# Objective
Fix an issue where events are not being dropped after being read. I
believe #10077 introduced this issue. The code currently works as
follows:
1. `EventUpdateSignal` is **shared for all event types**
2. During the fixed update phase, `EventUpdateSignal` is set to true
3. `event_update_system`, **unique per event type**, runs to update
Events<T>
4. `event_update_system` reads value of `EventUpdateSignal` to check if
it should update, and then **resets** the value to false
If there are multiple event types, the first `event_update_system` run
will reset the shared `EventUpdateSignal` signal, preventing other
events from being cleared.
## Solution
I've updated the code to have separate signals per event type and added
a shared signal to notify all systems that the time plugin is installed.
## Changelog
- Fixed bug where events were not being dropped
# Objective
- Deriving `Reflect` for some public ChangeDetection/Tick structs in
bevy_ecs
---------
Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
# Objective
Fixes: https://github.com/bevyengine/bevy/issues/11549
Add a doctest example of what a custom implementation of an
`EntityMapper` would look like.
(need to wait until https://github.com/bevyengine/bevy/pull/11428 is
merged)
---------
Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Hennadii Chernyshchyk <genaloner@gmail.com>
# Objective
- Sending and receiving events of the same type in the same system is a
reasonably common need, generally due to event filtering.
- However, actually doing so is non-trivial, as the borrow checker
simultaneous hates mutable and immutable access.
## Solution
- Demonstrate two sensible patterns for doing so.
- Update the `ManualEventReader` docs to be more clear and link to this
example.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
Co-authored-by: ickk <git@ickk.io>
# Objective
My motivation are to resolve some of the issues I describe in this
[PR](https://github.com/bevyengine/bevy/issues/11415):
- not being able to easily mapping entities because the current
EntityMapper requires `&mut World` access
- not being able to create my own `EntityMapper` because some components
(`Parent` or `Children`) do not provide any public way of modifying the
inner entities
This PR makes the `MapEntities` trait accept a generic type that
implements `Mapper` to perform the mapping.
This means we don't need to use `EntityMapper` to perform our mapping,
we can use any type that implements `Mapper`. Basically this change is
very similar to what `serde` does. Instead of specifying directly how to
map entities for a given type, we have 2 distinct steps:
- the user implements `MapEntities` to define how the type will be
traversed and which `Entity`s will be mapped
- the `Mapper` defines how the mapping is actually done
This is similar to the distinction between `Serialize` (`MapEntities`)
and `Serializer` (`Mapper`).
This allows networking library to map entities without having to use the
existing `EntityMapper` (which requires `&mut World` access and the use
of `world_scope()`)
## Migration Guide
- The existing `EntityMapper` (notably used to replicate `Scenes` across
different `World`s) has been renamed to `SceneEntityMapper`
- The `MapEntities` trait now works with a generic `EntityMapper`
instead of the specific struct `EntityMapper`.
Calls to `fn map_entities(&mut self, entity_mapper: &mut EntityMapper)`
need to be updated to
`fn map_entities<M: EntityMapper>(&mut self, entity_mapper: &mut M)`
- The new trait `EntityMapper` has been added to the prelude
---------
Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: UkoeHB <37489173+UkoeHB@users.noreply.github.com>
# Objective
Fixes#11311
## Solution
Adds an example to the documentation for `par_iter_mut`. I didn't add
any examples to `par_iter`, because I couldn't think of a good example
and I figure users can infer that `par_iter` and `par_iter_mut` are
similar.
# Objective
It's sometimes desirable to get a `Res<T>` rather than `&T` from
`World::get_resource`.
Alternative to #9940, partly adresses #9926
## Solution
added additional methods to `World` and `UnsafeWorldCell` to retrieve a
resource wrapped in a `Res`.
- `UnsafeWorldCell::get_resource_ref`
- `World::get_resource_ref`
- `World::resource_ref`
I can change it so `World::resource_mut` returns `ResMut` instead of
`Mut` as well if that's desired, but that could also be added later in a
seperate pr.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Mike <mike.hsu@gmail.com>
Co-authored-by: MinerSebas <66798382+MinerSebas@users.noreply.github.com>
# Objective
While working on #11527 I spotted that the internal field for the label
of a `Schedule` is called `name`. Using `label` seems more in line with
the other naming across Bevy.
