mirror of
https://github.com/bevyengine/bevy
synced 2025-01-07 18:58:58 +00:00
18 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Robert Swain
|
ab7cbfa8fc
|
Consolidate Render(Ui)Materials(2d) into RenderAssets (#12827)
# Objective - Replace `RenderMaterials` / `RenderMaterials2d` / `RenderUiMaterials` with `RenderAssets` to enable implementing changes to one thing, `RenderAssets`, that applies to all use cases rather than duplicating changes everywhere for multiple things that should be one thing. - Adopts #8149 ## Solution - Make RenderAsset generic over the destination type rather than the source type as in #8149 - Use `RenderAssets<PreparedMaterial<M>>` etc for render materials --- ## Changelog - Changed: - The `RenderAsset` trait is now implemented on the destination type. Its `SourceAsset` associated type refers to the type of the source asset. - `RenderMaterials`, `RenderMaterials2d`, and `RenderUiMaterials` have been replaced by `RenderAssets<PreparedMaterial<M>>` and similar. ## Migration Guide - `RenderAsset` is now implemented for the destination type rather that the source asset type. The source asset type is now the `RenderAsset` trait's `SourceAsset` associated type. |
||
robtfm
|
452821dd52
|
more robust gpu image use (#12606)
# Objective make morph targets and tonemapping more tolerant of delayed image loading. neither of these actually fail currently unless using a bespoke loader (and even then it would be rare), but i am working on adding throttling for asset gpu uploads (as a stopgap until we can do proper asset streaming) and they break with that. ## Solution when a mesh with morph targets is uploaded to the gpu, the prepare function uploads the morph target texture if it's available, otherwise it uploads without morph targets. this is generally fine as long as morph targets are typically loaded from bytes (in gltf loader), but may fail for a custom loader if the asset server async-loads the target texture and the texture is not available yet. the mesh fails to render and doesn't update when the image is loaded -> if morph targets are specified but not ready yet, retry mesh upload next frame tonemapping `unwrap`s on the lookup table image. this is never a problem since the image is added via `include_bytes!`, but could be a problem in future with asset gpu throttling/streaming. -> if the lookup texture is not yet available, use a fallback -> in the node, check if the fallback was used before caching the bind group |
||
eri
|
5f8f3b532c
|
Check cfg during CI and fix feature typos (#12103)
# Objective - Add the new `-Zcheck-cfg` checks to catch more warnings - Fixes #12091 ## Solution - Create a new `cfg-check` to the CI that runs `cargo check -Zcheck-cfg --workspace` using cargo nightly (and fails if there are warnings) - Fix all warnings generated by the new check --- ## Changelog - Remove all redundant imports - Fix cfg wasm32 targets - Add 3 dead code exceptions (should StandardColor be unused?) - Convert ios_simulator to a feature (I'm not sure if this is the right way to do it, but the check complained before) ## Migration Guide No breaking changes --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
Sam Pettersson
|
caa7ec68d4
|
FIX: iOS Simulator not rendering due to missing CUBE_ARRAY_TEXTURES (#12052)
This PR closes #11978 # Objective Fix rendering on iOS Simulators. iOS Simulator doesn't support the capability CUBE_ARRAY_TEXTURES, since 0.13 this started to make iOS Simulator not render anything with the following message being outputted: ``` 2024-02-19T14:59:34.896266Z ERROR bevy_render::render_resource::pipeline_cache: failed to create shader module: Validation Error Caused by: In Device::create_shader_module Shader validation error: Type [40] '' is invalid Capability Capabilities(CUBE_ARRAY_TEXTURES) is required ``` ## Solution - Split up NO_ARRAY_TEXTURES_SUPPORT into both NO_ARRAY_TEXTURES_SUPPORT and NO_CUBE_ARRAY_TEXTURES_SUPPORT and correctly apply NO_ARRAY_TEXTURES_SUPPORT for iOS Simulator using the cfg flag introduced in #10178. --- ## Changelog ### Fixed - Rendering on iOS Simulator due to missing CUBE_ARRAY_TEXTURES support. --------- Co-authored-by: Sam Pettersson <sam.pettersson@geoguessr.com> |
||
IceSentry
|
a513493dcc
|
Make Globals visible in vertex shaders (#12032)
