mirror of
https://github.com/bevyengine/bevy
synced 2024-11-23 05:03:47 +00:00
7 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Patrick Walton
|
dfdf2b9ea4
|
Implement the AnimationGraph , allowing for multiple animations to be blended together. (#11989)
This is an implementation of RFC #51: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md Note that the implementation strategy is different from the one outlined in that RFC, because two-phase animation has now landed. # Objective Bevy needs animation blending. The RFC for this is [RFC 51]. ## Solution This is an implementation of the RFC. Note that the implementation strategy is different from the one outlined there, because two-phase animation has now landed. This is just a draft to get the conversation started. Currently we're missing a few things: - [x] A fully-fleshed-out mechanism for transitions - [x] A serialization format for `AnimationGraph`s - [x] Examples are broken, other than `animated_fox` - [x] Documentation --- ## Changelog ### Added * The `AnimationPlayer` has been reworked to support blending multiple animations together through an `AnimationGraph`, and as such will no longer function unless a `Handle<AnimationGraph>` has been added to the entity containing the player. See [RFC 51] for more details. * Transition functionality has moved from the `AnimationPlayer` to a new component, `AnimationTransitions`, which works in tandem with the `AnimationGraph`. ## Migration Guide * `AnimationPlayer`s can no longer play animations by themselves and need to be paired with a `Handle<AnimationGraph>`. Code that was using `AnimationPlayer` to play animations will need to create an `AnimationGraph` asset first, add a node for the clip (or clips) you want to play, and then supply the index of that node to the `AnimationPlayer`'s `play` method. * The `AnimationPlayer::play_with_transition()` method has been removed and replaced with the `AnimationTransitions` component. If you were previously using `AnimationPlayer::play_with_transition()`, add all animations that you were playing to the `AnimationGraph`, and create an `AnimationTransitions` component to manage the blending between them. [RFC 51]: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md --------- Co-authored-by: Rob Parrett <robparrett@gmail.com> |
||
Carter Anderson
|
dd619a1087
|
New Exposure and Lighting Defaults (and calibrate examples) (#11868)
# Objective After adding configurable exposure, we set the default ev100 value to `7` (indoor). This brought us out of sync with Blender's configuration and defaults. This PR changes the default to `9.7` (bright indoor or very overcast outdoors), as I calibrated in #11577. This feels like a very reasonable default. The other changes generally center around tweaking Bevy's lighting defaults and examples to play nicely with this number, alongside a few other tweaks and improvements. Note that for artistic reasons I have reverted some examples, which changed to directional lights in #11581, back to point lights. Fixes #11577 --- ## Changelog - Changed `Exposure::ev100` from `7` to `9.7` to better match Blender - Renamed `ExposureSettings` to `Exposure` - `Camera3dBundle` now includes `Exposure` for discoverability - Bumped `FULL_DAYLIGHT ` and `DIRECT_SUNLIGHT` to represent the middle-to-top of those ranges instead of near the bottom - Added new `AMBIENT_DAYLIGHT` constant and set that as the new `DirectionalLight` default illuminance. - `PointLight` and `SpotLight` now have a default `intensity` of 1,000,000 lumens. This makes them actually useful in the context of the new "semi-outdoor" exposure and puts them in the "cinema lighting" category instead of the "common household light" category. They are also reasonably close to the Blender default. - `AmbientLight` default has been bumped from `20` to `80`. ## Migration Guide - The increased `Exposure::ev100` means that all existing 3D lighting will need to be adjusted to match (DirectionalLights, PointLights, SpotLights, EnvironmentMapLights, etc). Or alternatively, you can adjust the `Exposure::ev100` on your cameras to work nicely with your current lighting values. If you are currently relying on default intensity values, you might need to change the intensity to achieve the same effect. Note that in Bevy 0.12, point/spot lights had a different hard coded ev100 value than directional lights. In Bevy 0.13, they use the same ev100, so if you have both in your scene, the _scale_ between these light types has changed and you will likely need to adjust one or both of them. |
||
Doonv
|
dc9b486650
|
Change light defaults & fix light examples (#11581)
# Objective Fix https://github.com/bevyengine/bevy/issues/11577. ## Solution Fix the examples, add a few constants to make setting light values easier, and change the default lighting settings to be more realistic. (Now designed for an overcast day instead of an indoor environment) --- I did not include any example-related changes in here. ## Changelogs (not including breaking changes) ### bevy_pbr - Added `light_consts` module (included in prelude), which contains common lux and lumen values for lights. - Added `AmbientLight::NONE` constant, which is an ambient light with a brightness of 0. - Added non-EV100 variants for `ExposureSettings`'s EV100 constants, which allow easier construction of an `ExposureSettings` from a EV100 constant. ## Breaking changes ### bevy_pbr The several default lighting values were changed: - `PointLight`'s default `intensity` is now `2000.0` - `SpotLight`'s default `intensity` is now `2000.0` - `DirectionalLight`'s default `illuminance` is now `light_consts::lux::OVERCAST_DAY` (`1000.`) - `AmbientLight`'s default `brightness` is now `20.0` |
||
