# Objective
`bevy_reflect` can be a moderately complex crate to try and understand. It has many moving parts, a handful of gotchas, and a few subtle contracts that aren't immediately obvious to users and even other contributors.
The current README does an okay job demonstrating how the crate can be used. However, the crate's actual documentation should give a better overview of the crate, its inner-workings, and show some of its own examples.
## Solution
Added crate-level documentation that attempts to summarize the main parts of `bevy_reflect` into small sections.
This PR also updates the documentation for:
- `Reflect`
- `FromReflect`
- The reflection subtraits
- Other important types and traits
- The reflection macros (including the derive macros)
- Crate features
### Open Questions
1. ~~Should I update the docs for the Dynamic types? I was originally going to, but I'm getting a little concerned about the size of this PR 😅~~ Decided to not do this in this PR. It'll be better served from its own PR.
2. Should derive macro documentation be moved to the trait itself? This could improve visibility and allow for better doc links, but could also clutter up the trait's documentation (as well as not being on the actual derive macro's documentation).
### TODO
- [ ] ~~Document Dynamic types (?)~~ I think this should be done in a separate PR.
- [x] Document crate features
- [x] Update docs for `GetTypeRegistration`
- [x] Update docs for `TypeRegistration`
- [x] Update docs for `derive_from_reflect`
- [x] Document `reflect_trait`
- [x] Document `impl_reflect_value`
- [x] Document `impl_from_reflect_value`
---
## Changelog
- Updated documentation across the `bevy_reflect` crate
- Removed `#[module]` helper attribute for `Reflect` derives (this is not currently used)
## Migration Guide
- Removed `#[module]` helper attribute for `Reflect` derives. If your code is relying on this attribute, please replace it with either `#[reflect]` or `#[reflect_value]` (dependent on use-case).
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
- bevy_ggrs uses `reflect_hash` in order to produce checksums for its world snapshots. These checksums are sent between clients in order to detect desyncronization.
- However, since we currently use `async::AHasher` with the `std` feature, this means that hashes will always be different for different peers, even if the state is identical.
- This means bevy_ggrs needs a way to get a deterministic (fixed) hash.
## Solution
- ~~Add a feature to use `bevy_utils::FixedState` for the hasher used by bevy_reflect.~~
- Always use `bevy_utils::FixedState` for initializing the bevy_reflect hasher.
---
## Changelog
- bevy_reflect now uses a fixed state for its hasher, which means the output of `Reflect::reflect_hash` is now deterministic across processes.
# Objective
- Fixes#5432
- Fixes#6680
## Solution
- move code responsible for generating the `impl TypeUuid` from `type_uuid_derive` into a new function, `gen_impl_type_uuid`.
- this allows the new proc macro, `impl_type_uuid`, to call the code for generation.
- added struct `TypeUuidDef` and implemented `syn::Parse` to allow parsing of the input for the new macro.
- finally, used the new macro `impl_type_uuid` to implement `TypeUuid` for the standard library (in `crates/bevy_reflect/src/type_uuid_impl.rs`).
- fixes#6680 by doing a wrapping add of the param's index to its `TYPE_UUID`
Co-authored-by: dis-da-moe <84386186+dis-da-moe@users.noreply.github.com>
# Objective
I recently had an issue, where I have a struct:
```
struct Property {
inner: T
}
```
that I use as a wrapper for internal purposes.
I don't want to update my struct definition to
```
struct Property<T: Reflect>{
inner: T
}
```
because I still want to be able to build `Property<T>` for types `T` that are not `Reflect`. (and also because I don't want to update my whole code base with `<T: Reflect>` bounds)
I still wanted to have reflection on it (for `bevy_inspector_egui`), but adding `derive(Reflect)` fails with the error:
`T cannot be sent between threads safely. T needs to implement Sync.`
I believe that `bevy_reflect` should adopt the model of other derives in the case of generics, which is to add the `Reflect` implementation only if the generics also implement `Reflect`. (That is the behaviour of other macros such as `derive(Clone)` or `derive(Debug)`.
It's also the current behavior of `derive(FromReflect)`.
Basically doing something like:
```
impl<T> Reflect for Foo<T>
where T: Reflect
```
## Solution
- I updated the derive macros for `Structs` and `TupleStructs` to add extra `where` bounds.
- Every type that is reflected will need a `T: Reflect` bound
- Ignored types will need a `T: 'static + Send + Sync` bound. Here's the reason. For cases like this:
```
#[derive(Reflect)]
struct Foo<T, U>{
a: T
#[reflect(ignore)]
b: U
}
```
I had to add the bound `'static + Send + Sync` to ignored generics like `U`.
The reason is that we want `Foo<T, U>` to be `Reflect: 'static + Send + Sync`, so `Foo<T, U>` must be able to implement those auto-traits. `Foo<T, U>` will only implement those auto-traits if every generic type implements them, including ignored types.
This means that the previously compile-fail case now compiles:
```
#[derive(Reflect)]
struct Foo<'a> {
#[reflect(ignore)]
value: &'a str,
}
```
But `Foo<'a>` will only be useable in the cases where `'a: 'static` and panic if we don't have `'a: 'static`, which is what we want (nice bonus from this PR ;) )
---
## Changelog
> This section is optional. If this was a trivial fix, or has no externally-visible impact, you can delete this section.
### Added
Possibility to add `derive(Reflect)` to structs and enums that contain generic types, like so:
```
#[derive(Reflect)]
struct Foo<T>{
a: T
}
```
Reflection will only be available if the generic type T also implements `Reflect`.
(previously, this would just return a compiler error)
# Objective
I found several words in code and docs are incorrect. This should be fixed.
## Solution
- Fix several minor typos
Co-authored-by: Chris Ohk <utilforever@gmail.com>
# Objective
- Fixes#3004
## Solution
- Replaced all the types with their fully quallified names
- Replaced all trait methods and inherent methods on dyn traits with their fully qualified names
- Made a new file `fq_std.rs` that contains structs corresponding to commonly used Structs and Traits from `std`. These structs are replaced by their respective fully qualified names when used inside `quote!`
# Objective
Using `Reflect` we can easily switch between a specific reflection trait object, such as a `dyn Struct`, to a `dyn Reflect` object via `Reflect::as_reflect` or `Reflect::as_reflect_mut`.