# Objective - Globals are supposed to be available in vertex shader but that was mistakenly removed in 0.13 ## Solution - Configure the visibility of the globals correctly Fixes https://github.com/bevyengine/bevy/issues/12015 |
||
Patrick Walton
|
3058c17d6a
|
Disable irradiance volumes on WebGL and WebGPU. (#11909)
They cause the number of texture bindings to overflow on those platforms. Ultimately, we shouldn't unconditionally disable them, but this fixes a crash blocking 0.13. Closes #11885. |
||
Patrick Walton
|
4c15dd0fc5
|
Implement irradiance volumes. (#10268)
# Objective Bevy could benefit from *irradiance volumes*, also known as *voxel global illumination* or simply as light probes (though this term is not preferred, as multiple techniques can be called light probes). Irradiance volumes are a form of baked global illumination; they work by sampling the light at the centers of each voxel within a cuboid. At runtime, the voxels surrounding the fragment center are sampled and interpolated to produce indirect diffuse illumination. ## Solution This is divided into two sections. The first is copied and pasted from the irradiance volume module documentation and describes the technique. The second part consists of notes on the implementation. ### Overview An *irradiance volume* is a cuboid voxel region consisting of regularly-spaced precomputed samples of diffuse indirect light. They're ideal if you have a dynamic object such as a character that can move about static non-moving geometry such as a level in a game, and you want that dynamic object to be affected by the light bouncing off that static geometry. To use irradiance volumes, you need to precompute, or *bake*, the indirect light in your scene. Bevy doesn't currently come with a way to do this. Fortunately, [Blender] provides a [baking tool] as part of the Eevee renderer, and its irradiance volumes are compatible with those used by Bevy. The [`bevy-baked-gi`] project provides a tool, `export-blender-gi`, that can extract the baked irradiance volumes from the Blender `.blend` file and package them up into a `.ktx2` texture for use by the engine. See the documentation in the `bevy-baked-gi` project for more details as to this workflow. Like all light probes in Bevy, irradiance volumes are 1×1×1 cubes that can be arbitrarily scaled, rotated, and positioned in a scene with the [`bevy_transform::components::Transform`] component. The 3D voxel grid will be stretched to fill the interior of the cube, and the illumination from the irradiance volume will apply to all fragments within that bounding region. Bevy's irradiance volumes are based on Valve's [*ambient cubes*] as used in *Half-Life 2* ([Mitchell 2006], slide 27). These encode a single color of light from the six 3D cardinal directions and blend the sides together according to the surface normal. The primary reason for choosing ambient cubes is to match Blender, so that its Eevee renderer can be used for baking. However, they also have some advantages over the common second-order spherical harmonics approach: ambient cubes don't suffer from ringing artifacts, they are smaller (6 colors for ambient cubes as opposed to 9 for spherical harmonics), and evaluation is faster. A smaller basis allows for a denser grid of voxels with the same storage requirements. If you wish to use a tool other than `export-blender-gi` to produce the irradiance volumes, you'll need to pack the irradiance volumes in the following format. The irradiance volume of resolution *(Rx, Ry, Rz)* is expected to be a 3D texture of dimensions *(Rx, 2Ry, 3Rz)*. The unnormalized texture coordinate *(s, t, p)* of the voxel at coordinate *(x, y, z)* with side *S* ∈ *{-X, +X, -Y, +Y, -Z, +Z}* is as follows: ```text s = x t = y + ⎰ 0 if S ∈ {-X, -Y, -Z} ⎱ Ry if S ∈ {+X, +Y, +Z} ⎧ 0 if S ∈ {-X, +X} p = z + ⎨ Rz if S ∈ {-Y, +Y} ⎩ 2Rz if S ∈ {-Z, +Z} ``` Visually, in a left-handed coordinate system with Y up, viewed from the right, the 3D texture looks like a stacked series of voxel grids, one for each cube side, in this order: | **+X** | **+Y** | **+Z** | | ------ | ------ | ------ | | **-X** | **-Y** | **-Z** | A terminology note: Other engines may refer to irradiance volumes as *voxel global illumination*, *VXGI*, or simply as *light probes*. Sometimes *light probe* refers to what Bevy calls a reflection probe. In Bevy, *light probe* is a generic term that encompasses all cuboid bounding regions that capture indirect illumination, whether based on voxels or not. Note that, if binding arrays aren't supported (e.g. on WebGPU or WebGL 2), then only the closest irradiance volume to the view will be taken into account during rendering. [*ambient cubes*]: https://advances.realtimerendering.com/s2006/Mitchell-ShadingInValvesSourceEngine.pdf [Mitchell 2006]: https://advances.realtimerendering.com/s2006/Mitchell-ShadingInValvesSourceEngine.pdf [Blender]: http://blender.org/ [baking tool]: https://docs.blender.org/manual/en/latest/render/eevee/render_settings/indirect_lighting.html [`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi ### Implementation notes This patch generalizes light probes so as to reuse as much code as possible between irradiance volumes and the existing reflection probes. This approach was chosen because both techniques share numerous similarities: 1. Both irradiance volumes and reflection probes are cuboid bounding regions. 2. Both are responsible for providing baked indirect light. 3. Both techniques involve presenting a variable number of textures to the shader from which indirect light is sampled. (In the current implementation, this uses binding arrays.) 4. Both irradiance volumes and reflection probes require gathering and sorting probes by distance on CPU. 5. Both techniques require the GPU to search through a list of bounding regions. 6. Both will eventually want to have falloff so that we can smoothly blend as objects enter and exit the probes' influence ranges. (This is not implemented yet to keep this patch relatively small and reviewable.) To do this, we generalize most of the methods in the reflection probes patch #11366 to be generic over a trait, `LightProbeComponent`. This trait is implemented by both `EnvironmentMapLight` (for reflection probes) and `IrradianceVolume` (for irradiance volumes). Using a trait will allow us to add more types of light probes in the future. In particular, I highly suspect we will want real-time reflection planes for mirrors in the future, which can be easily slotted into this framework. ## Changelog > This section is optional. If this was a trivial fix, or has no externally-visible impact, you can delete this section. ### Added * A new `IrradianceVolume` asset type is available for baked voxelized light probes. You can bake the global illumination using Blender or another tool of your choice and use it in Bevy to apply indirect illumination to dynamic objects. |
||
Elabajaba
|
35ac1b152e
|
Update to wgpu 0.19 and raw-window-handle 0.6 (#11280)
# Objective Keep core dependencies up to date. ## Solution Update the dependencies. wgpu 0.19 only supports raw-window-handle (rwh) 0.6, so bumping that was included in this. The rwh 0.6 version bump is just the simplest way of doing it. There might be a way we can take advantage of wgpu's new safe surface creation api, but I'm not familiar enough with bevy's window management to untangle it and my attempt ended up being a mess of lifetimes and rustc complaining about missing trait impls (that were implemented). Thanks to @MiniaczQ for the (much simpler) rwh 0.6 version bump code. Unblocks https://github.com/bevyengine/bevy/pull/9172 and https://github.com/bevyengine/bevy/pull/10812 ~~This might be blocked on cpal and oboe updating their ndk versions to 0.8, as they both currently target ndk 0.7 which uses rwh 0.5.2~~ Tested on android, and everything seems to work correctly (audio properly stops when minimized, and plays when re-focusing the app). --- ## Changelog - `wgpu` has been updated to 0.19! The long awaited arcanization has been merged (for more info, see https://gfx-rs.github.io/2023/11/24/arcanization.html), and Vulkan should now be working again on Intel GPUs. - Targeting WebGPU now requires that you add the new `webgpu` feature (setting the `RUSTFLAGS` environment variable to `--cfg=web_sys_unstable_apis` is still required). This feature currently overrides the `webgl2` feature if you have both enabled (the `webgl2` feature is enabled by default), so it is not recommended to add it as a default feature to libraries without putting it behind a flag that allows library users to opt out of it! In the future we plan on supporting wasm binaries that can target both webgl2 and webgpu now that wgpu added support for doing so (see https://github.com/bevyengine/bevy/issues/11505). - `raw-window-handle` has been updated to version 0.6. ## Migration Guide - `bevy_render::instance_index::get_instance_index()` has been removed as the webgl2 workaround is no longer required as it was fixed upstream in wgpu. The `BASE_INSTANCE_WORKAROUND` shaderdef has also been removed. - WebGPU now requires the new `webgpu` feature to be enabled. The `webgpu` feature currently overrides the `webgl2` feature so you no longer need to disable all default features and re-add them all when targeting `webgpu`, but binaries built with both the `webgpu` and `webgl2` features will only target the webgpu backend, and will only work on browsers that support WebGPU. - Places where you conditionally compiled things for webgl2 need to be updated because of this change, eg: - `#[cfg(any(not(feature = "webgl"), not(target_arch = "wasm32")))]` becomes `#[cfg(any(not(feature = "webgl") ,not(target_arch = "wasm32"), feature = "webgpu"))]` - `#[cfg(all(feature = "webgl", target_arch = "wasm32"))]` becomes `#[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]` - `if cfg!(all(feature = "webgl", target_arch = "wasm32"))` becomes `if cfg!(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))` - `create_texture_with_data` now also takes a `TextureDataOrder`. You can probably just set this to `TextureDataOrder::default()` - `TextureFormat`'s `block_size` has been renamed to `block_copy_size` - See the `wgpu` changelog for anything I might've missed: https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md --------- Co-authored-by: François <mockersf@gmail.com> |
||
Patrick Walton
|
83d6600267
|
Implement minimal reflection probes (fixed macOS, iOS, and Android). (#11366)
This pull request re-submits #10057, which was backed out for breaking macOS, iOS, and Android. I've tested this version on macOS and Android and on the iOS simulator. # Objective This pull request implements *reflection probes*, which generalize environment maps to allow for multiple environment maps in the same scene, each of which has an axis-aligned bounding box. This is a standard feature of physically-based renderers and was inspired by [the corresponding feature in Blender's Eevee renderer]. ## Solution This is a minimal implementation of reflection probes that allows artists to define cuboid bounding regions associated with environment maps. For every view, on every frame, a system builds up a list of the nearest 4 reflection probes that are within the view's frustum and supplies that list to the shader. The PBR fragment shader searches through the list, finds the first containing reflection probe, and uses it for indirect lighting, falling back to the view's environment map if none is found. Both forward and deferred renderers are fully supported. A reflection probe is an entity with a pair of components, *LightProbe* and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to position it in the world). The *LightProbe* component (along with the *Transform*) defines the bounding region, while the *EnvironmentMapLight* component specifies the associated diffuse and specular cubemaps. A frequent question is "why two components instead of just one?" The advantages of this setup are: 1. It's readily extensible to other types of light probes, in particular *irradiance volumes* (also known as ambient cubes or voxel global illumination), which use the same approach of bounding cuboids. With a single component that applies to both reflection probes and irradiance volumes, we can share the logic that implements falloff and blending between multiple light probes between both of those features. 2. It reduces duplication between the existing *EnvironmentMapLight* and these new reflection probes. Systems can treat environment maps attached to cameras the same way they treat environment maps applied to reflection probes if they wish. Internally, we gather up all environment maps in the scene and place them in a cubemap array. At present, this means that all environment maps must have the same size, mipmap count, and texture format. A warning is emitted if this restriction is violated. We could potentially relax this in the future as part of the automatic mipmap generation work, which could easily do texture format conversion as part of its preprocessing. An easy way to generate reflection probe cubemaps is to bake them in Blender and use the `export-blender-gi` tool that's part of the [`bevy-baked-gi`] project. This tool takes a `.blend` file containing baked cubemaps as input and exports cubemap images, pre-filtered with an embedded fork of the [glTF IBL Sampler], alongside a corresponding `.scn.ron` file that the scene spawner can use to recreate the reflection probes. Note that this is intentionally a minimal implementation, to aid reviewability. Known issues are: * Reflection probes are basically unsupported on WebGL 2, because WebGL 2 has no cubemap arrays. (Strictly speaking, you can have precisely one reflection probe in the scene if you have no other cubemaps anywhere, but this isn't very useful.) * Reflection probes have no falloff, so reflections will abruptly change when objects move from one bounding region to another. * As mentioned before, all cubemaps in the world of a given type (diffuse or specular) must have the same size, format, and mipmap count. Future work includes: * Blending between multiple reflection probes. * A falloff/fade-out region so that reflected objects disappear gradually instead of vanishing all at once. * Irradiance volumes for voxel-based global illumination. This should reuse much of the reflection probe logic, as they're both GI techniques based on cuboid bounding regions. * Support for WebGL 2, by breaking batches when reflection probes are used. These issues notwithstanding, I think it's best to land this with roughly the current set of functionality, because this patch is useful as is and adding everything above would make the pull request significantly larger and harder to review. --- ## Changelog ### Added * A new *LightProbe* component is available that specifies a bounding region that an *EnvironmentMapLight* applies to. The combination of a *LightProbe* and an *EnvironmentMapLight* offers *reflection probe* functionality similar to that available in other engines. [the corresponding feature in Blender's Eevee renderer]: https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html [`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi [glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler |
||
François
|
3d996639a0
|
Revert "Implement minimal reflection probes. (#10057)" (#11307)
# Objective - Fix working on macOS, iOS, Android on main - Fixes #11281 - Fixes #11282 - Fixes #11283 - Fixes #11299 ## Solution - Revert #10057 |
||
Patrick Walton
|
54a943d232
|
Implement minimal reflection probes. (#10057)
# Objective This pull request implements *reflection probes*, which generalize environment maps to allow for multiple environment maps in the same scene, each of which has an axis-aligned bounding box. This is a standard feature of physically-based renderers and was inspired by [the corresponding feature in Blender's Eevee renderer]. ## Solution This is a minimal implementation of reflection probes that allows artists to define cuboid bounding regions associated with environment maps. For every view, on every frame, a system builds up a list of the nearest 4 reflection probes that are within the view's frustum and supplies that list to the shader. The PBR fragment shader searches through the list, finds the first containing reflection probe, and uses it for indirect lighting, falling back to the view's environment map if none is found. Both forward and deferred renderers are fully supported. A reflection probe is an entity with a pair of components, *LightProbe* and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to position it in the world). The *LightProbe* component (along with the *Transform*) defines the bounding region, while the *EnvironmentMapLight* component specifies the associated diffuse and specular cubemaps. A frequent question is "why two components instead of just one?" The advantages of this setup are: 1. It's readily extensible to other types of light probes, in particular *irradiance volumes* (also known as ambient cubes or voxel global illumination), which use the same approach of bounding cuboids. With a single component that applies to both reflection probes and irradiance volumes, we can share the logic that implements falloff and blending between multiple light probes between both of those features. 