JMS55
|
fcd7c0fc3d
|
Exposure settings (adopted) (#11347)
Rebased and finished version of https://github.com/bevyengine/bevy/pull/8407. Huge thanks to @GitGhillie for adjusting all the examples, and the many other people who helped write this PR (@superdump , @coreh , among others) :) Fixes https://github.com/bevyengine/bevy/issues/8369 --- ## Changelog - Added a `brightness` control to `Skybox`. - Added an `intensity` control to `EnvironmentMapLight`. - Added `ExposureSettings` and `PhysicalCameraParameters` for controlling exposure of 3D cameras. - Removed the baked-in `DirectionalLight` exposure Bevy previously hardcoded internally. ## Migration Guide - If using a `Skybox` or `EnvironmentMapLight`, use the new `brightness` and `intensity` controls to adjust their strength. - All 3D scene will now have different apparent brightnesses due to Bevy implementing proper exposure controls. You will have to adjust the intensity of your lights and/or your camera exposure via the new `ExposureSettings` component to compensate. --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: GitGhillie <jillisnoordhoek@gmail.com> Co-authored-by: Marco Buono <thecoreh@gmail.com> Co-authored-by: vero <email@atlasdostal.com> Co-authored-by: atlas dostal <rodol@rivalrebels.com> |
||
Guillaume Gomez
|
fe7e31ea76
|
Fix intra-doc link warnings (#10445)
When `cargo doc -Zunstable-options -Zrustdoc-scrape-examples` (trying to figure out why it doesn't work with bevy), I had the following warnings: ``` warning: unresolved link to `Quad` --> examples/2d/mesh2d.rs:1:66 | 1 | //! Shows how to render a polygonal [`Mesh`], generated from a [`Quad`] primitive, in a 2D scene. | ^^^^ no item named `Quad` in scope | = help: to escape `[` and `]` characters, add '\' before them like `\[` or `\]` = note: `#[warn(rustdoc::broken_intra_doc_links)]` on by default warning: `bevy` (example "mesh2d") generated 1 warning warning: unresolved link to `update_weights` --> examples/animation/morph_targets.rs:6:17 | 6 | //! See the [`update_weights`] system for details. | ^^^^^^^^^^^^^^ no item named `update_weights` in scope | = help: to escape `[` and `]` characters, add '\' before them like `\[` or `\]` = note: `#[warn(rustdoc::broken_intra_doc_links)]` on by default warning: public documentation for `morph_targets` links to private item `name_morphs` --> examples/animation/morph_targets.rs:7:43 | 7 | //! - How to read morph target names in [`name_morphs`]. | ^^^^^^^^^^^ this item is private | = note: this link will resolve properly if you pass `--document-private-items` = note: `#[warn(rustdoc::private_intra_doc_links)]` on by default warning: public documentation for `morph_targets` links to private item `setup_animations` --> examples/animation/morph_targets.rs:8:48 | 8 | //! - How to play morph target animations in [`setup_animations`]. | ^^^^^^^^^^^^^^^^ this item is private | = note: this link will resolve properly if you pass `--document-private-items` warning: `bevy` (example "morph_targets") generated 3 warnings warning: unresolved link to `Quad` --> examples/2d/mesh2d_vertex_color_texture.rs:1:66 | 1 | //! Shows how to render a polygonal [`Mesh`], generated from a [`Quad`] primitive, in a 2D scene. | ^^^^ no item named `Quad` in scope | = help: to escape `[` and `]` characters, add '\' before them like `\[` or `\]` = note: `#[warn(rustdoc::broken_intra_doc_links)]` on by default warning: `bevy` (example "mesh2d_vertex_color_texture") generated 1 warning warning: unresolved link to `UIScale` --> examples/ui/ui_scaling.rs:1:36 | 1 | //! This example illustrates the [`UIScale`] resource from `bevy_ui`. | ^^^^^^^ no item named `UIScale` in scope | = help: to escape `[` and `]` characters, add '\' before them like `\[` or `\]` = note: `#[warn(rustdoc::broken_intra_doc_links)]` on by default warning: `bevy` (example "ui_scaling") generated 1 warning warning: unresolved link to `dependencies` --> examples/app/headless.rs:5:6 | 5 | //! [dependencies] | ^^^^^^^^^^^^ no item named `dependencies` in scope | = help: to escape `[` and `]` characters, add '\' before them like `\[` or `\]` = note: `#[warn(rustdoc::broken_intra_doc_links)]` on by default warning: `bevy` (example "headless") generated 1 warning warning: unresolved link to `Material2d` --> examples/2d/mesh2d_manual.rs:3:26 | 3 | //! It doesn't use the [`Material2d`] abstraction, but changes the vertex buffer to include verte... | ^^^^^^^^^^ no item named `Material2d` in scope | = help: to escape `[` and `]` characters, add '\' before them like `\[` or `\]` = note: `#[warn(rustdoc::broken_intra_doc_links)]` on by default warning: `bevy` (example "mesh2d_manual") generated 1 warning ``` |
||
Rob Parrett
|
a788e31ad5
|
Fix CI for Rust 1.72 (#9562)