## Solution
Renaming the field was straightforward since it's not exposed outside of
the module. This also means a changelog or migration guide isn't
necessary.
# Objective
- `World::get_resource`'s comment on it's `unsafe` usage meant to say
"mutably" but instead said "immutably."
- Fixes#11430.
## Solution
- Replace "immutably" with "mutably."
# Objective
It would be convenient to be able to call functions with `Commands` as a
parameter without having to move your own instance of `Commands`. Since
this struct is composed entirely of references, we can easily get an
owned instance of `Commands` by shortening the lifetime.
## Solution
Add `Commands::reborrow`, `EntiyCommands::reborrow`, and
`Deferred::reborrow`, which returns an owned version of themselves with
a shorter lifetime.
Remove unnecessary lifetimes from `EntityCommands`. The `'w` and `'s`
lifetimes only have to be separate for `Commands` because it's used as a
`SystemParam` -- this is not the case for `EntityCommands`.
---
## Changelog
Added `Commands::reborrow`. This is useful if you have `&mut Commands`
but need `Commands`. Also added `EntityCommands::reborrow` and
`Deferred:reborrow` which serve the same purpose.
## Migration Guide
The lifetimes for `EntityCommands` have been simplified.
```rust
// Before (Bevy 0.12)
struct MyStruct<'w, 's, 'a> {
commands: EntityCommands<'w, 's, 'a>,
}
// After (Bevy 0.13)
struct MyStruct<'a> {
commands: EntityCommands<'a>,
}
```
The method `EntityCommands::commands` now returns `Commands` rather than
`&mut Commands`.
```rust
// Before (Bevy 0.12)
let commands = entity_commands.commands();
commands.spawn(...);
// After (Bevy 0.13)
let mut commands = entity_commands.commands();
commands.spawn(...);
```
# Objective
Document a few common cases of which lifetime is required when using
SystemParam Derive
## Solution
Added a table in the doc comment
---------
Co-authored-by: laund <me@laund.moe>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Adjust bevy internals to utilize `Option<Res<State<S>>>` instead of
`Res<State<S>>`, to allow for adding/removing states at runtime and
avoid unexpected panics.
As requested here:
https://github.com/bevyengine/bevy/pull/10088#issuecomment-1869185413
---
## Changelog
- Changed the use of `world.resource`/`world.resource_mut` to
`world.get_resource`/`world.get_resource_mut` in the
`run_enter_schedule` and `apply_state_transition` systems and handled
the `None` option.
- `in_state` now returns a ` FnMut(Option<Res<State<S>>>) -> bool +
Clone`, returning `false` if the resource doesn't exist.
- `state_exists_and_equals` was marked as deprecated, and now just runs
and returns `in_state`, since their bevhaviour is now identical
- `state_changed` now takes an `Option<Res<State<S>>>` and returns
`false` if it does not exist.
I would like to remove `state_exists_and_equals` fully, but wanted to
ensure that is acceptable before doing so.
---------
Co-authored-by: Mike <mike.hsu@gmail.com>
# Objective
- `FromType<T>` for `ReflectComponent` and `ReflectBundle` currently
require `T: FromWorld` for two reasons:
- they include a `from_world` method;
- they create dummy `T`s using `FromWorld` and then `apply` a `&dyn
Reflect` to it to simulate `FromReflect`.
- However `FromWorld`/`Default` may be difficult/weird/impractical to
implement, while `FromReflect` is easier and also more natural for the
job.
- See also
https://discord.com/channels/691052431525675048/1146022009554337792
## Solution
- Split `from_world` from `ReflectComponent` and `ReflectBundle` into
its own `ReflectFromWorld` struct.
- Replace the requirement on `FromWorld` in `ReflectComponent` and
`ReflectBundle` with `FromReflect`
---
## Changelog
- `ReflectComponent` and `ReflectBundle` no longer offer a `from_world`
method.
