access<ArchetypeComponentId>` concept to direct world access: ```rust let world_cell = world.cell(); let a = world_cell.get_resource_mut::<i32>().unwrap(); let b = world_cell.get_resource_mut::<f64>().unwrap(); ``` This adds cheap runtime checks (a sparse set lookup of `ArchetypeComponentId` and a counter) to ensure that world accesses do not conflict with each other. Each operation returns a `WorldBorrow<'w, T>` or `WorldBorrowMut<'w, T>` wrapper type, which will release the relevant ArchetypeComponentId resources when dropped. World caches the access sparse set (and only one cell can exist at a time), so `world.cell()` is a cheap operation. WorldCell does _not_ use atomic operations. It is non-send, does a mutable borrow of world to prevent other accesses, and uses a simple `Rc<RefCell<ArchetypeComponentAccess>>` wrapper in each WorldBorrow pointer. The api is currently limited to resource access, but it can and should be extended to queries / entity component access. ## Resource Scopes WorldCell does not yet support component queries, and even when it does there are sometimes legitimate reasons to want a mutable world ref _and_ a mutable resource ref (ex: bevy_render and bevy_scene both need this). In these cases we could always drop down to the unsafe `world.get_resource_unchecked_mut()`, but that is not ideal! Instead developers can use a "resource scope" ```rust world.resource_scope(|world: &mut World, a: &mut A| { }) ``` This temporarily removes the `A` resource from `World`, provides mutable pointers to both, and re-adds A to World when finished. Thanks to the move to ComponentIds/sparse sets, this is a cheap operation. If multiple resources are required, scopes can be nested. We could also consider adding a "resource tuple" to the api if this pattern becomes common and the boilerplate gets nasty. ## Query Conflicts Use ComponentId Instead of ArchetypeComponentId For safety reasons, systems cannot contain queries that conflict with each other without wrapping them in a QuerySet. On bevy `main`, we use ArchetypeComponentIds to determine conflicts. This is nice because it can take into account filters: ```rust // these queries will never conflict due to their filters fn filter_system(a: Query<&mut A, With<B>>, b: Query<&mut B, Without<B>>) { } ``` But it also has a significant downside: ```rust // these queries will not conflict _until_ an entity with A, B, and C is spawned fn maybe_conflicts_system(a: Query<(&mut A, &C)>, b: Query<(&mut A, &B)>) { } ``` The system above will panic at runtime if an entity with A, B, and C is spawned. This makes it hard to trust that your game logic will run without crashing. In this pr, I switched to using `ComponentId` instead. This _is_ more constraining. `maybe_conflicts_system` will now always fail, but it will do it consistently at startup. Naively, it would also _disallow_ `filter_system`, which would be a significant downgrade in usability. Bevy has a number of internal systems that rely on disjoint queries and I expect it to be a common pattern in userspace. To resolve this, I added a new `FilteredAccess<T>` type, which wraps `Access<T>` and adds with/without filters. If two `FilteredAccess` have with/without values that prove they are disjoint, they will no longer conflict. ## EntityRef / EntityMut World entity operations on `main` require that the user passes in an `entity` id to each operation: ```rust let entity = world.spawn((A, )); // create a new entity with A world.get::<A>(entity); world.insert(entity, (B, C)); world.insert_one(entity, D); ``` This means that each operation needs to look up the entity location / verify its validity. The initial spawn operation also requires a Bundle as input. This can be awkward when no components are required (or one component is required). These operations have been replaced by `EntityRef` and `EntityMut`, which are "builder-style" wrappers around world that provide read and read/write operations on a single, pre-validated entity: ```rust // spawn now takes no inputs and returns an EntityMut let entity = world.spawn() .insert(A) // insert a single component into the entity .insert_bundle((B, C)) // insert a bundle of components into the entity .id() // id returns the Entity id // Returns EntityMut (or panics if the entity does not exist) world.entity_mut(entity) .insert(D) .insert_bundle(SomeBundle::default()); { // returns EntityRef (or panics if the entity does not exist) let d = world.entity(entity) .get::<D>() // gets the D component .unwrap(); // world.get still exists for ergonomics let d = world.get::<D>(entity).unwrap(); } // These variants return Options if you want to check existence instead of panicing world.get_entity_mut(entity) .unwrap() .insert(E); if let Some(entity_ref) = world.get_entity(entity) { let d = entity_ref.get::<D>().unwrap(); } ``` This _does not_ affect the current Commands api or terminology. I think that should be a separate conversation as that is a much larger breaking change. ## Safety Improvements * Entity reservation in Commands uses a normal world borrow instead of an unsafe transmute * QuerySets no longer transmutes lifetimes * Made traits "unsafe" when implementing a trait incorrectly could cause unsafety * More thorough safety docs ## RemovedComponents SystemParam The old approach to querying removed components: `query.removed:<T>()` was confusing because it had no connection to the query itself. I replaced it with the following, which is both clearer and allows us to cache the ComponentId mapping in the SystemParamState: ```rust fn system(removed: RemovedComponents<T>) { for entity in removed.iter() { } } ``` ## Simpler Bundle implementation Bundles are no longer responsible for sorting (or deduping) TypeInfo. They are just a simple ordered list of component types / data. This makes the implementation smaller and opens the door to an easy "nested bundle" implementation in the future (which i might even add in this pr). Duplicate detection is now done once per bundle type by World the first time a bundle is used. ## Unified WorldQuery and QueryFilter