```rust
fn do_something(value: &dyn Reflect) {/* ... */}
let foo: Box<dyn Struct> = Box::new(Foo::default());
do_something(foo.as_reflect());
```
However, there is no way to convert a _boxed_ reflection trait object to a `Box<dyn Reflect>`.
## Solution
Add a `Reflect::into_reflect` method which allows converting a boxed reflection trait object back into a boxed `Reflect` trait object.
```rust
fn do_something(value: Box<dyn Reflect>) {/* ... */}
let foo: Box<dyn Struct> = Box::new(Foo::default());
do_something(foo.into_reflect());
```
---
## Changelog
- Added `Reflect::into_reflect`
# Objective
There is no way to gen an owned value of `Reflect`.
## Solution
Add it! This was originally a part of #6421, but @MrGVSV asked me to create a separate for it to implement reflect diffing.
---
## Changelog
### Added
- `Reflect::reflect_owned` to get an owned version of `Reflect`.
# Objective
- fix new clippy lints before they get stable and break CI
## Solution
- run `clippy --fix` to auto-fix machine-applicable lints
- silence `clippy::should_implement_trait` for `fn HandleId::default<T: Asset>`
## Changes
- always prefer `format!("{inline}")` over `format!("{}", not_inline)`
- prefer `Box::default` (or `Box::<T>::default` if necessary) over `Box::new(T::default())`
# Objective
Resolves#6197
Make it so that doc comments can be retrieved via reflection.
## Solution
Adds the new `documentation` feature to `bevy_reflect` (disabled by default).
When enabled, documentation can be found using `TypeInfo::doc` for reflected types:
```rust
/// Some struct.
///
/// # Example
///
/// ```ignore
/// let some_struct = SomeStruct;
/// ```
#[derive(Reflect)]
struct SomeStruct;
let info = <SomeStruct as Typed>::type_info();
assert_eq!(
Some(" Some struct.\n\n # Example\n\n ```ignore\n let some_struct = SomeStruct;\n ```"),
info.docs()
);
```
### Notes for Reviewers
The bulk of the files simply added the same 16 lines of code (with slightly different documentation). Most of the real changes occur in the `bevy_reflect_derive` files as well as in the added tests.
---
## Changelog
* Added `documentation` feature to `bevy_reflect`
* Added `TypeInfo::docs` method (and similar methods for all info types)
# Objective
Currently, surprising behavior happens when specifying `#[reflect(...)]` or `#[reflect_value(...)]` multiple times. Rather than merging the traits lists from all attributes, only the trait list from the last attribute is used. For example, in the following code, only the `Debug` and `Hash` traits are reflected and not `Default` or `PartialEq`:
```rs
#[derive(Debug, PartialEq, Hash, Default, Reflect)]
#[reflect(PartialEq, Default)]
#[reflect(Debug, Hash)]
struct Foo;
```
This is especially important when some traits should only be reflected under certain circumstances. For example, this previously had surprisingly behavior when the "serialize" feature is enabled:
```rs
#[derive(Debug, Hash, Reflect)]
#[reflect(Debug, Hash)]
#[cfg_attr(
feature = "serialize",
derive(Serialize, Deserialize),
reflect(Serialize, Deserialize)
]
struct Foo;
```
In addition, compile error messages generated from using the derive macro often point to the `#[derive(Reflect)]` rather than to the source of the error. It would be a lot more helpful if the compiler errors pointed to what specifically caused the error rather than just to the derive macro itself.
## Solution
Merge the trait lists in all `#[reflect(...)]` and `#[reflect_value(...)]` attributes. Additionally, make `#[reflect]` and `#[reflect_value]` mutually exclusive.
Additionally, span information is carried throughout some parts of the code now to ensure that error messages point to more useful places and better indicate what caused those errors. For example, `#[reflect(Hash, Hash)]` points to the second `Hash` as the source of an error. Also, in the following example, the compiler error now points to the `Hash` in `#[reflect(Hash)]` rather than to the derive macro:
```rs
#[derive(Reflect)]
#[reflect(Hash)] // <-- compiler error points to `Hash` for lack of a `Hash` implementation
struct Foo;
```
---
## Changelog
Changed
- Using multiple `#[reflect(...)]` or `#[reflect_value(...)]` attributes now merges the trait lists. For example, `#[reflect(Debug, Hash)] #[reflect(PartialEq, Default)]` is equivalent to `#[reflect(Debug, Hash, PartialEq, Default)]`.
- Multiple `#[reflect(...)]` and `#[reflect_value(...)]` attributes were previously accepted, but only the last attribute was respected.
- Using both `#[reflect(...)]` and `#[reflect_value(...)]` was previously accepted, but had surprising behavior. This is no longer accepted.
- Improved error messages for `#[derive(Reflect)]` by propagating useful span information. Many errors should now point to the source of those errors rather than to the derive macro.
> Note: This is rebased off #4561 and can be viewed as a competitor to that PR. See `Comparison with #4561` section for details.
# Objective
The current serialization format used by `bevy_reflect` is both verbose and error-prone. Taking the following structs[^1] for example:
```rust
// -- src/inventory.rs
#[derive(Reflect)]
struct Inventory {
id: String,
max_storage: usize,
items: Vec<Item>
}
#[derive(Reflect)]
struct Item {
name: String
}
```
Given an inventory of a single item, this would serialize to something like:
```rust
// -- assets/inventory.ron
{
"type": "my_game::inventory::Inventory",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "inv001",
},
"max_storage": {
"type": "usize",
"value": 10
},
"items": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "my_game::inventory::Item",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Pickaxe"
},
},
},
],
},
},
}
```
Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need `"struct"`. For lists, `"list"`. For tuple structs, `"tuple_struct"`. And so on.
It also ***requires*** that the `"type"` entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data.
This makes it very prone to errors and annoyances.
## Solution
Using #4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like:
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
name: "Pickaxe"
),
],
),
}
```
This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names).
Additionally, it is a lot more familiar to users as it follows conventional serde mechanics. For example, the struct is represented with `(...)` when serialized to RON.