# Objective [Rust 1.72.0](https://blog.rust-lang.org/2023/08/24/Rust-1.72.0.html) is now stable. # Notes - `let-else` formatting has arrived! - I chose to allow `explicit_iter_loop` due to https://github.com/rust-lang/rust-clippy/issues/11074. We didn't hit any of the false positives that prevent compilation, but fixing this did produce a lot of the "symbol soup" mentioned, e.g. `for image in &mut *image_events {`. Happy to undo this if there's consensus the other way. --------- Co-authored-by: François <mockersf@gmail.com> |
||
Nicola Papale
|
c6170d48f9
|
Add morph targets (#8158)
# Objective - Add morph targets to `bevy_pbr` (closes #5756) & load them from glTF - Supersedes #3722 - Fixes #6814 [Morph targets][1] (also known as shape interpolation, shape keys, or blend shapes) allow animating individual vertices with fine grained controls. This is typically used for facial expressions. By specifying multiple poses as vertex offset, and providing a set of weight of each pose, it is possible to define surprisingly realistic transitions between poses. Blending between multiple poses also allow composition. Morph targets are part of the [gltf standard][2] and are a feature of Unity and Unreal, and babylone.js, it is only natural to implement them in bevy. ## Solution This implementation of morph targets uses a 3d texture where each pixel is a component of an animated attribute. Each layer is a different target. We use a 2d texture for each target, because the number of attribute×components×animated vertices is expected to always exceed the maximum pixel row size limit of webGL2. It copies fairly closely the way skinning is implemented on the CPU side, while on the GPU side, the shader morph target implementation is a relatively trivial detail. We add an optional `morph_texture` to the `Mesh` struct. The `morph_texture` is built through a method that accepts an iterator over attribute buffers. The `MorphWeights` component, user-accessible, controls the blend of poses used by mesh instances (so that multiple copy of the same mesh may have different weights), all the weights are uploaded to a uniform buffer of 256 `f32`. We limit to 16 poses per mesh, and a total of 256 poses. More literature: * Old babylone.js implementation (vertex attribute-based): https://www.eternalcoding.com/dev-log-1-morph-targets/ * Babylone.js implementation (similar to ours): https://www.youtube.com/watch?v=LBPRmGgU0PE * GPU gems 3: https://developer.nvidia.com/gpugems/gpugems3/part-i-geometry/chapter-3-directx-10-blend-shapes-breaking-limits * Development discord thread https://discord.com/channels/691052431525675048/1083325980615114772 https://user-images.githubusercontent.com/26321040/231181046-3bca2ab2-d4d9-472e-8098-639f1871ce2e.mp4 https://github.com/bevyengine/bevy/assets/26321040/d2a0c544-0ef8-45cf-9f99-8c3792f5a258 ## Acknowledgements * Thanks to `storytold` for sponsoring the feature * Thanks to `superdump` and `james7132` for guidance and help figuring out stuff ## Future work - Handling of less and more attributes (eg: animated uv, animated arbitrary attributes) - Dynamic pose allocation (so that zero-weighted poses aren't uploaded to GPU for example, enables much more total poses) - Better animation API, see #8357 ---- ## Changelog - Add morph targets to bevy meshes - Support up to 64 poses per mesh of individually up to 116508 vertices, animation currently strictly limited to the position, normal and tangent attributes. - Load a morph target using `Mesh::set_morph_targets` - Add `VisitMorphTargets` and `VisitMorphAttributes` traits to `bevy_render`, this allows defining morph targets (a fairly complex and nested data structure) through iterators (ie: single copy instead of passing around buffers), see documentation of those traits for details - Add `MorphWeights` component exported by `bevy_render` - `MorphWeights` control mesh's morph target weights, blending between various poses defined as morph targets. - `MorphWeights` are directly inherited by direct children (single level of hierarchy) of an entity. This allows controlling several mesh primitives through a unique entity _as per GLTF spec_. - Add `MorphTargetNames` component, naming each indices of loaded morph targets. - Load morph targets weights and buffers in `bevy_gltf` - handle morph targets animations in `bevy_animation` (previously, it was a `warn!` log) - Add the `MorphStressTest.gltf` asset for morph targets testing, taken from the glTF samples repo, CC0. - Add morph target manipulation to `scene_viewer` - Separate the animation code in `scene_viewer` from the rest of the code, reducing `#[cfg(feature)]` noise - Add the `morph_targets.rs` example to show off how to manipulate morph targets, loading `MorpStressTest.gltf` ## Migration Guide - (very specialized, unlikely to be touched by 3rd parties) - `MeshPipeline` now has a single `mesh_layouts` field rather than separate `mesh_layout` and `skinned_mesh_layout` fields. You should handle all possible mesh bind group layouts in your implementation - You should also handle properly the new `MORPH_TARGETS` shader def and mesh pipeline key. A new function is exposed to make this easier: `setup_moprh_and_skinning_defs` - The `MeshBindGroup` is now `MeshBindGroups`, cached bind groups are now accessed through the `get` method. [1]: https://en.wikipedia.org/wiki/Morph_target_animation [2]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#morph-targets --------- Co-authored-by: François <mockersf@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |