# Objective
Removal events are unwieldy and require some knowledge of when to put systems that need to catch events for them, it is very easy to end up missing one and end up with memory leak-ish issues where you don't clean up after yourself.
## Solution
Consolidate removals with the benefits of `Events<...>` (such as double buffering and per system ticks for reading the events) and reduce the special casing of it, ideally I was hoping to move the removals to a `Resource` in the world, but that seems a bit more rough to implement/maintain because of double mutable borrowing issues.
This doesn't go the full length of change detection esque removal detection a la https://github.com/bevyengine/rfcs/pull/44.
Just tries to make the current workflow a bit more user friendly so detecting removals isn't such a scheduling nightmare.
---
## Changelog
- RemovedComponents<T> is now backed by an `Events<Entity>` for the benefits of double buffering.
## Migration Guide
- Add a `mut` for `removed: RemovedComponents<T>` since we are now modifying an event reader internally.
- Iterating over removed components now requires `&mut removed_components` or `removed_components.iter()` instead of `&removed_components`.
# Objective
Found while working on #7385.
The struct `EntityMut` has the safety invariant that it's cached `EntityLocation` must always accurately specify where the entity is stored. Thus, any time its location might be invalidated (such as by calling `EntityMut::world_mut` and moving archetypes), the cached location *must* be updated by calling `EntityMut::update_location`.
The method `world_scope` encapsulates this pattern in safe API by requiring world mutations to be done in a closure, after which `update_location` will automatically be called. However, this method has a soundness hole: if a panic occurs within the closure, then `update_location` will never get called. If the panic is caught in an outer scope, then the `EntityMut` will be left with an outdated location, which is undefined behavior.
An example of this can be seen in the unit test `entity_mut_world_scope_panic`, which has been added to this PR as a regression test. Without the other changes in this PR, that test will invoke undefined behavior in safe code.
## Solution
Call `EntityMut::update_location()` from within a `Drop` impl, which ensures that it will get executed even if `EntityMut::world_scope` unwinds.
# Objective
The function `EntityMut::world_scope` is a safe abstraction that allows you to temporarily get mutable access to the underlying `World` of an `EntityMut`. This function is purely stateful, meaning it is not easily possible to return a value from it.
## Solution
Allow returning a computed value from the closure. This is similar to how `World::resource_scope` works.
---
## Changelog
- The function `EntityMut::world_scope` now allows returning a value from the immediately-computed closure.
alternative to #5922, implements #5956
builds on top of https://github.com/bevyengine/bevy/pull/6402
# Objective
https://github.com/bevyengine/bevy/issues/5956 goes into more detail, but the TLDR is:
- bevy systems ensure disjoint accesses to resources and components, and for that to work there are methods `World::get_resource_unchecked_mut(&self)`, ..., `EntityRef::get_mut_unchecked(&self)` etc.
- we don't have these unchecked methods for `by_id` variants, so third-party crate authors cannot build their own safe disjoint-access abstractions with these
- having `_unchecked_mut` methods is not great, because in their presence safe code can accidentally violate subtle invariants. Having to go through `world.as_unsafe_world_cell().unsafe_method()` forces you to stop and think about what you want to write in your `// SAFETY` comment.
The alternative is to keep exposing `_unchecked_mut` variants for every operation that we want third-party crates to build upon, but we'd prefer to avoid using these methods alltogether: https://github.com/bevyengine/bevy/pull/5922#issuecomment-1241954543
Also, this is something that **cannot be implemented outside of bevy**, so having either this PR or #5922 as an escape hatch with lots of discouraging comments would be great.
## Solution
- add `UnsafeWorldCell` with `unsafe fn get_resource(&self)`, `unsafe fn get_resource_mut(&self)`
- add `fn World::as_unsafe_world_cell(&mut self) -> UnsafeWorldCell<'_>` (and `as_unsafe_world_cell_readonly(&self)`)
- add `UnsafeWorldCellEntityRef` with `unsafe fn get`, `unsafe fn get_mut` and the other utilities on `EntityRef` (no methods for spawning, despawning, insertion)
- use the `UnsafeWorldCell` abstraction in `ReflectComponent`, `ReflectResource` and `ReflectAsset`, so these APIs are easier to reason about
- remove `World::get_resource_mut_unchecked`, `EntityRef::get_mut_unchecked` and use `unsafe { world.as_unsafe_world_cell().get_mut() }` and `unsafe { world.as_unsafe_world_cell().get_entity(entity)?.get_mut() }` instead
This PR does **not** make use of `UnsafeWorldCell` for anywhere else in `bevy_ecs` such as `SystemParam` or `Query`. That is a much larger change, and I am convinced that having `UnsafeWorldCell` is already useful for third-party crates.
Implemented API:
```rust
struct World { .. }
impl World {
fn as_unsafe_world_cell(&self) -> UnsafeWorldCell<'_>;
}
struct UnsafeWorldCell<'w>(&'w World);
impl<'w> UnsafeWorldCell {
unsafe fn world(&self) -> &World;
fn get_entity(&self) -> UnsafeWorldCellEntityRef<'w>; // returns 'w which is `'self` of the `World::as_unsafe_world_cell(&'w self)`
unsafe fn get_resource<T>(&self) -> Option<&'w T>;
unsafe fn get_resource_by_id(&self, ComponentId) -> Option<&'w T>;
unsafe fn get_resource_mut<T>(&self) -> Option<Mut<'w, T>>;
unsafe fn get_resource_mut_by_id(&self) -> Option<MutUntyped<'w>>;
unsafe fn get_non_send_resource<T>(&self) -> Option<&'w T>;
unsafe fn get_non_send_resource_mut<T>(&self) -> Option<Mut<'w, T>>>;
// not included: remove, remove_resource, despawn, anything that might change archetypes
}
struct UnsafeWorldCellEntityRef<'w> { .. }
impl UnsafeWorldCellEntityRef<'w> {
unsafe fn get<T>(&self, Entity) -> Option<&'w T>;
unsafe fn get_by_id(&self, Entity, ComponentId) -> Option<Ptr<'w>>;
unsafe fn get_mut<T>(&self, Entity) -> Option<Mut<'w, T>>;
unsafe fn get_mut_by_id(&self, Entity, ComponentId) -> Option<MutUntyped<'w>>;
unsafe fn get_change_ticks<T>(&self, Entity) -> Option<Mut<'w, T>>;
// fn id, archetype, contains, contains_id, containts_type_id
}
```
<details>
<summary>UnsafeWorldCell docs</summary>
Variant of the [`World`] where resource and component accesses takes a `&World`, and the responsibility to avoid
aliasing violations are given to the caller instead of being checked at compile-time by rust's unique XOR shared rule.