#### Custom Serialization
Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example[^1]:
```rust
// -- src/inventory.rs
#[derive(Reflect, Serialize)]
#[reflect(Serialize)]
struct Item {
#[serde(alias = "id")]
name: String
}
```
```rust
// -- assets/inventory.ron
{
"my_game::inventory::Inventory": (
id: "inv001",
max_storage: 10,
items: [
(
id: "Pickaxe"
),
],
),
},
```
By allowing users to define their own serialization methods, we do two things:
1. We give more control over how data is serialized/deserialized to the end user
2. We avoid having to re-define serde's attributes and forcing users to apply both (e.g. we don't need a `#[reflect(alias)]` attribute).
### Improved Formats
One of the improvements this PR provides is the ability to represent data in ways that are more conventional and/or familiar to users. Many users are familiar with RON so here are some of the ways we can now represent data in RON:
###### Structs
```js
{
"my_crate::Foo": (
bar: 123
)
}
// OR
{
"my_crate::Foo": Foo(
bar: 123
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Foo",
"struct": {
"bar": {
"type": "usize",
"value": 123
}
}
}
```
</details>
###### Tuples
```js
{
"(f32, f32)": (1.0, 2.0)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "(f32, f32)",
"tuple": [
{
"type": "f32",
"value": 1.0
},
{
"type": "f32",
"value": 2.0
}
]
}
```
</details>
###### Tuple Structs
```js
{
"my_crate::Bar": ("Hello World!")
}
// OR
{
"my_crate::Bar": Bar("Hello World!")
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::Bar",
"tuple_struct": [
{
"type": "alloc::string::String",
"value": "Hello World!"
}
]
}
```
</details>
###### Arrays
It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially _are_ tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by [serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-%5BT%3B%2032%5D) and by [bevy_reflect](https://docs.rs/bevy/latest/bevy/reflect/trait.GetTypeRegistration.html#impl-GetTypeRegistration-for-%5BT%3B%2032%5D)).
```js
{
"[i32; 3]": (1, 2, 3)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "[i32; 3]",
"array": [
{
"type": "i32",
"value": 1
},
{
"type": "i32",
"value": 2
},
{
"type": "i32",
"value": 3
}
]
}
```
</details>
###### Enums
To make things simple, I'll just put a struct variant here, but the style applies to all variant types:
```js
{
"my_crate::ItemType": Consumable(
name: "Healing potion"
)
}
```
<details>
<summary>Old Format</summary>
```js
{
"type": "my_crate::ItemType",
"enum": {
"variant": "Consumable",
"struct": {
"name": {
"type": "alloc::string::String",
"value": "Healing potion"
}
}
}
}
```
</details>
### Comparison with #4561
This PR is a rebased version of #4561. The reason for the split between the two is because this PR creates a _very_ different scene format. You may notice that the PR descriptions for either PR are pretty similar. This was done to better convey the changes depending on which (if any) gets merged first. If #4561 makes it in first, I will update this PR description accordingly.
---
## Changelog
* Re-worked serialization/deserialization for reflected types
* Added `TypedReflectDeserializer` for deserializing data with known `TypeInfo`
* Renamed `ReflectDeserializer` to `UntypedReflectDeserializer`
* ~~Replaced usages of `deserialize_any` with `deserialize_map` for non-self-describing formats~~ Reverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates like `bincode` can throw an error when attempting to deserialize non-self-describing formats (`bincode` results in `DeserializeAnyNotSupported`)
* Structs, tuples, tuple structs, arrays, and enums are now all de/serialized using conventional serde methods
## Migration Guide
* This PR reduces the verbosity of the scene format. Scenes will need to be updated accordingly:
```js
// Old format
{
"type": "my_game::item::Item",
"struct": {
"id": {
"type": "alloc::string::String",
"value": "bevycraft:stone",
},
"tags": {
"type": "alloc::vec::Vec<alloc::string::String>",
"list": [
{
"type": "alloc::string::String",
"value": "material"
},
],
},
}
// New format
{
"my_game::item::Item": (
id: "bevycraft:stone",
tags: ["material"]
)
}
```
[^1]: Some derives omitted for brevity.
# Objective
- To address problems outlined in https://github.com/bevyengine/bevy/issues/5245
## Solution
- Introduce `reflect(skip_serializing)` on top of `reflect(ignore)` which disables automatic serialisation to scenes, but does not disable reflection of the field.
---
## Changelog
- Adds:
- `bevy_reflect::serde::type_data` module
- `SerializationData` structure for describing which fields are to be/not to be ignored, automatically registers as type_data for struct-based types
- the `skip_serialization` flag for `#[reflect(...)]`
- Removes:
- ability to ignore Enum variants in serialization, since that didn't work anyway
## Migration Guide
- Change `#[reflect(ignore)]` to `#[reflect(skip_serializing)]` where disabling reflection is not the intended effect.
- Remove ignore/skip attributes from enum variants as these won't do anything anymore
# Objective
- I'm currently working on being able to call methods on reflect types (https://github.com/jakobhellermann/bevy_reflect_fns)
- for that, I'd like to add methods to the `Input<KeyCode>` resource (which I'm doing by registering type data)
- implementing `Reflect` is currently a requirement for having type data in the `TypeRegistry`
## Solution
- derive `Reflect` for `KeyCode` and `Input`
- uses `#[reflect_value]` for `Input`, since it's fields aren't supposed to be observable
- using reflect_value would need `Clone` bounds on `T`, but since all the methods (`.pressed` etc) already require `T: Copy`, I unified everything to requiring `Copy`
- add `Send + Sync + 'static` bounds, also required by reflect derive
## Unrelated improvements
I can extract into a separate PR if needed.
- the `Reflect` derive would previously ignore `#[reflect_value]` and only accept `#[reflect_value()]` which was a bit confusing
- the generated code used `val.clone()` on a reference, which is fine if `val` impls `Clone`, but otherwise also compiles with a worse error message. Change to `std::clone::Clone::clone(val)` instead which gives a neat `T does not implement Clone` error
# Objective
> This is a revival of #1347. Credit for the original PR should go to @Davier.
Currently, enums are treated as `ReflectRef::Value` types by `bevy_reflect`. Obviously, there needs to be better a better representation for enums using the reflection API.