2. It reduces duplication between the existing *EnvironmentMapLight* and these new reflection probes. Systems can treat environment maps attached to cameras the same way they treat environment maps applied to reflection probes if they wish. Internally, we gather up all environment maps in the scene and place them in a cubemap array. At present, this means that all environment maps must have the same size, mipmap count, and texture format. A warning is emitted if this restriction is violated. We could potentially relax this in the future as part of the automatic mipmap generation work, which could easily do texture format conversion as part of its preprocessing. An easy way to generate reflection probe cubemaps is to bake them in Blender and use the `export-blender-gi` tool that's part of the [`bevy-baked-gi`] project. This tool takes a `.blend` file containing baked cubemaps as input and exports cubemap images, pre-filtered with an embedded fork of the [glTF IBL Sampler], alongside a corresponding `.scn.ron` file that the scene spawner can use to recreate the reflection probes. Note that this is intentionally a minimal implementation, to aid reviewability. Known issues are: * Reflection probes are basically unsupported on WebGL 2, because WebGL 2 has no cubemap arrays. (Strictly speaking, you can have precisely one reflection probe in the scene if you have no other cubemaps anywhere, but this isn't very useful.) * Reflection probes have no falloff, so reflections will abruptly change when objects move from one bounding region to another. * As mentioned before, all cubemaps in the world of a given type (diffuse or specular) must have the same size, format, and mipmap count. Future work includes: * Blending between multiple reflection probes. * A falloff/fade-out region so that reflected objects disappear gradually instead of vanishing all at once. * Irradiance volumes for voxel-based global illumination. This should reuse much of the reflection probe logic, as they're both GI techniques based on cuboid bounding regions. * Support for WebGL 2, by breaking batches when reflection probes are used. These issues notwithstanding, I think it's best to land this with roughly the current set of functionality, because this patch is useful as is and adding everything above would make the pull request significantly larger and harder to review. --- ## Changelog ### Added * A new *LightProbe* component is available that specifies a bounding region that an *EnvironmentMapLight* applies to. The combination of a *LightProbe* and an *EnvironmentMapLight* offers *reflection probe* functionality similar to that available in other engines. [the corresponding feature in Blender's Eevee renderer]: https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html [`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi [glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler |
||
Tygyh
|
7b8305e5b4
|
Remove unnecessary parens (#11075)
# Objective - Increase readability. ## Solution - Remove unnecessary parens. |
||
Torstein Grindvik
|
16c5a4b7cd
|
Fix BindingType import warning (#10818)
# Objective Fix this warning ``` warning: unused import: `BindingType` --> ...bevy/crates/bevy_pbr/src/render/mesh_view_bindings.rs:23:88 | 23 | BindGroup, BindGroupLayout, BindGroupLayoutEntry, BindGroupLayoutEntryBuilder, BindingType, | ^^^^^^^^^^^ | = note: `#[warn(unused_imports)]` on by default ``` ## Solution - Import via globstar Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com> Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com> |
||
Elabajaba
|
0f5d8128c9
|
Fix prepass binding issues causing crashes when not all prepass bindings are used (#10788)
# Objective Fixes https://github.com/bevyengine/bevy/issues/10786 ## Solution The bind_group_layout entries for the prepass were wrong when not all 4 prepass textures were used, as it just zipped [17, 18, 19, 20] with the smallvec of prepass `bind_group_layout` entries that potentially didn't contain 4 entries. (eg. if you had a depth and motion vector prepass but no normal prepass, then depth would be correct but the entry for the motion vector prepass would be 18 (normal prepass' spot) instead of 19). Change the prepass `get_bind_group_layout_entries` function to return an array of `[Option<BindGroupLayoutEntryBuilder>; 4]` and only add the layout entry if it exists. |
||
IceSentry
|
6d0c11a28f
|
Bind group layout entries (#10224)
# Objective
- Follow up to #9694
## Solution
- Same api as #9694 but adapted for `BindGroupLayoutEntry`
- Use the same `ShaderStages` visibilty for all entries by default
- Add `BindingType` helper function that mirror the wgsl equivalent and
that make writing layouts much simpler.
