# Objective
`System<f32>` currently does not implement `Eq` even though it should
## Solution
Manually implement `Eq` like other traits are manually implemented
# Objective
Since #9822, `SimpleExecutor` panics when an automatic sync point is
inserted:
```rust
let mut sched = Schedule::default();
sched.set_executor_kind(ExecutorKind::Simple);
sched.add_systems((|_: Commands| (), || ()).chain());
sched.run(&mut World::new());
```
```
System's param_state was not found. Did you forget to initialize this system before running it?
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
Encountered a panic in system `bevy_ecs::schedule::executor::apply_deferred`!
```
## Solution
Don't try to run the `apply_deferred` system.
## Objective
Always have `some_system.into_system().type_id() ==
some_system.into_system_set().system_type().unwrap()`.
System sets have a `fn system_type() -> Option<TypeId>` that is
implemented by `SystemTypeSet` to returning the TypeId of the system's
function type. This was implemented in
https://github.com/bevyengine/bevy/pull/7715 and is used in
`bevy_mod_debugdump` to handle `.after(function)` constraints.
Back then, `System::type_id` always also returned the type id of the
function item, not of `FunctionSystem<M, F>`.
https://github.com/bevyengine/bevy/pull/11728 changes the behaviour of
`System::type_id` so that it returns the id of the
`FunctionSystem`/`ExclusiveFunctionSystem` wrapper, but it did not
change `SystemTypeSet::system_type`, so doing the lookup breaks in
`bevy_mod_debugdump`.
## Solution
Change `IntoSystemSet` for functions to return a
`SystemTypeSet<FunctionSystem>` /
`SystemTypeSet<ExclusiveFunctionSystem>` instead of `SystemTypeSet<F>`.
# Objective
* Fixes#11932 (performance impact when stepping is disabled)
## Solution
The `Option<FixedBitSet>` argument added to `ScheduleExecutor::run()` in
#8453 caused a measurable performance impact even when stepping is
disabled. This can be seen by the benchmark of running `Schedule:run()`
on an empty schedule in a tight loop
(https://github.com/bevyengine/bevy/issues/11932#issuecomment-1950970236).
I was able to get the same performance results as on 0.12.1 by changing
the argument
`ScheduleExecutor::run()` from `Option<FixedBitSet>` to
`Option<&FixedBitSet>`. The down-side of this change is that
`Schedule::run()` now takes about 6% longer (3.7319 ms vs 3.9855ns) when
stepping is enabled
---
## Changelog
* Change `ScheduleExecutor::run()` `_skipped_systems` from
`Option<FixedBitSet>` to `Option<&FixedBitSet>`
* Added a few benchmarks to measure `Schedule::run()` performance with
various executors
# Objective
- There are multiple instances of `let Some(x) = ... else { None };`
throughout the project.
- Because `Option<T>` implements
[`Try`](https://doc.rust-lang.org/stable/std/ops/trait.Try.html), it can
use the question mark `?` operator.
## Solution
- Use question mark operator instead of `let Some(x) = ... else { None
}`.
---
There was another PR that did a similar thing a few weeks ago, but I
couldn't find it.
# Objective
At the start of every schedule run, there's currently a guaranteed piece
of overhead as the async executor spawns the MultithreadeExecutor task
onto one of the ComputeTaskPool threads.
## Solution
Poll the executor once to immediately schedule systems without waiting
for the async executor, then spawn the task if and only if the executor
does not immediately terminate.
On a similar note, having the executor task immediately start executing
a system in the same async task might yield similar results over a
broader set of cases. However, this might be more involved, and may need
a solution like #8304.
# Objective
When applying a command, we currently use double indirection for the
world reference `&mut Option<&mut World>`. Since this is used across a
`fn` pointer boundary, this can't get optimized away.
## Solution
Reborrow the world reference and pass `Option<&mut World>` instead.
# Objective
Bevy's change detection functionality is invaluable for writing robust
apps, but it only works in the context of systems and exclusive systems.
Oftentimes it is necessary to detect changes made in earlier code
without having to place the code in separate systems, but it is not
currently possible to do so since there is no way to set the value of
`World::last_change_tick`.
`World::clear_trackers` allows you to update the change tick, but this
has unintended side effects, since it irreversibly affects the behavior
of change and removal detection for the entire app.