## Solution
Based on prior work from @Davier, an `Enum` trait has been added as well as the ability to automatically implement it via the `Reflect` derive macro. This allows enums to be expressed dynamically:
```rust
#[derive(Reflect)]
enum Foo {
A,
B(usize),
C { value: f32 },
}
let mut foo = Foo::B(123);
assert_eq!("B", foo.variant_name());
assert_eq!(1, foo.field_len());
let new_value = DynamicEnum::from(Foo::C { value: 1.23 });
foo.apply(&new_value);
assert_eq!(Foo::C{value: 1.23}, foo);
```
### Features
#### Derive Macro
Use the `#[derive(Reflect)]` macro to automatically implement the `Enum` trait for enum definitions. Optionally, you can use `#[reflect(ignore)]` with both variants and variant fields, just like you can with structs. These ignored items will not be considered as part of the reflection and cannot be accessed via reflection.
```rust
#[derive(Reflect)]
enum TestEnum {
A,
// Uncomment to ignore all of `B`
// #[reflect(ignore)]
B(usize),
C {
// Uncomment to ignore only field `foo` of `C`
// #[reflect(ignore)]
foo: f32,
bar: bool,
},
}
```
#### Dynamic Enums
Enums may be created/represented dynamically via the `DynamicEnum` struct. The main purpose of this struct is to allow enums to be deserialized into a partial state and to allow dynamic patching. In order to ensure conversion from a `DynamicEnum` to a concrete enum type goes smoothly, be sure to add `FromReflect` to your derive macro.
```rust
let mut value = TestEnum::A;
// Create from a concrete instance
let dyn_enum = DynamicEnum::from(TestEnum::B(123));
value.apply(&dyn_enum);
assert_eq!(TestEnum::B(123), value);
// Create a purely dynamic instance
let dyn_enum = DynamicEnum::new("TestEnum", "A", ());
value.apply(&dyn_enum);
assert_eq!(TestEnum::A, value);
```
#### Variants
An enum value is always represented as one of its variants— never the enum in its entirety.
```rust
let value = TestEnum::A;
assert_eq!("A", value.variant_name());
// Since we are using the `A` variant, we cannot also be the `B` variant
assert_ne!("B", value.variant_name());
```
All variant types are representable within the `Enum` trait: unit, struct, and tuple.
You can get the current type like:
```rust
match value.variant_type() {
VariantType::Unit => println!("A unit variant!"),
VariantType::Struct => println!("A struct variant!"),
VariantType::Tuple => println!("A tuple variant!"),
}
```
> Notice that they don't contain any values representing the fields. These are purely tags.
If a variant has them, you can access the fields as well:
```rust
let mut value = TestEnum::C {
foo: 1.23,
bar: false
};
// Read/write specific fields
*value.field_mut("bar").unwrap() = true;
// Iterate over the entire collection of fields
for field in value.iter_fields() {
println!("{} = {:?}", field.name(), field.value());
}
```
#### Variant Swapping
It might seem odd to group all variant types under a single trait (why allow `iter_fields` on a unit variant?), but the reason this was done ~~is to easily allow *variant swapping*.~~ As I was recently drafting up the **Design Decisions** section, I discovered that other solutions could have been made to work with variant swapping. So while there are reasons to keep the all-in-one approach, variant swapping is _not_ one of them.
```rust
let mut value: Box<dyn Enum> = Box::new(TestEnum::A);
value.set(Box::new(TestEnum::B(123))).unwrap();
```
#### Serialization
Enums can be serialized and deserialized via reflection without needing to implement `Serialize` or `Deserialize` themselves (which can save thousands of lines of generated code). Below are the ways an enum can be serialized.
> Note, like the rest of reflection-based serialization, the order of the keys in these representations is important!
##### Unit
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "A"
}
}
```
##### Tuple
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "B",
"tuple": [
{
"type": "usize",
"value": 123
}
]
}
}
```
<details>
<summary>Effects on Option</summary>
This ends up making `Option` look a little ugly:
```json
{
"type": "core::option::Option<usize>",
"enum": {
"variant": "Some",
"tuple": [
{
"type": "usize",
"value": 123
}
]
}
}
```
</details>
##### Struct
```json
{
"type": "my_crate::TestEnum",
"enum": {
"variant": "C",
"struct": {
"foo": {
"type": "f32",
"value": 1.23
},
"bar": {
"type": "bool",
"value": false
}
}
}
}
```
## Design Decisions
<details>
<summary><strong>View Section</strong></summary>
This section is here to provide some context for why certain decisions were made for this PR, alternatives that could have been used instead, and what could be improved upon in the future.
### Variant Representation
One of the biggest decisions was to decide on how to represent variants. The current design uses a "all-in-one" design where unit, tuple, and struct variants are all simultaneously represented by the `Enum` trait. This is not the only way it could have been done, though.
#### Alternatives
##### 1. Variant Traits
One way of representing variants would be to define traits for each variant, implementing them whenever an enum featured at least one instance of them. This would allow us to define variants like:
```rust
pub trait Enum: Reflect {
fn variant(&self) -> Variant;
}
pub enum Variant<'a> {
Unit,
Tuple(&'a dyn TupleVariant),
Struct(&'a dyn StructVariant),
}
pub trait TupleVariant {
fn field_len(&self) -> usize;
// ...
}
```
And then do things like:
```rust
fn get_tuple_len(foo: &dyn Enum) -> usize {
match foo.variant() {
Variant::Tuple(tuple) => tuple.field_len(),
_ => panic!("not a tuple variant!")
}
}
```
The reason this PR does not go with this approach is because of the fact that variants are not separate types. In other words, we cannot implement traits on specific variants— these cover the *entire* enum. This means we offer an easy footgun:
```rust
let foo: Option<i32> = None;
let my_enum = Box::new(foo) as Box<dyn TupleVariant>;
```
Here, `my_enum` contains `foo`, which is a unit variant. However, since we need to implement `TupleVariant` for `Option` as a whole, it's possible to perform such a cast. This is obviously wrong, but could easily go unnoticed. So unfortunately, this makes it not a good candidate for representing variants.
##### 2. Variant Structs
To get around the issue of traits necessarily needing to apply to both the enum and its variants, we could instead use structs that are created on a per-variant basis. This was also considered but was ultimately [[removed](71d27ab3c6) due to concerns about allocations.