### Rationale
In rust, having a `&mut World` means that there are absolutely no other references to the safe world alive at the same time,
without exceptions. Not even unsafe code can change this.
But there are situations where careful shared mutable access through a type is possible and safe. For this, rust provides the [`UnsafeCell`](std::cell::UnsafeCell)
escape hatch, which allows you to get a `*mut T` from a `&UnsafeCell<T>` and around which safe abstractions can be built.
Access to resources and components can be done uniquely using [`World::resource_mut`] and [`World::entity_mut`], and shared using [`World::resource`] and [`World::entity`].
These methods use lifetimes to check at compile time that no aliasing rules are being broken.
This alone is not enough to implement bevy systems where multiple systems can access *disjoint* parts of the world concurrently. For this, bevy stores all values of
resources and components (and [`ComponentTicks`](crate::component::ComponentTicks)) in [`UnsafeCell`](std::cell::UnsafeCell)s, and carefully validates disjoint access patterns using
APIs like [`System::component_access`](crate::system::System::component_access).
A system then can be executed using [`System::run_unsafe`](crate::system::System::run_unsafe) with a `&World` and use methods with interior mutability to access resource values.
access resource values.
### Example Usage
[`UnsafeWorldCell`] can be used as a building block for writing APIs that safely allow disjoint access into the world.
In the following example, the world is split into a resource access half and a component access half, where each one can
safely hand out mutable references.
```rust
use bevy_ecs::world::World;
use bevy_ecs::change_detection::Mut;
use bevy_ecs::system::Resource;
use bevy_ecs::world::unsafe_world_cell_world::UnsafeWorldCell;
// INVARIANT: existance of this struct means that users of it are the only ones being able to access resources in the world
struct OnlyResourceAccessWorld<'w>(UnsafeWorldCell<'w>);
// INVARIANT: existance of this struct means that users of it are the only ones being able to access components in the world
struct OnlyComponentAccessWorld<'w>(UnsafeWorldCell<'w>);
impl<'w> OnlyResourceAccessWorld<'w> {
fn get_resource_mut<T: Resource>(&mut self) -> Option<Mut<'w, T>> {
// SAFETY: resource access is allowed through this UnsafeWorldCell
unsafe { self.0.get_resource_mut::<T>() }
}
}
// impl<'w> OnlyComponentAccessWorld<'w> {
// ...
// }
// the two interior mutable worlds borrow from the `&mut World`, so it cannot be accessed while they are live
fn split_world_access(world: &mut World) -> (OnlyResourceAccessWorld<'_>, OnlyComponentAccessWorld<'_>) {
let resource_access = OnlyResourceAccessWorld(unsafe { world.as_unsafe_world_cell() });
let component_access = OnlyComponentAccessWorld(unsafe { world.as_unsafe_world_cell() });
(resource_access, component_access)
}
```
</details>
# Objective
- We rely on the construction of `EntityRef` to be valid elsewhere in unsafe code. This construction is not checked (for performance reasons), and thus this private method must be unsafe.
- Fixes#7218.
## Solution
- Make the method unsafe.
- Add safety docs.
- Improve safety docs slightly for the sibling `EntityMut::new`.
- Add debug asserts to start to verify these assumptions in debug mode.
## Context for reviewers
I attempted to verify the `EntityLocation` more thoroughly, but this turned out to be more work than expected. I've spun that off into #7221 as a result.
# Objective
There are some utility functions for actually working with `Storages` inside `entity_ref.rs` that are used both for `EntityRef/EntityMut` and `World`, with a `// TODO: move to Storages`.
This PR moves them to private methods on `World`, because that's the safest API boundary. On `Storages` you would need to ensure that you pass `Components` from the same world.
## Solution
- move get_component[_with_type], get_ticks[_with_type], get_component_and_ticks[_with_type] to `World` (still pub(crate))
- replace `pub use entity_ref::*;` with `pub use entity_ref::{EntityRef, EntityMut}` and qualified `entity_ref::get_mut[_by_id]` in `world.rs`
- add safety comments to a bunch of methods
# Objective
- Fixes#7066
## Solution
- Split the ChangeDetection trait into ChangeDetection and ChangeDetectionMut
- Added Ref as equivalent to &T with change detection
---
## Changelog
- Support for Ref which allow inspecting change detection flags in an immutable way
## Migration Guide
- While bevy prelude includes both ChangeDetection and ChangeDetectionMut any code explicitly referencing ChangeDetection might need to be updated to ChangeDetectionMut or both. Specifically any reading logic requires ChangeDetection while writes requires ChangeDetectionMut.
use bevy_ecs::change_detection::DetectChanges -> use bevy_ecs::change_detection::{DetectChanges, DetectChangesMut}
- Previously Res had methods to access change detection `is_changed` and `is_added` those methods have been moved to the `DetectChanges` trait. If you are including bevy prelude you will have access to these types otherwise you will need to `use bevy_ecs::change_detection::DetectChanges` to continue using them.
# Objective
`Query::get` and other random access methods require looking up `EntityLocation` for every provided entity, then always looking up the `Archetype` to get the table ID and table row. This requires 4 total random fetches from memory: the `Entities` lookup, the `Archetype` lookup, the table row lookup, and the final fetch from table/sparse sets. If `EntityLocation` contains the table ID and table row, only the `Entities` lookup and the final storage fetch are required.
## Solution
Add `TableId` and table row to `EntityLocation`. Ensure it's updated whenever entities are moved around. To ensure `EntityMeta` does not grow bigger, both `TableId` and `ArchetypeId` have been shrunk to u32, and the archetype index and table row are stored as u32s instead of as usizes. This should shrink `EntityMeta` by 4 bytes, from 24 to 20 bytes, as there is no padding anymore due to the change in alignment.
This idea was partially concocted by @BoxyUwU.
## Performance
This should restore the `Query::get` "gains" lost to #6625 that were introduced in #4800 without being unsound, and also incorporates some of the memory usage reductions seen in #3678.
This also removes the same lookups during add/remove/spawn commands, so there may be a bit of a speedup in commands and `Entity{Ref,Mut}`.
---
## Changelog
Added: `EntityLocation::table_id`
Added: `EntityLocation::table_row`.
Changed: `World`s can now only hold a maximum of 2<sup>32</sup>- 1 archetypes.