## Solution
Add a method `World::last_change_tick_scope`. This allows you to set
`last_change_tick` to a specific value for a region of code. To ensure
that misuse doesn't break unrelated functions, we restore the world's
original change tick at the end of the provided scope.
### Example
A function that uses this to run an update loop repeatedly, allowing
each iteration of the loop to react to changes made in the previous loop
iteration.
```rust
fn update_loop(
world: &mut World,
mut update_fn: impl FnMut(&mut World) -> std::ops::ControlFlow<()>,
) {
let mut last_change_tick = world.last_change_tick();
// Repeatedly run the update function until it requests a break.
loop {
// Update once.
let control_flow = world.last_change_tick_scope(last_change_tick, |world| {
update_fn(world)
});
// End the loop when the closure returns `ControlFlow::Break`.
if control_flow.is_break() {
break;
}
// Increment the change tick so the next update can detect changes from this update.
last_change_tick = world.change_tick();
world.increment_change_tick();
}
}
```
---
## Changelog
+ Added `World::last_change_tick_scope`, which allows you to specify the
reference for change detection within a certain scope.
# Objective
Reduce the size of `bevy_utils`
(https://github.com/bevyengine/bevy/issues/11478)
## Solution
Move `EntityHash` related types into `bevy_ecs`. This also allows us
access to `Entity`, which means we no longer need `EntityHashMap`'s
first generic argument.
---
## Changelog
- Moved `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` into `bevy::ecs::entity::hash` .
- Removed `EntityHashMap`'s first generic argument. It is now hardcoded
to always be `Entity`.
## Migration Guide
- Uses of `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` now have to be imported from `bevy::ecs::entity::hash`.
- Uses of `EntityHashMap` no longer have to specify the first generic
parameter. It is now hardcoded to always be `Entity`.
# Objective
It would be useful to be able to inspect a `QueryState`'s accesses so we
can detect when the data it accesses changes without having to iterate
it. However there are two things preventing this:
* These accesses are unnecessarily encapsulated.
* `Has<T>` indirectly accesses `T`, but does not register it.
## Solution
* Expose accesses and matches used by `QueryState`.
* Add the notion of "archetypal" accesses, which are not accessed
directly, but whose presence in an archetype affects a query result.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
I want to keep track of despawned entities.
I am aware of
[`RemovedComponents`](https://docs.rs/bevy/0.12.1/bevy/ecs/prelude/struct.RemovedComponents.html).
However, the docs don't explicitly mention that despawned entities are
also included in this event iterator.
I searched through the bevy tests to find `removal_tracking` in
`crates/bevy_ecs/src/system/mod.rs` that confirmed the behavior:
```rust
...
assert_eq!(
removed_i32.read().collect::<Vec<_>>(),
&[despawned.0],
"despawning causes the correct entity to show up in the 'RemovedComponent' system parameter."
);
...
```
## Solution
- Explicitly mention this behavior in docs.
[`ScheduleLabel`] derive macro uses "ScheduleName" as the trait name by
mistake. This only affects the error message when a user tries to use
the derive macro on a union type. No other code is affected.
# Objective
- Fixes#11679
## Solution
- Added `IntoSystem::system_type_id` which returns the equivalent of
`system.into_system().type_id()` without construction. This allows for
getting the `TypeId` of functions (a function is an unnamed type and
therefore you cannot call `TypeId::of::<apply_deferred::System>()`)
- Added default implementation of `System::type_id` to ensure
consistency between implementations. Some returned `Self`, while others
were returning an inner value instead. This ensures consistency with
`IntoSystem::system_type_id`.
## Migration Guide
If you use `System::type_id()` on function systems (exclusive or not),
ensure you are comparing its value to other `System::type_id()` calls,
or `IntoSystem::system_type_id()`.
This code wont require any changes, because `IntoSystem`'s are directly
compared to each other.
```rust
fn test_system() {}
let type_id = test_system.type_id();
// ...
// No change required
assert_eq!(test_system.type_id(), type_id);
```
Likewise, this code wont, because `System`'s are directly compared.
```rust
fn test_system() {}
let type_id = IntoSystem::into_system(test_system).type_id();
// ...
// No change required
assert_eq!(IntoSystem::into_system(test_system).type_id(), type_id);
```
The below _does_ require a change, since you're comparing a `System`
type to a `IntoSystem` type.