- `ReflectComponent` and `ReflectBundle`'s `FromType<T>` implementation
no longer requires `T: FromWorld`, but now requires `FromReflect`.
- `ReflectComponent::insert`, `ReflectComponent::apply_or_insert` and
`ReflectComponent::copy` now take an extra `&TypeRegistry` parameter.
- There is now a new `ReflectFromWorld` struct.
## Migration Guide
- Existing uses of `ReflectComponent::from_world` and
`ReflectBundle::from_world` will have to be changed to
`ReflectFromWorld::from_world`.
- Users of `#[reflect(Component)]` and `#[reflect(Bundle)]` will need to
also implement/derive `FromReflect`.
- Users of `#[reflect(Component)]` and `#[reflect(Bundle)]` may now want
to also add `FromWorld` to the list of reflected traits in case their
`FromReflect` implementation may fail.
- Users of `ReflectComponent` will now need to pass a `&TypeRegistry` to
its `insert`, `apply_or_insert` and `copy` methods.
# Objective
- Add methods to get Change Ticks for a given resource by type or
ComponentId
- Fixes#11390
The `is_resource_id_changed` requested in the Issue already exists, this
adds their request for `get_resource_change_ticks`
## Solution
- Added two methods to get change ticks by Type or ComponentId
# Objective
Expand the existing `Query` API to support more dynamic use cases i.e.
scripting.
## Prior Art
- #6390
- #8308
- #10037
## Solution
- Create a `QueryBuilder` with runtime methods to define the set of
component accesses for a built query.
- Create new `WorldQueryData` implementations `FilteredEntityMut` and
`FilteredEntityRef` as variants of `EntityMut` and `EntityRef` that
provide run time checked access to the components included in a given
query.
- Add new methods to `Query` to create "query lens" with a subset of the
access of the initial query.
### Query Builder
The `QueryBuilder` API allows you to define a query at runtime. At it's
most basic use it will simply create a query with the corresponding type
signature:
```rust
let query = QueryBuilder::<Entity, With<A>>::new(&mut world).build();
// is equivalent to
let query = QueryState::<Entity, With<A>>::new(&mut world);
```
Before calling `.build()` you also have the opportunity to add
additional accesses and filters. Here is a simple example where we add
additional filter terms:
```rust
let entity_a = world.spawn((A(0), B(0))).id();
let entity_b = world.spawn((A(0), C(0))).id();
let mut query_a = QueryBuilder::<Entity>::new(&mut world)
.with::<A>()
.without::<C>()
.build();
assert_eq!(entity_a, query_a.single(&world));
```
This alone is useful in that allows you to decide which archetypes your
query will match at runtime. However it is also very limited, consider a
case like the following:
```rust
let query_a = QueryBuilder::<&A>::new(&mut world)
// Add an additional access
.data::<&B>()
.build();
```
This will grant the query an additional read access to component B
however we have no way of accessing the data while iterating as the type
signature still only includes &A. For an even more concrete example of
this consider dynamic components:
```rust
let query_a = QueryBuilder::<Entity>::new(&mut world)
// Adding a filter is easy since it doesn't need be read later
.with_id(component_id_a)
// How do I access the data of this component?
.ref_id(component_id_b)
.build();
```
With this in mind the `QueryBuilder` API seems somewhat incomplete by
itself, we need some way method of accessing the components dynamically.