Changed: `World`s can now only hold a maximum of 2<sup>32</sup> - 1 tables.
## Migration Guide
A `World` can only hold a maximum of 2<sup>32</sup> - 1 archetypes and tables now. If your use case requires more than this, please file an issue explaining your use case.
# Objective
Prevent future unsoundness that was seen in #6623.
## Solution
Newtype both indexes in `Archetype` and `Table` as `ArchetypeRow` and `TableRow`. This avoids weird numerical manipulation on the indices, and can be stored and treated opaquely. Also enforces the source and destination of where these indices at a type level.
---
## Changelog
Changed: `Archetype` indices and `Table` rows have been newtyped as `ArchetypeRow` and `TableRow`.
# Objective
`EntityRef::get` and friends all type erase calls to fetch the target components by using passing in the `TypeId` instead of using generics. This is forcing a lookup to `Components` to fetch the storage type. This adds an extra memory lookup and forces a runtime branch instead of allowing the compiler to optimize out the unused branch.
## Solution
Leverage `Component::Storage::STORAGE_TYPE` as a constant instead of fetching the metadata from `Components`.
## Performance
This has a near 2x speedup for all calls to `World::get`. Microbenchmark results from my local machine. `Query::get_component`, which uses `EntityRef::get` internally also show a slight speed up. This has closed the gap between `World::get` and `Query::get` for the same use case.
```
group entity-ref-generics main
----- ------------------- ----
query_get_component/50000_entities_sparse 1.00 890.6±40.42µs ? ?/sec 1.10 980.6±28.22µs ? ?/sec
query_get_component/50000_entities_table 1.00 968.5±73.73µs ? ?/sec 1.08 1048.8±31.76µs ? ?/sec
query_get_component_simple/system 1.00 703.2±4.37µs ? ?/sec 1.00 702.1±6.13µs ? ?/sec
query_get_component_simple/unchecked 1.02 855.8±8.98µs ? ?/sec 1.00 843.1±8.19µs ? ?/sec
world_get/50000_entities_sparse 1.00 202.3±3.15µs ? ?/sec 1.85 374.0±20.96µs ? ?/sec
world_get/50000_entities_table 1.00 193.0±1.78µs ? ?/sec 2.02 389.2±26.55µs ? ?/sec
world_query_get/50000_entities_sparse 1.01 162.4±2.23µs ? ?/sec 1.00 161.3±0.95µs ? ?/sec
world_query_get/50000_entities_table 1.00 199.9±0.63µs ? ?/sec 1.00 200.2±0.74µs ? ?/sec
```
This should also, by proxy, speed up the `ReflectComponent` APIs as most of those use `World::get` variants internally.
# Objective
- Fixes#6812.
## Solution
- Replaced `World::read_change_ticks` with `World::change_ticks` within `bevy_ecs` crate in places where `World` references were mutable.
---
# Objective
The soundness of the ECS `World` partially relies on the correctness of the state of `Entities` stored within it. We're currently allowing users to (unsafely) mutate it, as well as readily construct it without using a `World`. While this is not strictly unsound so long as users (including `bevy_render`) safely use the APIs, it's a fairly easy path to unsoundness without much of a guard rail.
Addresses #3362 for `bevy_ecs::entity`. Incorporates the changes from #3985.
## Solution
Remove `Entities`'s `Default` implementation and force access to the type to only be through a properly constructed `World`.
Additional cleanup for other parts of `bevy_ecs::entity`:
- `Entity::index` and `Entity::generation` are no longer `pub(crate)`, opting to force the rest of bevy_ecs to use the public interface to access these values.
- `EntityMeta` is no longer `pub` and also not `pub(crate)` to attempt to cut down on updating `generation` without going through an `Entities` API. It's currently inaccessible except via the `pub(crate)` Vec on `Entities`, there was no way for an outside user to use it.
- Added `Entities::set`, an unsafe `pub(crate)` API for setting the location of an Entity (parallel to `Entities::get`) that replaces the internal case where we need to set the location of an entity when it's been spawned, moved, or despawned.
- `Entities::alloc_at_without_replacement` is only used in `World::get_or_spawn` within the first party crates, and I cannot find a public use of this API in any ecosystem crate that I've checked (via GitHub search).
- Attempted to document the few remaining undocumented public APIs in the module.
---
## Changelog
Removed: `Entities`'s `Default` implementation.
Removed: `EntityMeta`
Removed: `Entities::alloc_at_without_replacement` and `AllocAtWithoutReplacement`.
Co-authored-by: james7132 <contact@jamessliu.com>
Co-authored-by: James Liu <contact@jamessliu.com>
# Objective
Fixes#4884. `ComponentTicks` stores both added and changed ticks contiguously in the same 8 bytes. This is convenient when passing around both together, but causes half the bytes fetched from memory for the purposes of change detection to effectively go unused. This is inefficient when most queries (no filter, mutating *something*) only write out to the changed ticks.
## Solution
Split the storage for change detection ticks into two separate `Vec`s inside `Column`. Fetch only what is needed during iteration.
This also potentially also removes one blocker from autovectorization of dense queries.
EDIT: This is confirmed to enable autovectorization of dense queries in `for_each` and `par_for_each` where possible. Unfortunately `iter` has other blockers that prevent it.
### TODO
- [x] Microbenchmark
- [x] Check if this allows query iteration to autovectorize simple loops.
- [x] Clean up all of the spurious tuples now littered throughout the API
### Open Questions
- ~~Is `Mut::is_added` absolutely necessary? Can we not just use `Added` or `ChangeTrackers`?~~ It's optimized out if unused.
- ~~Does the fetch of the added ticks get optimized out if not used?~~ Yes it is.
---
## Changelog
Added: `Tick`, a wrapper around a single change detection tick.
Added: `Column::get_added_ticks`
Added: `Column::get_column_ticks`
Added: `SparseSet::get_added_ticks`
Added: `SparseSet::get_column_ticks`
Changed: `Column` now stores added and changed ticks separately internally.
Changed: Most APIs returning `&UnsafeCell<ComponentTicks>` now returns `TickCells` instead, which contains two separate `&UnsafeCell<Tick>` for either component ticks.
Changed: `Query::for_each(_mut)`, `Query::par_for_each(_mut)` will now leverage autovectorization to speed up query iteration where possible.
## Migration Guide
TODO
# Objective
Archetype is a deceptively large type in memory. It stores metadata about which components are in which storage in multiple locations, which is only used when creating new Archetypes while moving entities.