```rust
fn test_system() {}
// Before
assert_eq!(test_system.type_id(), IntoSystem::into_system(test_system).type_id());
// After
assert_eq!(test_system.system_type_id(), IntoSystem::into_system(test_system).type_id());
```
# Objective
- (Partially) Fixes#9904
- Acts on #9910
## Solution
- Deprecated the relevant methods from `Query`, cascading changes as
required across Bevy.
---
## Changelog
- Deprecated `QueryState::get_component_unchecked_mut` method
- Deprecated `Query::get_component` method
- Deprecated `Query::get_component_mut` method
- Deprecated `Query::component` method
- Deprecated `Query::component_mut` method
- Deprecated `Query::get_component_unchecked_mut` method
## Migration Guide
### `QueryState::get_component_unchecked_mut`
Use `QueryState::get_unchecked_manual` and select for the exact
component based on the structure of the exact query as required.
### `Query::(get_)component(_unchecked)(_mut)`
Use `Query::get` and select for the exact component based on the
structure of the exact query as required.
- For mutable access (`_mut`), use `Query::get_mut`
- For unchecked access (`_unchecked`), use `Query::get_unchecked`
- For panic variants (non-`get_`), add `.unwrap()`
## Notes
- `QueryComponentError` can be removed once these deprecated methods are
also removed. Due to an interaction with `thiserror`'s derive macro, it
is not marked as deprecated.
Use `TypeIdMap<T>` instead of `HashMap<TypeId, T>`
- ~~`TypeIdMap` was in `bevy_ecs`. I've kept it there because of
#11478~~
- ~~I haven't swapped `bevy_reflect` over because it doesn't depend on
`bevy_ecs`, but I'd also be happy with moving `TypeIdMap` to
`bevy_utils` and then adding a dependency to that~~
- ~~this is a slight change in the public API of
`DrawFunctionsInternal`, does this need to go in the changelog?~~
## Changelog
- moved `TypeIdMap` to `bevy_utils`
- changed `DrawFunctionsInternal::indices` to `TypeIdMap`
## Migration Guide
- `TypeIdMap` now lives in `bevy_utils`
- `DrawFunctionsInternal::indices` now uses a `TypeIdMap`.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Currently the `missing_docs` lint is allowed-by-default and enabled at
crate level when their documentations is complete (see #3492).
This PR proposes to inverse this logic by making `missing_docs`
warn-by-default and mark crates with imcomplete docs allowed.
## Solution
Makes `missing_docs` warn at workspace level and allowed at crate level
when the docs is imcomplete.
# Objective
Add interactive system debugging capabilities to bevy, providing
step/break/continue style capabilities to running system schedules.
* Original implementation: #8063
- `ignore_stepping()` everywhere was too much complexity
* Schedule-config & Resource discussion: #8168
- Decided on selective adding of Schedules & Resource-based control
## Solution
Created `Stepping` Resource. This resource can be used to enable
stepping on a per-schedule basis. Systems within schedules can be
individually configured to:
* AlwaysRun: Ignore any stepping state and run every frame
* NeverRun: Never run while stepping is enabled
- this allows for disabling of systems while debugging
* Break: If we're running the full frame, stop before this system is run
Stepping provides two modes of execution that reflect traditional
debuggers:
* Step-based: Only execute one system at a time
* Continue/Break: Run all systems, but stop before running a system
marked as Break
### Demo
https://user-images.githubusercontent.com/857742/233630981-99f3bbda-9ca6-4cc4-a00f-171c4946dc47.mov
Breakout has been modified to use Stepping. The game runs normally for a
couple of seconds, then stepping is enabled and the game appears to
pause. A list of Schedules & Systems appears with a cursor at the first
System in the list. The demo then steps forward full frames using the
spacebar until the ball is about to hit a brick. Then we step system by
system as the ball impacts a brick, showing the cursor moving through
the individual systems. Finally the demo switches back to frame stepping
as the ball changes course.
### Limitations
Due to architectural constraints in bevy, there are some cases systems
stepping will not function as a user would expect.
#### Event-driven systems
Stepping does not support systems that are driven by `Event`s as events
are flushed after 1-2 frames. Although game systems are not running
while stepping, ignored systems are still running every frame, so events
will be flushed.
This presents to the user as stepping the event-driven system never
executes the system. It does execute, but the events have already been
flushed.