So here's one:
### Query Transmutation
If the problem is not having the component in the type signature why not
just add it? This PR also adds transmute methods to `QueryBuilder` and
`QueryState`. Here's a simple example:
```rust
world.spawn(A(0));
world.spawn((A(1), B(0)));
let mut query = QueryBuilder::<()>::new(&mut world)
.with::<B>()
.transmute::<&A>()
.build();
query.iter(&world).for_each(|a| assert_eq!(a.0, 1));
```
The `QueryState` and `QueryBuilder` transmute methods look quite similar
but are different in one respect. Transmuting a builder will always
succeed as it will just add the additional accesses needed for the new
terms if they weren't already included. Transmuting a `QueryState` will
panic in the case that the new type signature would give it access it
didn't already have, for example:
```rust
let query = QueryState::<&A, Option<&B>>::new(&mut world);
/// This is fine, the access for Option<&A> is less restrictive than &A
query.transmute::<Option<&A>>(&world);
/// Oh no, this would allow access to &B on entities that might not have it, so it panics
query.transmute::<&B>(&world);
/// This is right out
query.transmute::<&C>(&world);
```
This is quite an appealing API to also have available on `Query` however
it does pose one additional wrinkle: In order to to change the iterator
we need to create a new `QueryState` to back it. `Query` doesn't own
it's own state though, it just borrows it, so we need a place to borrow
it from. This is why `QueryLens` exists, it is a place to store the new
state so it can be borrowed when you call `.query()` leaving you with an
API like this:
```rust
fn function_that_takes_a_query(query: &Query<&A>) {
// ...
}
fn system(query: Query<(&A, &B)>) {
let lens = query.transmute_lens::<&A>();
let q = lens.query();
function_that_takes_a_query(&q);
}
```
Now you may be thinking: Hey, wait a second, you introduced the problem
with dynamic components and then described a solution that only works
for static components! Ok, you got me, I guess we need a bit more:
### Filtered Entity References
Currently the only way you can access dynamic components on entities
through a query is with either `EntityMut` or `EntityRef`, however these
can access all components and so conflict with all other accesses. This
PR introduces `FilteredEntityMut` and `FilteredEntityRef` as
alternatives that have additional runtime checking to prevent accessing
components that you shouldn't. This way you can build a query with a
`QueryBuilder` and actually access the components you asked for:
```rust
let mut query = QueryBuilder::<FilteredEntityRef>::new(&mut world)
.ref_id(component_id_a)
.with(component_id_b)
.build();
let entity_ref = query.single(&world);
// Returns Some(Ptr) as we have that component and are allowed to read it
let a = entity_ref.get_by_id(component_id_a);
// Will return None even though the entity does have the component, as we are not allowed to read it
let b = entity_ref.get_by_id(component_id_b);
```
For the most part these new structs have the exact same methods as their
non-filtered equivalents.
Putting all of this together we can do some truly dynamic ECS queries,
check out the `dynamic` example to see it in action:
```
Commands:
comp, c Create new components
spawn, s Spawn entities
query, q Query for entities
Enter a command with no parameters for usage.
> c A, B, C, Data 4
Component A created with id: 0
Component B created with id: 1
Component C created with id: 2
Component Data created with id: 3
> s A, B, Data 1
Entity spawned with id: 0v0
> s A, C, Data 0
Entity spawned with id: 1v0
> q &Data
0v0: Data: [1, 0, 0, 0]
1v0: Data: [0, 0, 0, 0]
> q B, &mut Data
0v0: Data: [2, 1, 1, 1]
> q B || C, &Data
0v0: Data: [2, 1, 1, 1]
1v0: Data: [0, 0, 0, 0]
```
## Changelog
- Add new `transmute_lens` methods to `Query`.
- Add new types `QueryBuilder`, `FilteredEntityMut`, `FilteredEntityRef`
and `QueryLens`
- `update_archetype_component_access` has been removed, archetype
component accesses are now determined by the accesses set in
`update_component_access`
- Added method `set_access` to `WorldQuery`, this is called before
`update_component_access` for queries that have a restricted set of
accesses, such as those built by `QueryBuilder` or `QueryLens`. This is
primarily used by the `FilteredEntity*` variants and has an empty trait
implementation.
- Added method `get_state` to `WorldQuery` as a fallible version of
`init_state` when you don't have `&mut World` access.
## Future Work
Improve performance of `FilteredEntityMut` and `FilteredEntityRef`,
currently they have to determine the accesses a query has in a given
archetype during iteration which is far from ideal, especially since we
already did the work when matching the archetype in the first place. To
avoid making more internal API changes I have left it out of this PR.