## Solution
Remove the redundant `Box<[ComponentId]>`s and iterate over the sparse set of component metadata instead. Reduces Archetype's size by 4 usizes (32 bytes on 64-bit systems), as well as the additional allocations for holding these slices.
It'd seem like there's a downside that the origin archetype has it's component metadata iterated over twice when creating a new archetype, but this change also removes the extra `Vec<ArchetypeComponentId>` allocations when creating a new archetype which may amortize out to a net gain here. This change likely negatively impacts creating new archetypes with a large number of components, but that's a cost mitigated by the fact that these archetypal relationships are cached in Edges and is incurred only once for each edge created.
## Additional Context
There are several other in-flight PRs that shrink Archetype:
- #4800 merges the entities and rows Vecs together (shaves off 24 bytes per archetype)
- #4809 removes unique_components and moves it to it's own dedicated storage (shaves off 72 bytes per archetype)
---
## Changelog
Changed: `Archetype::table_components` and `Archetype::sparse_set_components` return iterators instead of slices. `Archetype::new` requires iterators instead of parallel slices/vecs.
## Migration Guide
Do I still need to do this? I really hope people were not relying on the public facing APIs changed here.
* Move the despawn debug log from `World::despawn` to `EntityMut::despawn`.
* Move the despawn non-existent warning log from `Commands::despawn` to `World::despawn`.
This should make logging consistent regardless of which of the three `despawn` methods is used.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
`EntityMut::remove_children` does not call `self.update_location()` which is unsound.
Verified by adding the following assertion, which fails when running the tests.
```rust
let before = self.location();
self.update_location();
assert_eq!(before, self.location());
```
I also removed incorrect messages like "parent entity is not modified" and the unhelpful "Inserting a bundle in the children entities may change the parent entity's location if they were of the same archetype" which might lead people to think that's the *only* thing that can change the entity's location.
# Changelog
Added `EntityMut::world_scope`.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
Fixes#6059, changing all incorrect occurrences of ``id`` in the ``entity`` module to ``index``:
* struct level documentation,
* ``id`` struct field,
* ``id`` method and its documentation.
## Solution
Renaming and verifying using CI.
Co-authored-by: Edvin Kjell <43633999+Edwox@users.noreply.github.com>
# Objective
Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands).
## Solution
All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input:
```rust
// before:
commands
.spawn()
.insert((A, B, C));
world
.spawn()
.insert((A, B, C);
// after
commands.spawn((A, B, C));
world.spawn((A, B, C));
```
All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api.
By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`).
This improves spawn performance by over 10%:
![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png)
To take this measurement, I added a new `world_spawn` benchmark.
Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main.
**Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).**
---
## Changelog
- All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input
- All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api
- World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior.
## Migration Guide
```rust
// Old (0.8):
commands
.spawn()
.insert_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
commands.spawn_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
let entity = commands.spawn().id();
// New (0.9)
let entity = commands.spawn_empty().id();
// Old (0.8)
let entity = world.spawn().id();
// New (0.9)
let entity = world.spawn_empty();
```
# Objective
Take advantage of the "impl Bundle for Component" changes in #2975 / add the follow up changes discussed there.
## Solution
- Change `insert` and `remove` to accept a Bundle instead of a Component (for both Commands and World)
- Deprecate `insert_bundle`, `remove_bundle`, and `remove_bundle_intersection`
- Add `remove_intersection`
---
## Changelog
- Change `insert` and `remove` now accept a Bundle instead of a Component (for both Commands and World)
- `insert_bundle` and `remove_bundle` are deprecated
## Migration Guide
Replace `insert_bundle` with `insert`:
```rust
// Old (0.8)
commands.spawn().insert_bundle(SomeBundle::default());
// New (0.9)
commands.spawn().insert(SomeBundle::default());
```
Replace `remove_bundle` with `remove`:
```rust
// Old (0.8)
commands.entity(some_entity).remove_bundle::<SomeBundle>();
// New (0.9)
commands.entity(some_entity).remove::<SomeBundle>();
```
Replace `remove_bundle_intersection` with `remove_intersection`:
```rust
// Old (0.8)
world.entity_mut(some_entity).remove_bundle_intersection::<SomeBundle>();
// New (0.9)
world.entity_mut(some_entity).remove_intersection::<SomeBundle>();
```
Consider consolidating as many operations as possible to improve ergonomics and cut down on archetype moves:
```rust
// Old (0.8)
commands.spawn()
.insert_bundle(SomeBundle::default())
.insert(SomeComponent);
// New (0.9) - Option 1
commands.spawn().insert((
SomeBundle::default(),
SomeComponent,
))
// New (0.9) - Option 2
commands.spawn_bundle((
SomeBundle::default(),
SomeComponent,
))
```
## Next Steps
Consider changing `spawn` to accept a bundle and deprecate `spawn_bundle`.
@BoxyUwU this is your fault.
Also cart didn't arrive in time to tell us not to do this.
# Objective
- Fix#2974
## Solution
- The first commit just does the actual change
- Follow up commits do steps to prove that this method works to unify as required, but this does not remove `insert_bundle`.
## Changelog
### Changed
Nested bundles now collapse automatically, and every `Component` now implements `Bundle`.
This means that you can combine bundles and components arbitrarily, for example:
```rust
// before:
.insert(A).insert_bundle(MyBBundle{..})
// after:
.insert_bundle((A, MyBBundle {..}))
```
Note that there will be a follow up PR that removes the current `insert` impl and renames `insert_bundle` to `insert`.
### Removed
The `bundle` attribute in `derive(Bundle)`.
## Migration guide
In `derive(Bundle)`, the `bundle` attribute has been removed. Nested bundles are not collapsed automatically. You should remove `#[bundle]` attributes.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
EntityMut::world takes &mut self instead of &self I don't see any reason for this.
EntityRef is overly restrictive with fn world and could return &'w World
---
## Changelog
- EntityRef now implements Copy and Clone
- EntityRef::world is now fn(&self) -> &'w World instead of fn(&mut self) -> &World
- EntityMut::world is now fn(&self) -> &World instead of fn(&mut self) -> &World
# Objective
Provide a safe API to access an `EntityMut`'s `World`.
## Solution
* Add `EntityMut::into_world_mut` for safe access to the entity's world.
---
## Changelog
* Add `EntityMut::into_world_mut` for safe access to the entity's world.