This can be resolved by changing event handling to use a buffer for
events, and only dropping an event once all readers have read it.
The work-around to allow these systems to properly execute during
stepping is to have them ignore stepping:
`app.add_systems(event_driven_system.ignore_stepping())`. This was done
in the breakout example to ensure sound played even while stepping.
#### Conditional Systems
When a system is stepped, it is given an opportunity to run. If the
conditions of the system say it should not run, it will not.
Similar to Event-driven systems, if a system is conditional, and that
condition is only true for a very small time window, then stepping the
system may not execute the system. This includes depending on any sort
of external clock.
This exhibits to the user as the system not always running when it is
stepped.
A solution to this limitation is to ensure any conditions are consistent
while stepping is enabled. For example, all systems that modify any
state the condition uses should also enable stepping.
#### State-transition Systems
Stepping is configured on the per-`Schedule` level, requiring the user
to have a `ScheduleLabel`.
To support state-transition systems, bevy generates needed schedules
dynamically. Currently it’s very difficult (if not impossible, I haven’t
verified) for the user to get the labels for these schedules.
Without ready access to the dynamically generated schedules, and a
resolution for the `Event` lifetime, **stepping of the state-transition
systems is not supported**
---
## Changelog
- `Schedule::run()` updated to consult `Stepping` Resource to determine
which Systems to run each frame
- Added `Schedule.label` as a `BoxedSystemLabel`, along with supporting
`Schedule::set_label()` and `Schedule::label()` methods
- `Stepping` needed to know which `Schedule` was running, and prior to
this PR, `Schedule` didn't track its own label
- Would have preferred to add `Schedule::with_label()` and remove
`Schedule::new()`, but this PR touches enough already
- Added calls to `Schedule.set_label()` to `App` and `World` as needed
- Added `Stepping` resource
- Added `Stepping::begin_frame()` system to `MainSchedulePlugin`
- Run before `Main::run_main()`
- Notifies any `Stepping` Resource a new render frame is starting
## Migration Guide
- Add a call to `Schedule::set_label()` for any custom `Schedule`
- This is only required if the `Schedule` will be stepped
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Fix an issue where events are not being dropped after being read. I
believe #10077 introduced this issue. The code currently works as
follows:
1. `EventUpdateSignal` is **shared for all event types**
2. During the fixed update phase, `EventUpdateSignal` is set to true
3. `event_update_system`, **unique per event type**, runs to update
Events<T>
4. `event_update_system` reads value of `EventUpdateSignal` to check if
it should update, and then **resets** the value to false
If there are multiple event types, the first `event_update_system` run
will reset the shared `EventUpdateSignal` signal, preventing other
events from being cleared.
## Solution
I've updated the code to have separate signals per event type and added
a shared signal to notify all systems that the time plugin is installed.
## Changelog
- Fixed bug where events were not being dropped
# Objective
- Deriving `Reflect` for some public ChangeDetection/Tick structs in
bevy_ecs
---------
Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
# Objective
Fixes: https://github.com/bevyengine/bevy/issues/11549
Add a doctest example of what a custom implementation of an
`EntityMapper` would look like.
(need to wait until https://github.com/bevyengine/bevy/pull/11428 is
merged)
---------
Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Hennadii Chernyshchyk <genaloner@gmail.com>
# Objective
- Sending and receiving events of the same type in the same system is a
reasonably common need, generally due to event filtering.
- However, actually doing so is non-trivial, as the borrow checker
simultaneous hates mutable and immutable access.
## Solution
- Demonstrate two sensible patterns for doing so.
- Update the `ManualEventReader` docs to be more clear and link to this
example.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
Co-authored-by: ickk <git@ickk.io>
# Objective
My motivation are to resolve some of the issues I describe in this
[PR](https://github.com/bevyengine/bevy/issues/11415):
- not being able to easily mapping entities because the current
EntityMapper requires `&mut World` access
- not being able to create my own `EntityMapper` because some components
(`Parent` or `Children`) do not provide any public way of modifying the
inner entities
This PR makes the `MapEntities` trait accept a generic type that
implements `Mapper` to perform the mapping.