Each variant struct would probably look something like:
```rust
pub trait Enum: Reflect {
fn variant_mut(&self) -> VariantMut;
}
pub enum VariantMut<'a> {
Unit,
Tuple(TupleVariantMut),
Struct(StructVariantMut),
}
struct StructVariantMut<'a> {
fields: Vec<&'a mut dyn Reflect>,
field_indices: HashMap<Cow<'static, str>, usize>
}
```
This allows us to isolate struct variants into their own defined struct and define methods specifically for their use. It also prevents users from casting to it since it's not a trait. However, this is not an optimal solution. Both `field_indices` and `fields` will require an allocation (remember, a `Box<[T]>` still requires a `Vec<T>` in order to be constructed). This *might* be a problem if called frequently enough.
##### 3. Generated Structs
The original design, implemented by @Davier, instead generates structs specific for each variant. So if we had a variant path like `Foo::Bar`, we'd generate a struct named `FooBarWrapper`. This would be newtyped around the original enum and forward tuple or struct methods to the enum with the chosen variant.
Because it involved using the `Tuple` and `Struct` traits (which are also both bound on `Reflect`), this meant a bit more code had to be generated. For a single struct variant with one field, the generated code amounted to ~110LoC. However, each new field added to that variant only added ~6 more LoC.
In order to work properly, the enum had to be transmuted to the generated struct:
```rust
fn variant(&self) -> crate::EnumVariant<'_> {
match self {
Foo::Bar {value: i32} => {
let wrapper_ref = unsafe {
std::mem::transmute::<&Self, &FooBarWrapper>(self)
};
crate::EnumVariant::Struct(wrapper_ref as &dyn crate::Struct)
}
}
}
```
This works because `FooBarWrapper` is defined as `repr(transparent)`.
Out of all the alternatives, this would probably be the one most likely to be used again in the future. The reasons for why this PR did not continue to use it was because:
* To reduce generated code (which would hopefully speed up compile times)
* To avoid cluttering the code with generated structs not visible to the user
* To keep bevy_reflect simple and extensible (these generated structs act as proxies and might not play well with current or future systems)
* To avoid additional unsafe blocks
* My own misunderstanding of @Davier's code
That last point is obviously on me. I misjudged the code to be too unsafe and unable to handle variant swapping (which it probably could) when I was rebasing it. Looking over it again when writing up this whole section, I see that it was actually a pretty clever way of handling variant representation.
#### Benefits of All-in-One
As stated before, the current implementation uses an all-in-one approach. All variants are capable of containing fields as far as `Enum` is concerned. This provides a few benefits that the alternatives do not (reduced indirection, safer code, etc.).
The biggest benefit, though, is direct field access. Rather than forcing users to have to go through pattern matching, we grant direct access to the fields contained by the current variant. The reason we can do this is because all of the pattern matching happens internally. Getting the field at index `2` will automatically return `Some(...)` for the current variant if it has a field at that index or `None` if it doesn't (or can't).
This could be useful for scenarios where the variant has already been verified or just set/swapped (or even where the type of variant doesn't matter):
```rust
let dyn_enum: &mut dyn Enum = &mut Foo::Bar {value: 123};
// We know it's the `Bar` variant
let field = dyn_enum.field("value").unwrap();
```
Reflection is not a type-safe abstraction— almost every return value is wrapped in `Option<...>`. There are plenty of places to check and recheck that a value is what Reflect says it is. Forcing users to have to go through `match` each time they want to access a field might just be an extra step among dozens of other verification processes.
Some might disagree, but ultimately, my view is that the benefit here is an improvement to the ergonomics and usability of reflected enums.
</details>
---
## Changelog
### Added
* Added `Enum` trait
* Added `Enum` impl to `Reflect` derive macro
* Added `DynamicEnum` struct
* Added `DynamicVariant`
* Added `EnumInfo`
* Added `VariantInfo`
* Added `StructVariantInfo`
* Added `TupleVariantInfo`
* Added `UnitVariantInfo`
* Added serializtion/deserialization support for enums
* Added `EnumSerializer`
* Added `VariantType`
* Added `VariantFieldIter`
* Added `VariantField`
* Added `enum_partial_eq(...)`
* Added `enum_hash(...)`
### Changed
* `Option<T>` now implements `Enum`
* `bevy_window` now depends on `bevy_reflect`
* Implemented `Reflect` and `FromReflect` for `WindowId`
* Derive `FromReflect` on `PerspectiveProjection`
* Derive `FromReflect` on `OrthographicProjection`
* Derive `FromReflect` on `WindowOrigin`
* Derive `FromReflect` on `ScalingMode`
* Derive `FromReflect` on `DepthCalculation`
## Migration Guide
* Enums no longer need to be treated as values and usages of `#[reflect_value(...)]` can be removed or replaced by `#[reflect(...)]`
* Enums (including `Option<T>`) now take a different format when serializing. The format is described above, but this may cause issues for existing scenes that make use of enums.
---
Also shout out to @nicopap for helping clean up some of the code here! It's a big feature so help like this is really appreciated!
Co-authored-by: Gino Valente <gino.valente.code@gmail.com>
# Objective
https://github.com/bevyengine/bevy/pull/4447 adds functions that can fetch resources/components as `*const ()` ptr by providing the `ComponentId`. This alone is not enough for them to be usable safely with reflection, because there is no general way to go from the raw pointer to a `&dyn Reflect` which is the pointer + a pointer to the VTable of the `Reflect` impl.
By adding a `ReflectFromPtr` type that is included in the type type registration when deriving `Reflect`, safe functions can be implemented in scripting languages that don't assume a type layout and can access the component data via reflection:
```rust
#[derive(Reflect)]
struct StringResource {
value: String
}
```
```lua
local res_id = world:resource_id_by_name("example::StringResource")
local res = world:resource(res_id)
print(res.value)
```
## Solution
1. add a `ReflectFromPtr` type with a `FromType<T: Reflect>` implementation and the following methods:
- ` pub unsafe fn as_reflect_ptr<'a>(&self, val: Ptr<'a>) -> &'a dyn Reflect`
- ` pub unsafe fn as_reflect_ptr_mut<'a>(&self, val: PtrMut<'a>) -> &'a mud dyn Reflect`
Safety requirements of the methods are that you need to check that the `ReflectFromPtr` was constructed for the correct type.
2. add that type to the `TypeRegistration` in the `GetTypeRegistration` impl generated by `#[derive(Reflect)]`.