# Objective
`SAFETY` comments are meant to be placed before `unsafe` blocks and should contain the reasoning of why in this case the usage of unsafe is okay. This is useful when reading the code because it makes it clear which assumptions are required for safety, and makes it easier to spot possible unsoundness holes. It also forces the code writer to think of something to write and maybe look at the safety contracts of any called unsafe methods again to double-check their correct usage.
There's a clippy lint called `undocumented_unsafe_blocks` which warns when using a block without such a comment.
## Solution
- since clippy expects `SAFETY` instead of `SAFE`, rename those
- add `SAFETY` comments in more places
- for the last remaining 3 places, add an `#[allow()]` and `// TODO` since I wasn't comfortable enough with the code to justify their safety
- add ` #![warn(clippy::undocumented_unsafe_blocks)]` to `bevy_ecs`
### Note for reviewers
The first commit only renames `SAFETY` to `SAFE` so it doesn't need a thorough review.
cb042a416e..55cef2d6fa is the diff for all other changes.
### Safety comments where I'm not too familiar with the code
774012ece5/crates/bevy_ecs/src/entity/mod.rs (L540-L546)774012ece5/crates/bevy_ecs/src/world/entity_ref.rs (L249-L252)
### Locations left undocumented with a `TODO` comment
5dde944a30/crates/bevy_ecs/src/schedule/executor_parallel.rs (L196-L199)5dde944a30/crates/bevy_ecs/src/world/entity_ref.rs (L287-L289)5dde944a30/crates/bevy_ecs/src/world/entity_ref.rs (L413-L415)
Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
# Objective
Even if bevy itself does not provide any builtin scripting or modding APIs, it should have the foundations for building them yourself.
For that it should be enough to have APIs that are not tied to the actual rust types with generics, but rather accept `ComponentId`s and `bevy_ptr` ptrs.
## Solution
Add the following APIs to bevy
```rust
fn EntityRef::get_by_id(ComponentId) -> Option<Ptr<'w>>;
fn EntityMut::get_by_id(ComponentId) -> Option<Ptr<'_>>;
fn EntityMut::get_mut_by_id(ComponentId) -> Option<MutUntyped<'_>>;
fn World::get_resource_by_id(ComponentId) -> Option<Ptr<'_>>;
fn World::get_resource_mut_by_id(ComponentId) -> Option<MutUntyped<'_>>;
// Safety: `value` must point to a valid value of the component
unsafe fn World::insert_resource_by_id(ComponentId, value: OwningPtr);
fn ComponentDescriptor::new_with_layout(..) -> Self;
fn World::init_component_with_descriptor(ComponentDescriptor) -> ComponentId;
```
~~This PR would definitely benefit from #3001 (lifetime'd pointers) to make sure that the lifetimes of the pointers are valid and the my-move pointer in `insert_resource_by_id` could be an `OwningPtr`, but that can be adapter later if/when #3001 is merged.~~
### Not in this PR
- inserting components on entities (this is very tied to types with bundles and the `BundleInserter`)
- an untyped version of a query (needs good API design, has a large implementation complexity, can be done in a third-party crate)
Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
# Objective
The pointer types introduced in #3001 are useful not just in `bevy_ecs`, but also in crates like `bevy_reflect` (#4475) or even outside of bevy.
## Solution
Extract `Ptr<'a>`, `PtrMut<'a>`, `OwnedPtr<'a>`, `ThinSlicePtr<'a, T>` and `UnsafeCellDeref` from `bevy_ecs::ptr` into `bevy_ptr`.
**Note:** `bevy_ecs` still reexports the `bevy_ptr` as `bevy_ecs::ptr` so that crates like `bevy_transform` can use the `Bundle` derive without needing to depend on `bevy_ptr` themselves.
# Objective
`bevy_ecs` has large amounts of unsafe code which is hard to get right and makes it difficult to audit for soundness.
## Solution
Introduce lifetimed, type-erased pointers: `Ptr<'a>` `PtrMut<'a>` `OwningPtr<'a>'` and `ThinSlicePtr<'a, T>` which are newtypes around a raw pointer with a lifetime and conceptually representing strong invariants about the pointee and validity of the pointer.
The process of converting bevy_ecs to use these has already caught multiple cases of unsound behavior.
## Changelog
TL;DR for release notes: `bevy_ecs` now uses lifetimed, type-erased pointers internally, significantly improving safety and legibility without sacrificing performance. This should have approximately no end user impact, unless you were meddling with the (unfortunately public) internals of `bevy_ecs`.
- `Fetch`, `FilterFetch` and `ReadOnlyFetch` trait no longer have a `'state` lifetime
- this was unneeded
- `ReadOnly/Fetch` associated types on `WorldQuery` are now on a new `WorldQueryGats<'world>` trait
- was required to work around lack of Generic Associated Types (we wish to express `type Fetch<'a>: Fetch<'a>`)
- `derive(WorldQuery)` no longer requires `'w` lifetime on struct
- this was unneeded, and improves the end user experience
- `EntityMut::get_unchecked_mut` returns `&'_ mut T` not `&'w mut T`
- allows easier use of unsafe API with less footguns, and can be worked around via lifetime transmutery as a user
- `Bundle::from_components` now takes a `ctx` parameter to pass to the `FnMut` closure
- required because closure return types can't borrow from captures
- `Fetch::init` takes `&'world World`, `Fetch::set_archetype` takes `&'world Archetype` and `&'world Tables`, `Fetch::set_table` takes `&'world Table`
- allows types implementing `Fetch` to store borrows into world
- `WorldQuery` trait now has a `shrink` fn to shorten the lifetime in `Fetch::<'a>::Item`
- this works around lack of subtyping of assoc types, rust doesnt allow you to turn `<T as Fetch<'static>>::Item'` into `<T as Fetch<'a>>::Item'`
- `QueryCombinationsIter` requires this
- Most types implementing `Fetch` now have a lifetime `'w`
- allows the fetches to store borrows of world data instead of using raw pointers
## Migration guide
- `EntityMut::get_unchecked_mut` returns a more restricted lifetime, there is no general way to migrate this as it depends on your code
- `Bundle::from_components` implementations must pass the `ctx` arg to `func`
- `Bundle::from_components` callers have to use a fn arg instead of closure captures for borrowing from world
- Remove lifetime args on `derive(WorldQuery)` structs as it is nonsensical
- `<Q as WorldQuery>::ReadOnly/Fetch` should be changed to either `RO/QueryFetch<'world>` or `<Q as WorldQueryGats<'world>>::ReadOnly/Fetch`
- `<F as Fetch<'w, 's>>` should be changed to `<F as Fetch<'w>>`
- Change the fn sigs of `Fetch::init/set_archetype/set_table` to match respective trait fn sigs
- Implement the required `fn shrink` on any `WorldQuery` implementations
- Move assoc types `Fetch` and `ReadOnlyFetch` on `WorldQuery` impls to `WorldQueryGats` impls
- Pass an appropriate `'world` lifetime to whatever fetch struct you are for some reason using
### Type inference regression
in some cases rustc may give spurrious errors when attempting to infer the `F` parameter on a query/querystate this can be fixed by manually specifying the type, i.e. `QueryState:🆕:<_, ()>(world)`. The error is rather confusing:
```rust=
error[E0271]: type mismatch resolving `<() as Fetch<'_>>::Item == bool`
--> crates/bevy_pbr/src/render/light.rs:1413:30
|
1413 | main_view_query: QueryState::new(world),
| ^^^^^^^^^^^^^^^ expected `bool`, found `()`
|
= note: required because of the requirements on the impl of `for<'x> FilterFetch<'x>` for `<() as WorldQueryGats<'x>>::Fetch`
note: required by a bound in `bevy_ecs::query::QueryState::<Q, F>::new`
--> crates/bevy_ecs/src/query/state.rs:49:32
|
49 | for<'x> QueryFetch<'x, F>: FilterFetch<'x>,
| ^^^^^^^^^^^^^^^ required by this bound in `bevy_ecs::query::QueryState::<Q, F>::new`
```
---
Made with help from @BoxyUwU and @alice-i-cecile
Co-authored-by: Boxy <supbscripter@gmail.com>
# Objective
- `EntityRef` and `EntityMut` are surpisingly important public types when working directly with the `World`.