This means we don't need to use `EntityMapper` to perform our mapping,
we can use any type that implements `Mapper`. Basically this change is
very similar to what `serde` does. Instead of specifying directly how to
map entities for a given type, we have 2 distinct steps:
- the user implements `MapEntities` to define how the type will be
traversed and which `Entity`s will be mapped
- the `Mapper` defines how the mapping is actually done
This is similar to the distinction between `Serialize` (`MapEntities`)
and `Serializer` (`Mapper`).
This allows networking library to map entities without having to use the
existing `EntityMapper` (which requires `&mut World` access and the use
of `world_scope()`)
## Migration Guide
- The existing `EntityMapper` (notably used to replicate `Scenes` across
different `World`s) has been renamed to `SceneEntityMapper`
- The `MapEntities` trait now works with a generic `EntityMapper`
instead of the specific struct `EntityMapper`.
Calls to `fn map_entities(&mut self, entity_mapper: &mut EntityMapper)`
need to be updated to
`fn map_entities<M: EntityMapper>(&mut self, entity_mapper: &mut M)`
- The new trait `EntityMapper` has been added to the prelude
---------
Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: UkoeHB <37489173+UkoeHB@users.noreply.github.com>
# Objective
Fixes#11311
## Solution
Adds an example to the documentation for `par_iter_mut`. I didn't add
any examples to `par_iter`, because I couldn't think of a good example
and I figure users can infer that `par_iter` and `par_iter_mut` are
similar.
# Objective
It's sometimes desirable to get a `Res<T>` rather than `&T` from
`World::get_resource`.
Alternative to #9940, partly adresses #9926
## Solution
added additional methods to `World` and `UnsafeWorldCell` to retrieve a
resource wrapped in a `Res`.
- `UnsafeWorldCell::get_resource_ref`
- `World::get_resource_ref`
- `World::resource_ref`
I can change it so `World::resource_mut` returns `ResMut` instead of
`Mut` as well if that's desired, but that could also be added later in a
seperate pr.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Mike <mike.hsu@gmail.com>
Co-authored-by: MinerSebas <66798382+MinerSebas@users.noreply.github.com>
# Objective
While working on #11527 I spotted that the internal field for the label
of a `Schedule` is called `name`. Using `label` seems more in line with
the other naming across Bevy.
## Solution
Renaming the field was straightforward since it's not exposed outside of
the module. This also means a changelog or migration guide isn't
necessary.
# Objective
- `World::get_resource`'s comment on it's `unsafe` usage meant to say
"mutably" but instead said "immutably."
- Fixes#11430.
## Solution
- Replace "immutably" with "mutably."
# Objective
It would be convenient to be able to call functions with `Commands` as a
parameter without having to move your own instance of `Commands`. Since
this struct is composed entirely of references, we can easily get an
owned instance of `Commands` by shortening the lifetime.
## Solution
Add `Commands::reborrow`, `EntiyCommands::reborrow`, and
`Deferred::reborrow`, which returns an owned version of themselves with
a shorter lifetime.
Remove unnecessary lifetimes from `EntityCommands`. The `'w` and `'s`
lifetimes only have to be separate for `Commands` because it's used as a
`SystemParam` -- this is not the case for `EntityCommands`.
---
## Changelog
Added `Commands::reborrow`. This is useful if you have `&mut Commands`
but need `Commands`. Also added `EntityCommands::reborrow` and
`Deferred:reborrow` which serve the same purpose.
## Migration Guide
The lifetimes for `EntityCommands` have been simplified.
```rust
// Before (Bevy 0.12)
struct MyStruct<'w, 's, 'a> {
commands: EntityCommands<'w, 's, 'a>,
}
// After (Bevy 0.13)
struct MyStruct<'a> {
commands: EntityCommands<'a>,
}
```
The method `EntityCommands::commands` now returns `Commands` rather than
`&mut Commands`.
```rust
// Before (Bevy 0.12)
let commands = entity_commands.commands();
commands.spawn(...);
// After (Bevy 0.13)
let mut commands = entity_commands.commands();
commands.spawn(...);
```
# Objective
Document a few common cases of which lifetime is required when using
SystemParam Derive
## Solution
Added a table in the doc comment
---------
Co-authored-by: laund <me@laund.moe>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Adjust bevy internals to utilize `Option<Res<State<S>>>` instead of
`Res<State<S>>`, to allow for adding/removing states at runtime and
avoid unexpected panics.