This is different to other reflected traits because it doesn't need `#[reflect(ReflectReflectFromPtr)]` which IMO should be there by default.
Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Remove unnecessary calls to `iter()`/`iter_mut()`.
Mainly updates the use of queries in our code, docs, and examples.
```rust
// From
for _ in list.iter() {
for _ in list.iter_mut() {
// To
for _ in &list {
for _ in &mut list {
```
We already enable the pedantic lint [clippy::explicit_iter_loop](https://rust-lang.github.io/rust-clippy/stable/) inside of Bevy. However, this only warns for a few known types from the standard library.
## Note for reviewers
As you can see the additions and deletions are exactly equal.
Maybe give it a quick skim to check I didn't sneak in a crypto miner, but you don't have to torture yourself by reading every line.
I already experienced enough pain making this PR :)
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
Fixes#5153
## Solution
Search for all enums and manually check if they have default impls that can use this new derive.
By my reckoning:
| enum | num |
|-|-|
| total | 159 |
| has default impl | 29 |
| default is unit variant | 23 |
# Objective
Currently, `Reflect` is unsafe to implement because of a contract in which `any` and `any_mut` must return `self`, or `downcast` will cause UB. This PR makes `Reflect` safe, makes `downcast` not use unsafe, and eliminates this contract.
## Solution
This PR adds a method to `Reflect`, `any`. It also renames the old `any` to `as_any`.
`any` now takes a `Box<Self>` and returns a `Box<dyn Any>`.
---
## Changelog
### Added:
- `any()` method
- `represents()` method
### Changed:
- `Reflect` is now a safe trait
- `downcast()` is now safe
- The old `any` is now called `as_any`, and `any_mut` is now `as_mut_any`
## Migration Guide
- Reflect derives should not have to change anything
- Manual reflect impls will need to remove the `unsafe` keyword, add `any()` implementations, and rename the old `any` and `any_mut` to `as_any` and `as_mut_any`.
- Calls to `any`/`any_mut` must be changed to `as_any`/`as_mut_any`
## Points of discussion:
- Should renaming `any` be avoided and instead name the new method `any_box`?
- ~~Could there be a performance regression from avoiding the unsafe? I doubt it, but this change does seem to introduce redundant checks.~~
- ~~Could/should `is` and `type_id()` be implemented differently? For example, moving `is` onto `Reflect` as an `fn(&self, TypeId) -> bool`~~
Co-authored-by: PROMETHIA-27 <42193387+PROMETHIA-27@users.noreply.github.com>
builds on top of #4780
# Objective
`Reflect` and `Serialize` are currently very tied together because `Reflect` has a `fn serialize(&self) -> Option<Serializable<'_>>` method. Because of that, we can either implement `Reflect` for types like `Option<T>` with `T: Serialize` and have `fn serialize` be implemented, or without the bound but having `fn serialize` return `None`.
By separating `ReflectSerialize` into a separate type (like how it already is for `ReflectDeserialize`, `ReflectDefault`), we could separately `.register::<Option<T>>()` and `.register_data::<Option<T>, ReflectSerialize>()` only if the type `T: Serialize`.
This PR does not change the registration but allows it to be changed in a future PR.
## Solution
- add the type
```rust
struct ReflectSerialize { .. }
impl<T: Reflect + Serialize> FromType<T> for ReflectSerialize { .. }
```
- remove `#[reflect(Serialize)]` special casing.
- when serializing reflect value types, look for `ReflectSerialize` in the `TypeRegistry` instead of calling `value.serialize()`
# Objective
> Resolves#4504
It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance.
## Solution
Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait:
```rust
pub trait Typed: Reflect {
fn type_info() -> &'static TypeInfo;
}
```
> Note: This trait was made separate from `Reflect` due to `Sized` restrictions.
If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically.
If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered).
### Usage
Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information.
```rust
#[derive(Reflect)]
struct MyTupleStruct(usize, i32, MyStruct);
let info = MyTupleStruct::type_info();
if let TypeInfo::TupleStruct(info) = info {
assert!(info.is::<MyTupleStruct>());
assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name());
assert!(info.field_at(1).unwrap().is::<i32>());
} else {
panic!("Expected `TypeInfo::TupleStruct`");
}
```
### Manual Implementations
It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls):
```rust
use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField};
use bevy_reflect::utility::TypeInfoCell;
struct Foo<T: Reflect>(T);
impl<T: Reflect> Typed for Foo<T> {
fn type_info() -> &'static TypeInfo {
static CELL: TypeInfoCell = TypeInfoCell::generic();
CELL.get_or_insert::<Self, _>(|| {
let fields = [UnnamedField:🆕:<T>()];
let info = TupleStructInfo:🆕:<Self>(&fields);
TypeInfo::TupleStruct(info)
})
}
}
```
## Benefits
One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like:
```rust
#[derive(Reflect)]
struct MyType {
foo: usize,
bar: Vec<String>
}
// RON to be deserialized:
(
type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object
value: {
// "foo" is a value type matching "usize"
"foo": 123,
// "bar" is a list type matching "Vec<String>" with item type "String"
"bar": ["a", "b", "c"]
}
)
```
Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data).
Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry.
## Discussion
Some items to discuss:
1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way?
2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically).
4. General usefulness of this change, including missing/unnecessary parts.
5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.)
## Compile Tests
I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR (aa5178e773) and main (c309acd432).
<details>
<summary>See More</summary>
The test project included 250 of the following structs (as well as a few other structs):
```rust
#[derive(Default)]
#[cfg_attr(feature = "reflect", derive(Reflect))]
#[cfg_attr(feature = "from_reflect", derive(FromReflect))]
pub struct Big001 {
inventory: Inventory,
foo: usize,
bar: String,
baz: ItemDescriptor,
items: [Item; 20],
hello: Option<String>,
world: HashMap<i32, String>,
okay: (isize, usize, /* wesize */),
nope: ((String, String), (f32, f32)),
blah: Cow<'static, str>,
}
```
> I don't know if the compiler can optimize all these duplicate structs away, but I think it's fine either way. We're comparing times, not finding the absolute worst-case time.
I only ran each build 3 times using `cargo build --timings` (thank you @devil-ira), each of which were preceeded by a `cargo clean --package bevy_reflect_compile_test`.
Here are the times I got:
| Test | Test 1 | Test 2 | Test 3 | Average |
| -------------------------------- | ------ | ------ | ------ | ------- |
| Main | 1.7s | 3.1s | 1.9s | 2.33s |
| Main + `Reflect` | 8.3s | 8.6s | 8.1s | 8.33s |
| Main + `Reflect` + `FromReflect` | 11.6s | 11.8s | 13.8s | 12.4s |
| PR | 3.5s | 1.8s | 1.9s | 2.4s |
| PR + `Reflect` | 9.2s | 8.8s | 9.3s | 9.1s |
| PR + `Reflect` + `FromReflect` | 12.9s | 12.3s | 12.5s | 12.56s |
</details>
---
## Future Work
Even though everything could probably be made `const`, we unfortunately can't. This is because `TypeId::of::<T>()` is not yet `const` (see https://github.com/rust-lang/rust/issues/77125). When it does get stabilized, it would probably be worth coming back and making things `const`.
Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
# Objective
Currently, `FromReflect` makes a couple assumptions:
* Ignored fields must implement `Default`
* Active fields must implement `FromReflect`
* The reflected must be fully populated for active fields (can't use an empty `DynamicStruct`)
However, one or both of these requirements might be unachievable, such as for external types. In these cases, it might be nice to tell `FromReflect` to use a custom default.
## Solution
Added the `#[reflect(default)]` derive helper attribute. This attribute can be applied to any field (ignored or not) and will allow a default value to be specified in place of the regular `from_reflect()` call.
It takes two forms: `#[reflect(default)]` and `#[reflect(default = "some_func")]`. The former specifies that `Default::default()` should be used while the latter specifies that `some_func()` should be used. This is pretty much [how serde does it](https://serde.rs/field-attrs.html#default).
### Example
```rust
#[derive(Reflect, FromReflect)]
struct MyStruct {
// Use `Default::default()`
#[reflect(default)]
foo: String,
// Use `get_bar_default()`
#[reflect(default = "get_bar_default")]
#[reflect(ignore)]
bar: usize,
}
fn get_bar_default() -> usize {
123
}
```
### Active Fields
As an added benefit, this also allows active fields to be completely missing from their dynamic object. This is because the attribute tells `FromReflect` how to handle missing active fields (it still tries to use `from_reflect` first so the `FromReflect` trait is still required).
```rust
let dyn_struct = DynamicStruct::default();
// We can do this without actually including the active fields since they have `#[reflect(default)]`
let my_struct = <MyStruct as FromReflect>::from_reflect(&dyn_struct);
```
### Container Defaults
Also, with the addition of #3733, people will likely start adding `#[reflect(Default)]` to their types now. Just like with the fields, we can use this to mark the entire container as "defaultable". This grants us the ability to completely remove the field markers altogether if our type implements `Default` (and we're okay with fields using that instead of their own `Default` impls):
```rust
#[derive(Reflect, FromReflect)]
#[reflect(Default)]
struct MyStruct {
foo: String,
#[reflect(ignore)]
bar: usize,
}
impl Default for MyStruct {
fn default() -> Self {
Self {
foo: String::from("Hello"),
bar: 123,
}
}
}
// Again, we can now construct this from nothing pretty much
let dyn_struct = DynamicStruct::default();
let my_struct = <MyStruct as FromReflect>::from_reflect(&dyn_struct);
```
Now if _any_ field is missing when using `FromReflect`, we simply fallback onto the container's `Default` implementation.
This behavior can be completely overridden on a per-field basis, of course, by simply defining those same field attributes like before.
### Related
* #3733
* #1395
* #2377
---
## Changelog
* Added `#[reflect(default)]` field attribute for `FromReflect`
* Allows missing fields to be given a default value when using `FromReflect`
* `#[reflect(default)]` - Use the field's `Default` implementation
* `#[reflect(default = "some_fn")]` - Use a custom function to get the default value
* Allow `#[reflect(Default)]` to have a secondary usage as a container attribute
* Allows missing fields to be given a default value based on the container's `Default` impl when using `FromReflect`
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
Fixes#4353. Fixes#4431. Picks up fixes for a panic for `gilrs` when `getGamepads()` is not available.
## Solution
Update the `gilrs` to `v0.9.0`. Changelog can be seen here: dba36f9186
EDIT: Updated `uuid` to 1.1 to avoid duplicate dependencies. Added `nix`'s two dependencies as exceptions until `rodio` updates their deps.
# Objective
Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`.
It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation.
## Solution
Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered.
To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits.
### Example
Using the following structs:
```rust
#[derive(Reflect)]
pub struct Foo {
a: usize,
nested: Bar,
#[reflect(ignore)]
_ignored: NonReflectedValue,
}
#[derive(Reflect)]
pub struct Bar {
value: Vec2,
tuple_value: (i32, String),
list_value: Vec<usize>,
// We can't determine debug formatting for Option<T> yet
unknown_value: Option<String>,
custom_debug: CustomDebug
}
#[derive(Reflect)]
#[reflect(Debug)]
struct CustomDebug;
impl Debug for CustomDebug {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "This is a custom debug!")
}
}
pub struct NonReflectedValue {
_a: usize,
}
```
We can do:
```rust
let value = Foo {
a: 1,
_ignored: NonReflectedValue { _a: 10 },
nested: Bar {
value: Vec2::new(1.23, 3.21),
tuple_value: (123, String::from("Hello")),
list_value: vec![1, 2, 3],
unknown_value: Some(String::from("World")),
custom_debug: CustomDebug
},
};
let reflected_value: &dyn Reflect = &value;
println!("{:#?}", reflected_value)
```
Which results in:
```rust
Foo {
a: 2,
nested: Bar {
value: Vec2(
1.23,
3.21,
),
tuple_value: (
123,
"Hello",
),
list_value: [
1,
2,
3,
],
unknown_value: Reflect(core::option::Option<alloc::string::String>),
custom_debug: This is a custom debug!,
},
}
```
Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits).
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
Allow `Box<dyn Reflect>` to be converted into a `Box<dyn MyTrait>` using the `#[reflect_trait]` macro. The other methods `get` and `get_mut` only provide a reference to the reflected object.