- They're undocumented.
## Solution
- Just add docs!
The only way to soundly use this API is already encapsulated within `EntityMut::get`, so this api is removed.
# Migration guide
Replace calls to `EntityMut::get_unchecked` with calls to `EntityMut::get`.
Fixes#3408#3001 also solves this but I dont see it getting merged any time soon so...
# Objective
make bevy ecs a lil bit less unsound
## Solution
make `EntityMut::get_component_mut` return borrows from self instead of `'w`
What is says on the tin.
This has got more to do with making `clippy` slightly more *quiet* than it does with changing anything that might greatly impact readability or performance.
that said, deriving `Default` for a couple of structs is a nice easy win
# Objective
- Calling .id() has no purpose unless you use the Entity returned
- This is an easy source of confusion for beginners.
- This is easily missed during refactors.
## Solution
- Mark the appropriate methods as #[must_use]
#3457 adds the `doc_markdown` clippy lint, which checks doc comments to make sure code identifiers are escaped with backticks. This causes a lot of lint errors, so this is one of a number of PR's that will fix those lint errors one crate at a time.
This PR fixes lints in the `bevy_ecs` crate.
This implements the most minimal variant of #1843 - a derive for marker trait. This is a prerequisite to more complicated features like statically defined storage type or opt-out component reflection.
In order to make component struct's purpose explicit and avoid misuse, it must be annotated with `#[derive(Component)]` (manual impl is discouraged for compatibility). Right now this is just a marker trait, but in the future it might be expanded. Making this change early allows us to make further changes later without breaking backward compatibility for derive macro users.
This already prevents a lot of issues, like using bundles in `insert` calls. Primitive types are no longer valid components as well. This can be easily worked around by adding newtype wrappers and deriving `Component` for them.
One funny example of prevented bad code (from our own tests) is when an newtype struct or enum variant is used. Previously, it was possible to write `insert(Newtype)` instead of `insert(Newtype(value))`. That code compiled, because function pointers (in this case newtype struct constructor) implement `Send + Sync + 'static`, so we allowed them to be used as components. This is no longer the case and such invalid code will trigger a compile error.
Co-authored-by: = <=>
Co-authored-by: TheRawMeatball <therawmeatball@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This upstreams the code changes used by the new renderer to enable cross-app Entity reuse:
* Spawning at specific entities
* get_or_spawn: spawns an entity if it doesn't already exist and returns an EntityMut
* insert_or_spawn_batch: the batched equivalent to `world.get_or_spawn(entity).insert_bundle(bundle)`
* Clearing entities and storages
* Allocating Entities with "invalid" archetypes. These entities cannot be queried / are treated as "non existent". They serve as "reserved" entities that won't show up when calling `spawn()`. They must be "specifically spawned at" using apis like `get_or_spawn(entity)`.
In combination, these changes enable the "render world" to clear entities / storages each frame and reserve all "app world entities". These can then be spawned during the "render extract step".
This refactors "spawn" and "insert" code in a way that I think is a massive improvement to legibility and re-usability. It also yields marginal performance wins by reducing some duplicate lookups (less than a percentage point improvement on insertion benchmarks). There is also some potential for future unsafe reduction (by making BatchSpawner and BatchInserter generic). But for now I want to cut down generic usage to a minimum to encourage smaller binaries and faster compiles.
This is currently a draft because it needs more tests (although this code has already had some real-world testing on my custom-shaders branch).
I also fixed the benchmarks (which currently don't compile!) / added new ones to illustrate batching wins.
After these changes, Bevy ECS is basically ready to accommodate the new renderer. I think the biggest missing piece at this point is "sub apps".
This logic was in both `remove_bundle` and ` remove_bundle_intersection` but only differed by whether we call `.._forget_missing_..` or `.._drop_missing_..`
Continuing the work on reducing the safety footguns in the code, I've removed one extra `UnsafeCell` in favour of safe `Cell` usage inisde `ComponentTicks`. That change led to discovery of misbehaving component insert logic, where data wasn't properly dropped when overwritten. Apart from that being fixed, some method names were changed to better convey the "initialize new allocation" and "replace existing allocation" semantic.
Depends on #2221, I will rebase this PR after the dependency is merged. For now, review just the last commit.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
`ResMut`, `Mut` and `ReflectMut` all share very similar code for change detection.
This PR is a first pass at refactoring these implementation and removing a lot of the duplicated code.
Note, this introduces a new trait `ChangeDetectable`.
Please feel free to comment away and let me know what you think!
I've noticed that we are overusing interior mutability of the Table data, where in many cases we already own a unique reference to it. That prompted a slight refactor aiming to reduce number of safety constraints that must be manually upheld. Now the majority of those are just about avoiding bound checking, which is relatively easy to prove right.