As requested here:
https://github.com/bevyengine/bevy/pull/10088#issuecomment-1869185413
---
## Changelog
- Changed the use of `world.resource`/`world.resource_mut` to
`world.get_resource`/`world.get_resource_mut` in the
`run_enter_schedule` and `apply_state_transition` systems and handled
the `None` option.
- `in_state` now returns a ` FnMut(Option<Res<State<S>>>) -> bool +
Clone`, returning `false` if the resource doesn't exist.
- `state_exists_and_equals` was marked as deprecated, and now just runs
and returns `in_state`, since their bevhaviour is now identical
- `state_changed` now takes an `Option<Res<State<S>>>` and returns
`false` if it does not exist.
I would like to remove `state_exists_and_equals` fully, but wanted to
ensure that is acceptable before doing so.
---------
Co-authored-by: Mike <mike.hsu@gmail.com>
# Objective
- `FromType<T>` for `ReflectComponent` and `ReflectBundle` currently
require `T: FromWorld` for two reasons:
- they include a `from_world` method;
- they create dummy `T`s using `FromWorld` and then `apply` a `&dyn
Reflect` to it to simulate `FromReflect`.
- However `FromWorld`/`Default` may be difficult/weird/impractical to
implement, while `FromReflect` is easier and also more natural for the
job.
- See also
https://discord.com/channels/691052431525675048/1146022009554337792
## Solution
- Split `from_world` from `ReflectComponent` and `ReflectBundle` into
its own `ReflectFromWorld` struct.
- Replace the requirement on `FromWorld` in `ReflectComponent` and
`ReflectBundle` with `FromReflect`
---
## Changelog
- `ReflectComponent` and `ReflectBundle` no longer offer a `from_world`
method.
- `ReflectComponent` and `ReflectBundle`'s `FromType<T>` implementation
no longer requires `T: FromWorld`, but now requires `FromReflect`.
- `ReflectComponent::insert`, `ReflectComponent::apply_or_insert` and
`ReflectComponent::copy` now take an extra `&TypeRegistry` parameter.
- There is now a new `ReflectFromWorld` struct.
## Migration Guide
- Existing uses of `ReflectComponent::from_world` and
`ReflectBundle::from_world` will have to be changed to
`ReflectFromWorld::from_world`.
- Users of `#[reflect(Component)]` and `#[reflect(Bundle)]` will need to
also implement/derive `FromReflect`.
- Users of `#[reflect(Component)]` and `#[reflect(Bundle)]` may now want
to also add `FromWorld` to the list of reflected traits in case their
`FromReflect` implementation may fail.
- Users of `ReflectComponent` will now need to pass a `&TypeRegistry` to
its `insert`, `apply_or_insert` and `copy` methods.
# Objective
- Add methods to get Change Ticks for a given resource by type or
ComponentId
- Fixes#11390
The `is_resource_id_changed` requested in the Issue already exists, this
adds their request for `get_resource_change_ticks`
## Solution
- Added two methods to get change ticks by Type or ComponentId
# Objective
Expand the existing `Query` API to support more dynamic use cases i.e.
scripting.
## Prior Art
- #6390
- #8308
- #10037
## Solution
- Create a `QueryBuilder` with runtime methods to define the set of
component accesses for a built query.
- Create new `WorldQueryData` implementations `FilteredEntityMut` and
`FilteredEntityRef` as variants of `EntityMut` and `EntityRef` that
provide run time checked access to the components included in a given
query.
- Add new methods to `Query` to create "query lens" with a subset of the
access of the initial query.
### Query Builder
The `QueryBuilder` API allows you to define a query at runtime. At it's
most basic use it will simply create a query with the corresponding type
signature:
```rust
let query = QueryBuilder::<Entity, With<A>>::new(&mut world).build();
// is equivalent to
let query = QueryState::<Entity, With<A>>::new(&mut world);
```
Before calling `.build()` you also have the opportunity to add
additional accesses and filters. Here is a simple example where we add
additional filter terms:
```rust
let entity_a = world.spawn((A(0), B(0))).id();
let entity_b = world.spawn((A(0), C(0))).id();
let mut query_a = QueryBuilder::<Entity>::new(&mut world)
.with::<A>()
.without::<C>()
.build();
assert_eq!(entity_a, query_a.single(&world));
```
This alone is useful in that allows you to decide which archetypes your
query will match at runtime. However it is also very limited, consider a
case like the following:
```rust
let query_a = QueryBuilder::<&A>::new(&mut world)
// Add an additional access
.data::<&B>()
.build();
```
This will grant the query an additional read access to component B
however we have no way of accessing the data while iterating as the type
signature still only includes &A. For an even more concrete example of
this consider dynamic components:
```rust
let query_a = QueryBuilder::<Entity>::new(&mut world)
// Adding a filter is easy since it doesn't need be read later
.with_id(component_id_a)
// How do I access the data of this component?