---------
Co-authored-by: Mike Hsu <mike.hsu@gmail.com>
Based on discussion after #11268 was merged:
Instead of panicking should the impl of `TypeId::hash` change
significantly, have a fallback and detect this in a test.
# Objective
`TypeId` contains a high-quality hash. Whenever a lookup based on a
`TypeId` is performed (e.g. to insert/remove components), the hash is
run through a second hash function. This is unnecessary.
## Solution
Skip re-hashing `TypeId`s.
In my
[testing](https://gist.github.com/SpecificProtagonist/4b49ad74c6b82b0aedd3b4ea35121be8),
this improves lookup performance consistently by 10%-15% (of course, the
lookup is only a small part of e.g. a bundle insertion).
# Objective
The purpose of this PR is to begin putting together a unified identifier
structure that can be used by entities and later components (as
entities) as well as relationship pairs for relations, to enable all of
these to be able to use the same storages. For the moment, to keep
things small and focused, only `Entity` is being changed to make use of
the new `Identifier` type, keeping `Entity`'s API and
serialization/deserialization the same. Further changes are for
follow-up PRs.
## Solution
`Identifier` is a wrapper around `u64` split into two `u32` segments
with the idea of being generalised to not impose restrictions on
variants. That is for `Entity` to do. Instead, it is a general API for
taking bits to then merge and map into a `u64` integer. It exposes
low/high methods to return the two value portions as `u32` integers,
with then the MSB masked for usage as a type flag, enabling entity kind
discrimination and future activation/deactivation semantics.
The layout in this PR for `Identifier` is described as below, going from
MSB -> LSB.
```
|F| High value | Low value |
|_|_______________________________|________________________________|
|1| 31 | 32 |
F = Bit Flags
```
The high component in this implementation has only 31 bits, but that
still leaves 2^31 or 2,147,483,648 values that can be stored still, more
than enough for any generation/relation kinds/etc usage. The low part is
a full 32-bit index. The flags allow for 1 bit to be used for
entity/pair discrimination, as these have different usages for the
low/high portions of the `Identifier`. More bits can be reserved for
more variants or activation/deactivation purposes, but this currently
has no use in bevy.
More bits could be reserved for future features at the cost of bits for
the high component, so how much to reserve is up for discussion. Also,
naming of the struct and methods are also subject to further
bikeshedding and feedback.
Also, because IDs can have different variants, I wonder if
`Entity::from_bits` needs to return a `Result` instead of potentially
panicking on receiving an invalid ID.
PR is provided as an early WIP to obtain feedback and notes on whether
this approach is viable.
---
## Changelog
### Added
New `Identifier` struct for unifying IDs.
### Changed
`Entity` changed to use new `Identifier`/`IdentifierMask` as the
underlying ID logic.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: vero <email@atlasdostal.com>
# Objective
- Implements change described in
https://github.com/bevyengine/bevy/issues/3022
- Goal is to allow Entity to benefit from niche optimization, especially
in the case of Option<Entity> to reduce memory overhead with structures
with empty slots
## Discussion
- First PR attempt: https://github.com/bevyengine/bevy/pull/3029
- Discord:
https://discord.com/channels/691052431525675048/1154573759752183808/1154573764240093224
## Solution
- Change `Entity::generation` from u32 to NonZeroU32 to allow for niche
optimization.
- The reason for changing generation rather than index is so that the
costs are only encountered on Entity free, instead of on Entity alloc
- There was some concern with generations being used, due to there being
some desire to introduce flags. This was more to do with the original
retirement approach, however, in reality even if generations were
reduced to 24-bits, we would still have 16 million generations available
before wrapping and current ideas indicate that we would be using closer
to 4-bits for flags.
- Additionally, another concern was the representation of relationships
where NonZeroU32 prevents us using the full address space, talking with
Joy it seems unlikely to be an issue. The majority of the time these
entity references will be low-index entries (ie. `ChildOf`, `Owes`),
these will be able to be fast lookups, and the remainder of the range
can use slower lookups to map to the address space.