Another aspect is reducing the complexity of Table struct. Notably, we don't ever use archetypes stored there, so this whole thing goes away. Capacity and grow amount were mostly superficial, as we are already using Vecs inside anyway, so I've got rid of those too. Now the overall table capacity is being driven by the internal entity Vec capacity. This has a side effect of automatically implementing exponential growth pattern for BitVecs reallocations inside Table, which to my measurements slightly improves performance in tests that are heavy on inserts. YMMV, but I hope that those tests were at least remotely correct.
- simplified code around archetype generations a little bit, as the special case value is not actually needed
- removed unnecessary UnsafeCell around pointer value that is never updated through shared references
- fixed and added a test for correct drop behaviour when removing sparse components through remove_bundle command
This shrinks breakout from 316k to 310k when using `--feature dynamic`.
I haven't run the ecs benchmark to test performance as my laptop is too noisy for reliable benchmarking.
Removing the checks on this line https://github.com/bevyengine/bevy/blob/main/crates/bevy_sprite/src/frustum_culling.rs#L64 and running the "many_sprites" example revealed two corner case bugs in bevy_ecs. The first, a simple and honest missed line introduced in #1471. The other, an insidious monster that has been there since the ECS v2 rewrite, just waiting for the time to strike:
1. #1471 accidentally removed the "insert" line for sparse set components with the "mutated" bundle state. Re-adding it fixes the problem. I did a slight refactor here to make the implementation simpler and remove a branch.
2. The other issue is nastier. ECS v2 added an "archetype graph". When determining what components were added/mutated during an archetype change, we read the FromBundle edge (which encodes this state) on the "new" archetype. The problem is that unlike "add edges" which are guaranteed to be unique for a given ("graph node", "bundle id") pair, FromBundle edges are not necessarily unique:
```rust
// OLD_ARCHETYPE -> NEW_ARCHETYPE
// [] -> [usize]
e.insert(2usize);
// [usize] -> [usize, i32]
e.insert(1i32);
// [usize, i32] -> [usize, i32]
e.insert(1i32);
// [usize, i32] -> [usize]
e.remove::<i32>();
// [usize] -> [usize, i32]
e.insert(1i32);
```
Note that the second `e.insert(1i32)` command has a different "archetype graph edge" than the first, but they both lead to the same "new archetype".
The fix here is simple: just remove FromBundle edges because they are broken and store the information in the "add edges", which are guaranteed to be unique.
FromBundle edges were added to cut down on the number of archetype accesses / make the archetype access patterns nicer. But benching this change resulted in no significant perf changes and the addition of get_2_mut() for archetypes resolves the access pattern issue.
# Problem Definition
The current change tracking (via flags for both components and resources) fails to detect changes made by systems that are scheduled to run earlier in the frame than they are.
This issue is discussed at length in [#68](https://github.com/bevyengine/bevy/issues/68) and [#54](https://github.com/bevyengine/bevy/issues/54).
This is very much a draft PR, and contributions are welcome and needed.
# Criteria
1. Each change is detected at least once, no matter the ordering.
2. Each change is detected at most once, no matter the ordering.
3. Changes should be detected the same frame that they are made.
4. Competitive ergonomics. Ideally does not require opting-in.
5. Low CPU overhead of computation.
6. Memory efficient. This must not increase over time, except where the number of entities / resources does.
7. Changes should not be lost for systems that don't run.
8. A frame needs to act as a pure function. Given the same set of entities / components it needs to produce the same end state without side-effects.
**Exact** change-tracking proposals satisfy criteria 1 and 2.
**Conservative** change-tracking proposals satisfy criteria 1 but not 2.
**Flaky** change tracking proposals satisfy criteria 2 but not 1.
# Code Base Navigation
There are three types of flags:
- `Added`: A piece of data was added to an entity / `Resources`.
- `Mutated`: A piece of data was able to be modified, because its `DerefMut` was accessed
- `Changed`: The bitwise OR of `Added` and `Changed`
The special behavior of `ChangedRes`, with respect to the scheduler is being removed in [#1313](https://github.com/bevyengine/bevy/pull/1313) and does not need to be reproduced.
`ChangedRes` and friends can be found in "bevy_ecs/core/resources/resource_query.rs".
The `Flags` trait for Components can be found in "bevy_ecs/core/query.rs".
`ComponentFlags` are stored in "bevy_ecs/core/archetypes.rs", defined on line 446.
# Proposals
**Proposal 5 was selected for implementation.**
## Proposal 0: No Change Detection
The baseline, where computations are performed on everything regardless of whether it changed.
**Type:** Conservative
**Pros:**
- already implemented
- will never miss events
- no overhead
**Cons:**
- tons of repeated work
- doesn't allow users to avoid repeating work (or monitoring for other changes)
## Proposal 1: Earlier-This-Tick Change Detection
The current approach as of Bevy 0.4. Flags are set, and then flushed at the end of each frame.
**Type:** Flaky
**Pros:**
- already implemented
- simple to understand
- low memory overhead (2 bits per component)
- low time overhead (clear every flag once per frame)
**Cons:**
- misses systems based on ordering
- systems that don't run every frame miss changes
- duplicates detection when looping
- can lead to unresolvable circular dependencies
## Proposal 2: Two-Tick Change Detection
Flags persist for two frames, using a double-buffer system identical to that used in events.
A change is observed if it is found in either the current frame's list of changes or the previous frame's.
**Type:** Conservative
**Pros:**
- easy to understand
- easy to implement
- low memory overhead (4 bits per component)
- low time overhead (bit mask and shift every flag once per frame)
**Cons:**
- can result in a great deal of duplicated work
- systems that don't run every frame miss changes
- duplicates detection when looping
## Proposal 3: Last-Tick Change Detection
Flags persist for two frames, using a double-buffer system identical to that used in events.
A change is observed if it is found in the previous frame's list of changes.
**Type:** Exact
**Pros:**
- exact
- easy to understand
- easy to implement
- low memory overhead (4 bits per component)
- low time overhead (bit mask and shift every flag once per frame)
**Cons:**
- change detection is always delayed, possibly causing painful chained delays
- systems that don't run every frame miss changes
- duplicates detection when looping
## Proposal 4: Flag-Doubling Change Detection
Combine Proposal 2 and Proposal 3. Differentiate between `JustChanged` (current behavior) and `Changed` (Proposal 3).
Pack this data into the flags according to [this implementation proposal](https://github.com/bevyengine/bevy/issues/68#issuecomment-769174804).