.ref_id(component_id_b)
.build();
```
With this in mind the `QueryBuilder` API seems somewhat incomplete by
itself, we need some way method of accessing the components dynamically.
So here's one:
### Query Transmutation
If the problem is not having the component in the type signature why not
just add it? This PR also adds transmute methods to `QueryBuilder` and
`QueryState`. Here's a simple example:
```rust
world.spawn(A(0));
world.spawn((A(1), B(0)));
let mut query = QueryBuilder::<()>::new(&mut world)
.with::<B>()
.transmute::<&A>()
.build();
query.iter(&world).for_each(|a| assert_eq!(a.0, 1));
```
The `QueryState` and `QueryBuilder` transmute methods look quite similar
but are different in one respect. Transmuting a builder will always
succeed as it will just add the additional accesses needed for the new
terms if they weren't already included. Transmuting a `QueryState` will
panic in the case that the new type signature would give it access it
didn't already have, for example:
```rust
let query = QueryState::<&A, Option<&B>>::new(&mut world);
/// This is fine, the access for Option<&A> is less restrictive than &A
query.transmute::<Option<&A>>(&world);
/// Oh no, this would allow access to &B on entities that might not have it, so it panics
query.transmute::<&B>(&world);
/// This is right out
query.transmute::<&C>(&world);
```
This is quite an appealing API to also have available on `Query` however
it does pose one additional wrinkle: In order to to change the iterator
we need to create a new `QueryState` to back it. `Query` doesn't own
it's own state though, it just borrows it, so we need a place to borrow
it from. This is why `QueryLens` exists, it is a place to store the new
state so it can be borrowed when you call `.query()` leaving you with an
API like this:
```rust
fn function_that_takes_a_query(query: &Query<&A>) {
// ...
}
fn system(query: Query<(&A, &B)>) {
let lens = query.transmute_lens::<&A>();
let q = lens.query();
function_that_takes_a_query(&q);
}
```
Now you may be thinking: Hey, wait a second, you introduced the problem
with dynamic components and then described a solution that only works
for static components! Ok, you got me, I guess we need a bit more:
### Filtered Entity References
Currently the only way you can access dynamic components on entities
through a query is with either `EntityMut` or `EntityRef`, however these
can access all components and so conflict with all other accesses. This
PR introduces `FilteredEntityMut` and `FilteredEntityRef` as
alternatives that have additional runtime checking to prevent accessing
components that you shouldn't. This way you can build a query with a
`QueryBuilder` and actually access the components you asked for:
```rust
let mut query = QueryBuilder::<FilteredEntityRef>::new(&mut world)
.ref_id(component_id_a)
.with(component_id_b)
.build();
let entity_ref = query.single(&world);
// Returns Some(Ptr) as we have that component and are allowed to read it
let a = entity_ref.get_by_id(component_id_a);
// Will return None even though the entity does have the component, as we are not allowed to read it
let b = entity_ref.get_by_id(component_id_b);
```
For the most part these new structs have the exact same methods as their
non-filtered equivalents.
Putting all of this together we can do some truly dynamic ECS queries,
check out the `dynamic` example to see it in action:
```
Commands:
comp, c Create new components
spawn, s Spawn entities
query, q Query for entities
Enter a command with no parameters for usage.
> c A, B, C, Data 4
Component A created with id: 0
Component B created with id: 1
Component C created with id: 2
Component Data created with id: 3
> s A, B, Data 1
Entity spawned with id: 0v0
> s A, C, Data 0
Entity spawned with id: 1v0
> q &Data
0v0: Data: [1, 0, 0, 0]
1v0: Data: [0, 0, 0, 0]
> q B, &mut Data
0v0: Data: [2, 1, 1, 1]
> q B || C, &Data
0v0: Data: [2, 1, 1, 1]
1v0: Data: [0, 0, 0, 0]
```
## Changelog
- Add new `transmute_lens` methods to `Query`.