- It has the additional benefit of being less visible to most users,
since generation is only ever really set through `from_bits` type
methods.
- `EntityMeta` was changed to match
- On free, generation now explicitly wraps:
- Originally, generation would panic in debug mode and wrap in release
mode due to using regular ops.
- The first attempt at this PR changed the behavior to "retire" slots
and remove them from use when generations overflowed. This change was
controversial, and likely needs a proper RFC/discussion.
- Wrapping matches current release behaviour, and should therefore be
less controversial.
- Wrapping also more easily migrates to the retirement approach, as
users likely to exhaust the exorbitant supply of generations will code
defensively against aliasing and that defensive code is less likely to
break than code assuming that generations don't wrap.
- We use some unsafe code here when wrapping generations, to avoid
branch on NonZeroU32 construction. It's guaranteed safe due to how we
perform wrapping and it results in significantly smaller ASM code.
- https://godbolt.org/z/6b6hj8PrM
## Migration
- Previous `bevy_scene` serializations have a high likelihood of being
broken, as they contain 0th generation entities.
## Current Issues
- `Entities::reserve_generations` and `EntityMapper` wrap now, even in
debug - although they technically did in release mode already so this
probably isn't a huge issue. It just depends if we need to change
anything here?
---------
Co-authored-by: Natalie Baker <natalie.baker@advancednavigation.com>
# Objective
`Column` unconditionally requires three separate allocations: one for
the data, and two for the tick Vecs. The tick Vecs aren't really needed
for Resources, so we're allocating a bunch of one-element Vecs, and it
costs two extra dereferences when fetching/inserting/removing resources.
## Solution
Drop one level lower in `ResourceData` and directly store a `BlobVec`
and two `UnsafeCell<Tick>`s. This should significantly shrink
`ResourceData` (exchanging 6 usizes for 2 u32s), removes the need to
dereference two separate ticks when inserting/removing/fetching
resources, and can significantly decrease the number of small
allocations the ECS makes by default.
This tentatively might have a non-insignificant impact on the CPU cost
for rendering since we're constantly fetching resources in draw
functions, depending on how aggressively inlined the functions are.
This requires reimplementing some of the unsafe functions that `Column`
wraps, but it also allows us to delete a few Column APIs that were only
used for Resources, so the total amount of unsafe we're maintaining
shouldn't change significantly.
---------
Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com>
# Objective
In #9604 we removed the ability to define an `EntityCommand` as
`fn(Entity, &mut World)`. However I have since realized that `fn(Entity,
&mut World)` is an incredibly expressive and powerful way to define a
command for an entity that may or may not exist (`fn(EntityWorldMut)`
only works on entities that are alive).
## Solution
Support `EntityCommand`s in the style of `fn(Entity, &mut World)`, as
well as `fn(EntityWorldMut)`. Use a marker generic on the
`EntityCommand` trait to allow multiple impls.
The second commit in this PR replaces all of the internal command
definitions with ones using `fn` definitions. This is mostly just to
show off how expressive this style of command is -- we can revert this
commit if we'd rather avoid breaking changes.
---
## Changelog
Re-added support for expressively defining an `EntityCommand` as a
function that takes `Entity, &mut World`.
## Migration Guide
All `Command` types in `bevy_ecs`, such as `Spawn`, `SpawnBatch`,
`Insert`, etc., have been made private. Use the equivalent methods on
`Commands` or `EntityCommands` instead.
# Objective
- Make it possible to react to arbitrary state changes
- this will be useful regardless of the other changes to states
currently being discussed
## Solution
- added `StateTransitionEvent<S>` struct
- previously, this would have been impossible:
```rs
#[derive(States, Eq, PartialEq, Hash, Copy, Clone, Default)]
enum MyState {
#[default]
Foo,
Bar(MySubState),
}
enum MySubState {
Spam,
Eggs,
}
app.add_system(Update, on_enter_bar);
fn on_enter_bar(trans: EventReader<StateTransition<MyState>>){
for (befoare, after) in trans.read() {
match before, after {
MyState::Foo, MyState::Bar(_) => info!("detected transition foo => bar");
_, _ => ();
}
}
}
```
---
## Changelog
- Added
- `StateTransitionEvent<S>` - Fired on state changes of `S`
## Migration Guide
N/A no breaking changes
---------
Co-authored-by: Federico Rinaldi <gisquerin@gmail.com>
# Objective
When `BlobVec::reserve` is called with an argument causing capacity
overflow, in release build capacity overflow is ignored, and capacity is
decreased.
I'm not sure it is possible to exploit this issue using public API of
`bevy_ecs`, but better fix it anyway.
## Solution
Check for capacity overflow.
# Objective
`SystemName` might be useful in systems which accept `&mut World`.
## Solution
- `impl ExclusiveSystemParam for SystemName`
- move `SystemName` into a separate file, because it no longer belongs
to a file which defines `SystemParam`
- add a test for new impl, and for existing impl
## Changelog
- `impl ExclusiveSystemParam for SystemName`
# Objective
There are a lot of doctests that are `ignore`d for no documented reason.
And that should be fixed.
## Solution
I searched the bevy repo with the regex ` ```[a-z,]*ignore ` in order to
find all `ignore`d doctests. For each one of the `ignore`d doctests, I
did the following steps:
1. Attempt to remove the `ignored` attribute while still passing the
test. I did this by adding hidden dummy structs and imports.
2. If step 1 doesn't work, attempt to replace the `ignored` attribute
with the `no_run` attribute while still passing the test.
3. If step 2 doesn't work, keep the `ignored` attribute but add
documentation for why the `ignored` attribute was added.
---------
Co-authored-by: François <mockersf@gmail.com>
# Objective
Fixes#11050
Rename ArchetypeEntity::entity to ArchetypeEntity::id to be consistent
with `EntityWorldMut`, `EntityMut` and `EntityRef`.
## Migration Guide
The method `ArchetypeEntity::entity` has been renamed to
`ArchetypeEntity::id`
# Objective
Implement `ExclusiveSystemParam` for `PhantomData`.
For the same reason `SystemParam` impl exists: to simplify writing
generic code.
786abbf3f5/crates/bevy_ecs/src/system/system_param.rs (L1557)
Also for consistency.
## Solution
`impl ExclusiveSystemParam for PhantomData`.
## Changelog
Added: PhantomData<T> now implements ExclusiveSystemParam.
# Objective
Mostly for consistency.
## Solution
```rust
impl ExclusiveSystemParam for WorldId
```
- Also add a test for `SystemParam for WorldId`
## Changelog
Added: Worldd now implements ExclusiveSystemParam.
# Objective
Fix ci hang, so we can merge pr's again.
## Solution
- switch ppa action to use mesa stable versions
https://launchpad.net/~kisak/+archive/ubuntu/turtle
- use commit from #11123
---------
Co-authored-by: Stepan Koltsov <stepan.koltsov@gmail.com>
# Objective
The documentation for the `States` trait contains an error! There is a
single colon missing from `OnExit<T:Variant>`.
## Solution
Replace `OnExit<T:Variant>` with `OnExit<T::Variant>`. (Notice the added
colon.)
---
## Changelog
### Added
- Added missing colon in `States` documentation.
---
Bevy community, you may now rest easy.
# Objective
Fix#10731.
## Solution
Rename `App::add_state<T>(&mut self)` to `init_state`, and add
`App::insert_state<T>(&mut self, state: T)`. I decided on these names
because they are more similar to `init_resource` and `insert_resource`.
I also removed the `States` trait's requirement for `Default`. Instead,
`init_state` requires `FromWorld`.
---
## Changelog
- Renamed `App::add_state` to `init_state`.
- Added `App::insert_state`.
- Removed the `States` trait's requirement for `Default`.
## Migration Guide
- Renamed `App::add_state` to `init_state`.
# Objective
`Has<T>` in some niche cases may behave in an unexpected way.
Specifically, when using `Query::get` on a `Has<T>` with a despawned
entity.
## Solution
Add precision about cases wehre `Query::get` could return an `Err`.