types (don't worry they are still separate type _parameters_ in Queries .. this is a non-breaking change) WorldQuery and QueryFilter were already basically identical apis. With the addition of `FetchState` and more storage-specific fetch methods, the overlap was even clearer (and the redundancy more painful). QueryFilters are now just `F: WorldQuery where F::Fetch: FilterFetch`. FilterFetch requires `Fetch<Item = bool>` and adds new "short circuit" variants of fetch methods. This enables a filter tuple like `(With<A>, Without<B>, Changed<C>)` to stop evaluating the filter after the first mismatch is encountered. FilterFetch is automatically implemented for `Fetch` implementations that return bool. This forces fetch implementations that return things like `(bool, bool, bool)` (such as the filter above) to manually implement FilterFetch and decide whether or not to short-circuit. ## More Granular Modules World no longer globs all of the internal modules together. It now exports `core`, `system`, and `schedule` separately. I'm also considering exporting `core` submodules directly as that is still pretty "glob-ey" and unorganized (feedback welcome here). ## Remaining Draft Work (to be done in this pr) * ~~panic on conflicting WorldQuery fetches (&A, &mut A)~~ * ~~bevy `main` and hecs both currently allow this, but we should protect against it if possible~~ * ~~batch_iter / par_iter (currently stubbed out)~~ * ~~ChangedRes~~ * ~~I skipped this while we sort out #1313. This pr should be adapted to account for whatever we land on there~~. * ~~The `Archetypes` and `Tables` collections use hashes of sorted lists of component ids to uniquely identify each archetype/table. This hash is then used as the key in a HashMap to look up the relevant ArchetypeId or TableId. (which doesn't handle hash collisions properly)~~ * ~~It is currently unsafe to generate a Query from "World A", then use it on "World B" (despite the api claiming it is safe). We should probably close this gap. This could be done by adding a randomly generated WorldId to each world, then storing that id in each Query. They could then be compared to each other on each `query.do_thing(&world)` operation. This _does_ add an extra branch to each query operation, so I'm open to other suggestions if people have them.~~ * ~~Nested Bundles (if i find time)~~ ## Potential Future Work * Expand WorldCell to support queries. * Consider not allocating in the empty archetype on `world.spawn()` * ex: return something like EntityMutUninit, which turns into EntityMut after an `insert` or `insert_bundle` op * this actually regressed performance last time i tried it, but in theory it should be faster * Optimize SparseSet::insert (see `PERF` comment on insert) * Replace SparseArray `Option<T>` with T::MAX to cut down on branching * would enable cheaper get_unchecked() operations * upstream fixedbitset optimizations * fixedbitset could be allocation free for small block counts (store blocks in a SmallVec) * fixedbitset could have a const constructor * Consider implementing Tags (archetype-specific by-value data that affects archetype identity) * ex: ArchetypeA could have `[A, B, C]` table components and `[D(1)]` "tag" component. ArchetypeB could have `[A, B, C]` table components and a `[D(2)]` tag component. The archetypes are different, despite both having D tags because the value inside D is different. * this could potentially build on top of the `archetype.unique_components` added in this pr for resource storage. * Consider reverting `all_tuples` proc macro in favor of the old `macro_rules` implementation * all_tuples is more flexible and produces cleaner documentation (the macro_rules version produces weird type parameter orders due to parser constraints) * but unfortunately all_tuples also appears to make Rust Analyzer sad/slow when working inside of `bevy_ecs` (does not affect user code) * Consider "resource queries" and/or "mixed resource and entity component queries" as an alternative to WorldCell * this is basically just "systems" so maybe it's not worth it * Add more world ops * `world.clear()` * `world.reserve<T: Bundle>(count: usize)` * Try using the old archetype allocation strategy (allocate new memory on resize and copy everything over). I expect this to improve batch insertion performance at the cost of unbatched performance. But thats just a guess. I'm not an allocation perf pro :) * Adapt Commands apis for consistency with new World apis ## Benchmarks key: * `bevy_old`: bevy `main` branch * `bevy`: this branch * `_foreach`: uses an optimized for_each iterator * ` _sparse`: uses sparse set storage (if unspecified assume table storage) * `_system`: runs inside a system (if unspecified assume test happens via direct world ops) ### Simple Insert (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109245573-9c3ce100-7795-11eb-9003-bfd41cd5c51f.png) ### Simpler Iter (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109245795-ffc70e80-7795-11eb-92fb-3ffad09aabf7.png) ### Fragment Iter (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109245849-0fdeee00-7796-11eb-8d25-eb6b7a682c48.png) ### Sparse Fragmented Iter Iterate a query that matches 5 entities from a single matching archetype, but there are 100 unmatching archetypes ![image](https://user-images.githubusercontent.com/2694663/109245916-2b49f900-7796-11eb-9a8f-ed89c203f940.png) ### Schedule (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109246428-1fab0200-7797-11eb-8841-1b2161e90fa4.png) ### Add Remove Component (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109246492-39e4e000-7797-11eb-8985-2706bd0495ab.png) ### Add Remove Component Big Same as the test above, but each entity has 5 "large" matrix components and 1 "large" matrix component is added and removed ![image](https://user-images.githubusercontent.com/2694663/109246517-449f7500-7797-11eb-835e-28b6790daeaa.png) ### Get Component Looks up a single component value a large number of times ![image](https://user-images.githubusercontent.com/2694663/109246129-87ad1880-7796-11eb-9fcb-c38012aa7c70.png) |