- Add new types `QueryBuilder`, `FilteredEntityMut`, `FilteredEntityRef`
and `QueryLens`
- `update_archetype_component_access` has been removed, archetype
component accesses are now determined by the accesses set in
`update_component_access`
- Added method `set_access` to `WorldQuery`, this is called before
`update_component_access` for queries that have a restricted set of
accesses, such as those built by `QueryBuilder` or `QueryLens`. This is
primarily used by the `FilteredEntity*` variants and has an empty trait
implementation.
- Added method `get_state` to `WorldQuery` as a fallible version of
`init_state` when you don't have `&mut World` access.
## Future Work
Improve performance of `FilteredEntityMut` and `FilteredEntityRef`,
currently they have to determine the accesses a query has in a given
archetype during iteration which is far from ideal, especially since we
already did the work when matching the archetype in the first place. To
avoid making more internal API changes I have left it out of this PR.
---------
Co-authored-by: Mike Hsu <mike.hsu@gmail.com>
# Objective
- Update async channel to v2.
## Solution
- async channel doesn't support `send_blocking` on wasm anymore. So
don't compile the pipelined rendering plugin on wasm anymore.
- Replaces https://github.com/bevyengine/bevy/pull/10405
## Migration Guide
- The `PipelinedRendering` plugin is no longer exported on wasm. If you
are including it in your wasm builds you should remove it.
```rust
#[cfg(all(not(target_arch = "wasm32"))]
app.add_plugins(bevy_render::pipelined_rendering::PipelinedRenderingPlugin);
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Based on discussion after #11268 was merged:
Instead of panicking should the impl of `TypeId::hash` change
significantly, have a fallback and detect this in a test.
# Objective
`TypeId` contains a high-quality hash. Whenever a lookup based on a
`TypeId` is performed (e.g. to insert/remove components), the hash is
run through a second hash function. This is unnecessary.
## Solution
Skip re-hashing `TypeId`s.
In my
[testing](https://gist.github.com/SpecificProtagonist/4b49ad74c6b82b0aedd3b4ea35121be8),
this improves lookup performance consistently by 10%-15% (of course, the
lookup is only a small part of e.g. a bundle insertion).
# Objective
The purpose of this PR is to begin putting together a unified identifier
structure that can be used by entities and later components (as
entities) as well as relationship pairs for relations, to enable all of
these to be able to use the same storages. For the moment, to keep
things small and focused, only `Entity` is being changed to make use of
the new `Identifier` type, keeping `Entity`'s API and
serialization/deserialization the same. Further changes are for
follow-up PRs.
## Solution
`Identifier` is a wrapper around `u64` split into two `u32` segments
with the idea of being generalised to not impose restrictions on
variants. That is for `Entity` to do. Instead, it is a general API for
taking bits to then merge and map into a `u64` integer. It exposes
low/high methods to return the two value portions as `u32` integers,
with then the MSB masked for usage as a type flag, enabling entity kind
discrimination and future activation/deactivation semantics.
The layout in this PR for `Identifier` is described as below, going from
MSB -> LSB.
```
|F| High value | Low value |
|_|_______________________________|________________________________|
|1| 31 | 32 |
F = Bit Flags
```
The high component in this implementation has only 31 bits, but that
still leaves 2^31 or 2,147,483,648 values that can be stored still, more
than enough for any generation/relation kinds/etc usage. The low part is
a full 32-bit index. The flags allow for 1 bit to be used for
entity/pair discrimination, as these have different usages for the
low/high portions of the `Identifier`. More bits can be reserved for
more variants or activation/deactivation purposes, but this currently
has no use in bevy.
More bits could be reserved for future features at the cost of bits for
the high component, so how much to reserve is up for discussion. Also,
naming of the struct and methods are also subject to further
bikeshedding and feedback.
Also, because IDs can have different variants, I wonder if
`Entity::from_bits` needs to return a `Result` instead of potentially
panicking on receiving an invalid ID.
PR is provided as an early WIP to obtain feedback and notes on whether
this approach is viable.
---
## Changelog
### Added
New `Identifier` struct for unifying IDs.
### Changed
`Entity` changed to use new `Identifier`/`IdentifierMask` as the
underlying ID logic.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: vero <email@atlasdostal.com>