Before:
```rust
let layout = render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
label: Some("post_process_bind_group_layout"),
entries: &[
BindGroupLayoutEntry {
binding: 0,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Texture {
sample_type: TextureSampleType::Float { filterable: true },
view_dimension: TextureViewDimension::D2,
multisampled: false,
},
count: None,
},
BindGroupLayoutEntry {
binding: 1,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Sampler(SamplerBindingType::Filtering),
count: None,
},
BindGroupLayoutEntry {
binding: 2,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: bevy::render::render_resource::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: Some(PostProcessSettings::min_size()),
},
count: None,
},
],
});
```
After:
```rust
let layout = render_device.create_bind_group_layout(
"post_process_bind_group_layout"),
&BindGroupLayoutEntries::sequential(
ShaderStages::FRAGMENT,
(
texture_2d_f32(),
sampler(SamplerBindingType::Filtering),
uniform_buffer(false, Some(PostProcessSettings::min_size())),
),
),
);
```
Here's a more extreme example in bevy_solari:
|
||
Marco Buono
|
44928e0df4
|
StandardMaterial Light Transmission (#8015)
# Objective
<img width="1920" alt="Screenshot 2023-04-26 at 01 07 34"
src="https://user-images.githubusercontent.com/418473/234467578-0f34187b-5863-4ea1-88e9-7a6bb8ce8da3.png">
This PR adds both diffuse and specular light transmission capabilities
to the `StandardMaterial`, with support for screen space refractions.
This enables realistically representing a wide range of real-world
materials, such as:
- Glass; (Including frosted glass)
- Transparent and translucent plastics;
- Various liquids and gels;
- Gemstones;
- Marble;
- Wax;
- Paper;
- Leaves;
- Porcelain.
Unlike existing support for transparency, light transmission does not
rely on fixed function alpha blending, and therefore works with both
`AlphaMode::Opaque` and `AlphaMode::Mask` materials.
## Solution
- Introduces a number of transmission related fields in the
`StandardMaterial`;
- For specular transmission:
- Adds logic to take a view main texture snapshot after the opaque
phase; (in order to perform screen space refractions)
- Introduces a new `Transmissive3d` phase to the renderer, to which all
meshes with `transmission > 0.0` materials are sent.
- Calculates a light exit point (of the approximate mesh volume) using
`ior` and `thickness` properties
- Samples the snapshot texture with an adaptive number of taps across a
`roughness`-controlled radius enabling “blurry” refractions
- For diffuse transmission:
- Approximates transmitted diffuse light by using a second, flipped +
displaced, diffuse-only Lambertian lobe for each light source.
## To Do
- [x] Figure out where `fresnel_mix()` is taking place, if at all, and
where `dielectric_specular` is being calculated, if at all, and update
them to use the `ior` value (Not a blocker, just a nice-to-have for more
correct BSDF)
- To the _best of my knowledge, this is now taking place, after
|
||
robtfm
|
6f2a5cb862
|
Bind group entries (#9694)
# Objective Simplify bind group creation code. alternative to (and based on) #9476 ## Solution - Add a `BindGroupEntries` struct that can transparently be used where `&[BindGroupEntry<'b>]` is required in BindGroupDescriptors. Allows constructing the descriptor's entries as: ```rust render_device.create_bind_group( "my_bind_group", &my_layout, &BindGroupEntries::with_indexes(( (2, &my_sampler), (3, my_uniform), )), ); ``` instead of ```rust render_device.create_bind_group( "my_bind_group", &my_layout, &[ BindGroupEntry { binding: 2, resource: BindingResource::Sampler(&my_sampler), }, BindGroupEntry { binding: 3, resource: my_uniform, }, ], ); ``` or ```rust render_device.create_bind_group( "my_bind_group", &my_layout, &BindGroupEntries::sequential((&my_sampler, my_uniform)), ); ``` instead of ```rust render_device.create_bind_group( "my_bind_group", &my_layout, &[ BindGroupEntry { binding: 0, resource: BindingResource::Sampler(&my_sampler), }, BindGroupEntry { binding: 1, resource: my_uniform, }, ], ); ``` the structs has no user facing macros, is tuple-type-based so stack allocated, and has no noticeable impact on compile time. - Also adds a `DynamicBindGroupEntries` struct with a similar api that uses a `Vec` under the hood and allows extending the entries. - Modifies `RenderDevice::create_bind_group` to take separate arguments `label`, `layout` and `entries` instead of a `BindGroupDescriptor` struct. The struct can't be stored due to the internal references, and with only 3 members arguably does not add enough context to justify itself. - Modify the codebase to use the new api and the `BindGroupEntries` / `DynamicBindGroupEntries` structs where appropriate (whenever the entries slice contains more than 1 member). ## Migration Guide - Calls to `RenderDevice::create_bind_group({BindGroupDescriptor { label, layout, entries })` must be amended to `RenderDevice::create_bind_group(label, layout, entries)`. - If `label`s have been specified as `"bind_group_name".into()`, they need to change to just `"bind_group_name"`. `Some("bind_group_name")` and `None` will still work, but `Some("bind_group_name")` can optionally be simplified to just `"bind_group_name"`. --------- Co-authored-by: IceSentry <IceSentry@users.noreply.github.com> |
||
Marco Buono
|
9b80205acb
|
Variable MeshPipeline View Bind Group Layout (#10156)
# Objective This PR aims to make it so that we don't accidentally go over `MAX_TEXTURE_IMAGE_UNITS` (in WebGL) or `maxSampledTexturesPerShaderStage` (in WebGPU), giving us some extra leeway to add more view bind group textures. (This PR is extracted from—and unblocks—#8015) ## Solution - We replace the existing `view_layout` and `view_layout_multisampled` pair with an array of 32 bind group layouts, generated ahead of time; - For now, these layouts cover all the possible combinations of: `multisampled`, `depth_prepass`, `normal_prepass`, `motion_vector_prepass` and `deferred_prepass`: - In the future, as @JMS55 pointed out, we can likely take out `motion_vector_prepass` and `deferred_prepass`, as these are not really needed for the mesh pipeline and can use separate pipelines. This would bring the possible combinations down to 8; - We can also add more "optional" textures as they become needed, allowing the engine to scale to a wider variety of use cases in lower end/web environments (e.g. some apps might just want normal and depth prepasses, others might only want light probes), while still keeping a high ceiling for high end native environments where more textures are supported. - While preallocating bind group layouts is relatively cheap, the number of combinations grows exponentially, so we should likely limit ourselves to something like at most 256–1024 total layouts until we find a better solution (like generating them lazily) - To make this mechanism a little bit more explicit/discoverable, so that compatibility with WebGPU/WebGL is not broken by accident, we add a `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` const and warn whenever the number of textures in the layout crosses it. - The warning is gated by `#[cfg(debug_assertions)]` and not issued in release builds; - We're counting the actual textures in the bind group layout instead of using some roundabout metric so it should be accurate; - Right now `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` is set to 10 in order to leave 6 textures free for other groups; - Currently there's no combination that would cause us to go over the limit, but that will change once #8015 lands. --- ## Changelog - `MeshPipeline` view bind group layouts now vary based on the current multisampling and prepass states, saving a couple of texture binding entries when prepasses are not in use. ## Migration Guide - `MeshPipeline::view_layout` and `MeshPipeline::view_layout_multisampled` have been replaced with a private array to accomodate for variable view bind group layouts. To obtain a view bind group layout for the current pipeline state, use the new `MeshPipeline::get_view_layout()` or `MeshPipeline::get_view_layout_from_key()` methods. |