**Type:** Flaky + Exact
**Pros:**
- allows users to acc
- easy to implement
- low memory overhead (4 bits per component)
- low time overhead (bit mask and shift every flag once per frame)
**Cons:**
- users must specify the type of change detection required
- still quite fragile to system ordering effects when using the flaky `JustChanged` form
- cannot get immediate + exact results
- systems that don't run every frame miss changes
- duplicates detection when looping
## [SELECTED] Proposal 5: Generation-Counter Change Detection
A global counter is increased after each system is run. Each component saves the time of last mutation, and each system saves the time of last execution. Mutation is detected when the component's counter is greater than the system's counter. Discussed [here](https://github.com/bevyengine/bevy/issues/68#issuecomment-769174804). How to handle addition detection is unsolved; the current proposal is to use the highest bit of the counter as in proposal 1.
**Type:** Exact (for mutations), flaky (for additions)
**Pros:**
- low time overhead (set component counter on access, set system counter after execution)
- robust to systems that don't run every frame
- robust to systems that loop
**Cons:**
- moderately complex implementation
- must be modified as systems are inserted dynamically
- medium memory overhead (4 bytes per component + system)
- unsolved addition detection
## Proposal 6: System-Data Change Detection
For each system, track which system's changes it has seen. This approach is only worth fully designing and implementing if Proposal 5 fails in some way.
**Type:** Exact
**Pros:**
- exact
- conceptually simple
**Cons:**
- requires storing data on each system
- implementation is complex
- must be modified as systems are inserted dynamically
## Proposal 7: Total-Order Change Detection
Discussed [here](https://github.com/bevyengine/bevy/issues/68#issuecomment-754326523). This proposal is somewhat complicated by the new scheduler, but I believe it should still be conceptually feasible. This approach is only worth fully designing and implementing if Proposal 5 fails in some way.
**Type:** Exact
**Pros:**
- exact
- efficient data storage relative to other exact proposals
**Cons:**
- requires access to the scheduler
- complex implementation and difficulty grokking
- must be modified as systems are inserted dynamically
# Tests
- We will need to verify properties 1, 2, 3, 7 and 8. Priority: 1 > 2 = 3 > 8 > 7
- Ideally we can use identical user-facing syntax for all proposals, allowing us to re-use the same syntax for each.
- When writing tests, we need to carefully specify order using explicit dependencies.
- These tests will need to be duplicated for both components and resources.
- We need to be sure to handle cases where ambiguous system orders exist.
`changing_system` is always the system that makes the changes, and `detecting_system` always detects the changes.
The component / resource changed will be simple boolean wrapper structs.
## Basic Added / Mutated / Changed
2 x 3 design:
- Resources vs. Components
- Added vs. Changed vs. Mutated
- `changing_system` runs before `detecting_system`
- verify at the end of tick 2
## At Least Once
2 x 3 design:
- Resources vs. Components
- Added vs. Changed vs. Mutated
- `changing_system` runs after `detecting_system`
- verify at the end of tick 2
## At Most Once
2 x 3 design:
- Resources vs. Components
- Added vs. Changed vs. Mutated
- `changing_system` runs once before `detecting_system`
- increment a counter based on the number of changes detected
- verify at the end of tick 2
## Fast Detection
2 x 3 design:
- Resources vs. Components
- Added vs. Changed vs. Mutated
- `changing_system` runs before `detecting_system`
- verify at the end of tick 1
## Ambiguous System Ordering Robustness
2 x 3 x 2 design:
- Resources vs. Components
- Added vs. Changed vs. Mutated
- `changing_system` runs [before/after] `detecting_system` in tick 1
- `changing_system` runs [after/before] `detecting_system` in tick 2
## System Pausing
2 x 3 design:
- Resources vs. Components
- Added vs. Changed vs. Mutated
- `changing_system` runs in tick 1, then is disabled by run criteria
- `detecting_system` is disabled by run criteria until it is run once during tick 3
- verify at the end of tick 3
## Addition Causes Mutation
2 design:
- Resources vs. Components
- `adding_system_1` adds a component / resource
- `adding system_2` adds the same component / resource
- verify the `Mutated` flag at the end of the tick
- verify the `Added` flag at the end of the tick
First check tests for: https://github.com/bevyengine/bevy/issues/333
Second check tests for: https://github.com/bevyengine/bevy/issues/1443
## Changes Made By Commands
- `adding_system` runs in Update in tick 1, and sends a command to add a component
- `detecting_system` runs in Update in tick 1 and 2, after `adding_system`
- We can't detect the changes in tick 1, since they haven't been processed yet
- If we were to track these changes as being emitted by `adding_system`, we can't detect the changes in tick 2 either, since `detecting_system` has already run once after `adding_system` :(
# Benchmarks
See: [general advice](https://github.com/bevyengine/bevy/blob/master/docs/profiling.md), [Criterion crate](https://github.com/bheisler/criterion.rs)
There are several critical parameters to vary:
1. entity count (1 to 10^9)
2. fraction of entities that are changed (0% to 100%)
3. cost to perform work on changed entities, i.e. workload (1 ns to 1s)
1 and 2 should be varied between benchmark runs. 3 can be added on computationally.
We want to measure:
- memory cost
- run time
We should collect these measurements across several frames (100?) to reduce bootup effects and accurately measure the mean, variance and drift.
Entity-component change detection is much more important to benchmark than resource change detection, due to the orders of magnitude higher number of pieces of data.
No change detection at all should be included in benchmarks as a second control for cases where missing changes is unacceptable.
## Graphs
1. y: performance, x: log_10(entity count), color: proposal, facet: performance metric. Set cost to perform work to 0.
2. y: run time, x: cost to perform work, color: proposal, facet: fraction changed. Set number of entities to 10^6
3. y: memory, x: frames, color: proposal
# Conclusions
1. Is the theoretical categorization of the proposals correct according to our tests?
2. How does the performance of the proposals compare without any load?
3. How does the performance of the proposals compare with realistic loads?
4. At what workload does more exact change tracking become worth the (presumably) higher overhead?
5. When does adding change-detection to save on work become worthwhile?
6. Is there enough divergence in performance between the best solutions in each class to ship more than one change-tracking solution?
# Implementation Plan
1. Write a test suite.
2. Verify that tests fail for existing approach.
3. Write a benchmark suite.
4. Get performance numbers for existing approach.
5. Implement, test and benchmark various solutions using a Git branch per proposal.
6. Create a draft PR with all solutions and present results to team.
7. Select a solution and replace existing change detection.
Co-authored-by: Brice DAVIER <bricedavier@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>