## Solution
Add a `get_boxed` method to the `Reflect***` struct generated by the `#[reflect_trait]` macro. This method takes in a `Box<dyn Reflect>` and returns a `Box<dyn MyTrait>`.
Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
# Objective
Quick followup to #4712.
While updating some [other PRs](https://github.com/bevyengine/bevy/pull/4218), I realized the `ReflectTraits` struct could be improved. The issue with the current implementation is that `ReflectTraits::get_xxx_impl(...)` returns just the _logic_ to the corresponding `Reflect` trait method, rather than the entire function.
This makes it slightly more annoying to manage since the variable names need to be consistent across files. For example, `get_partial_eq_impl` uses a `value` variable. But the name "value" isn't defined in the `get_partial_eq_impl` method, it's defined in three other methods in a completely separate file.
It's not likely to cause any bugs if we keep it as it is since differing variable names will probably just result in a compile error (except in very particular cases). But it would be useful to someone who wanted to edit/add/remove a method.
## Solution
Made `get_hash_impl`, `get_partial_eq_impl` and `get_serialize_impl` return the entire method implementation for `reflect_hash`, `reflect_partial_eq`, and `serializable`, respectively.
As a result of this, those three `Reflect` methods were also given default implementations. This was fairly simple to do since all three could just be made to return `None`.
---
## Changelog
* Small cleanup/refactor to `ReflectTraits` in `bevy_reflect_derive`
* Gave `Reflect::reflect_hash`, `Reflect::reflect_partial_eq`, and `Reflect::serializable` default implementations
# Objective
The `bevy_reflect_derive` crate is not the cleanest or easiest to follow/maintain. The `lib.rs` file is especially difficult with over 1000 lines of code written in a confusing order. This is just a result of growth within the crate and it would be nice to clean it up for future work.
## Solution
Split `bevy_reflect_derive` into many more submodules. The submodules include:
* `container_attributes` - Code relating to container attributes
* `derive_data` - Code relating to reflection-based derive metadata
* `field_attributes` - Code relating to field attributes
* `impls` - Code containing actual reflection implementations
* `reflect_value` - Code relating to reflection-based value metadata
* `registration` - Code relating to type registration
* `utility` - General-purpose utility functions
This leaves the `lib.rs` file to contain only the public macros, making it much easier to digest (and fewer than 200 lines).
By breaking up the code into smaller modules, we make it easier for future contributors to find the code they're looking for or identify which module best fits their own additions.
### Metadata Structs
This cleanup also adds two big metadata structs: `ReflectFieldAttr` and `ReflectDeriveData`. The former is used to store all attributes for a struct field (if any). The latter is used to store all metadata for struct-based derive inputs.
Both significantly reduce code duplication and make editing these macros much simpler. The tradeoff is that we may collect more metadata than needed. However, this is usually a small thing (such as checking for attributes when they're not really needed or creating a `ReflectFieldAttr` for every field regardless of whether they actually have an attribute).
We could try to remove these tradeoffs and squeeze some more performance out, but doing so might come at the cost of developer experience. Personally, I think it's much nicer to create a `ReflectFieldAttr` for every field since it means I don't have to do two `Option` checks. Others may disagree, though, and so we can discuss changing this either in this PR or in a future one.
### Out of Scope
_Some_ documentation has been added or improved, but ultimately good docs are probably best saved for a dedicated PR.
## 🔍 Focus Points (for reviewers)
I know it's a lot to sift through, so here is a list of **key points for reviewers**:
- The following files contain code that was mostly just relocated:
- `reflect_value.rs`
- `registration.rs`
- `container_attributes.rs` was also mostly moved but features some general cleanup (reducing nesting, removing hardcoded strings, etc.) and lots of doc comments
- Most impl logic was moved from `lib.rs` to `impls.rs`, but they have been significantly modified to use the new `ReflectDeriveData` metadata struct in order to reduce duplication.
- `derive_data.rs` and `field_attributes.rs` contain almost entirely new code and should probably be given the most attention.
- Likewise, `from_reflect.rs` saw major changes using `ReflectDeriveData` so it should also be given focus.
- There was no change to the `lib.rs` exports so the end-user API should be the same.
## Prior Work
This task was initially tackled by @NathanSWard in #2377 (which was closed in favor of this PR), so hats off to them for beating me to the punch by nearly a year!
---
## Changelog
* **[INTERNAL]** Split `bevy_reflect_derive` into smaller submodules
* **[INTERNAL]** Add `ReflectFieldAttr`
* **[INTERNAL]** Add `ReflectDeriveData`
* Add `BevyManifest::get_path_direct()` method (`bevy_macro_utils`)
Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
# Objective
Relevant issue: #4474
Currently glam types implement Reflect as a value, which is problematic for reflection, making scripting/editor work much more difficult. This PR re-implements them as structs.
## Solution
Added a new proc macro, `impl_reflect_struct`, which replaces `impl_reflect_value` and `impl_from_reflect_value` for glam types. This macro could also be used for other types, but I don't know of any that would require it. It's specifically useful for foreign types that cannot derive Reflect normally.
---
## Changelog
### Added
- `impl_reflect_struct` proc macro
### Changed
- Glam reflect impls have been replaced with `impl_reflect_struct`
- from_reflect's `impl_struct` altered to take an optional custom constructor, allowing non-default non-constructible foreign types to use it
- Calls to `impl_struct` altered to conform to new signature
- Altered glam types (All vec/mat combinations) have a different serialization structure, as they are reflected differently now.
## Migration Guide
This will break altered glam types serialized to RON scenes, as they will expect to be serialized/deserialized as structs rather than values now. A future PR to add custom serialization for non-value types is likely on the way to restore previous behavior. Additionally, calls to `impl_struct` must add a `None` parameter to the end of the call to restore previous behavior.
Co-authored-by: PROMETHIA-27 <42193387+PROMETHIA-27@users.noreply.github.com>
# Objective
Reduce from scratch build time.
## Solution
Reduce the size of the critical path by removing dependencies between crates where not necessary. For `cargo check --no-default-features` this reduced build time from ~51s to ~45s. For some commits I am not completely sure if the tradeoff between build time reduction and convenience caused by the commit is acceptable. If not, I can drop them.
Support for deriving `TypeUuid` for types with generics was initially added in https://github.com/bevyengine/bevy/pull/2044 but later reverted https://github.com/bevyengine/bevy/pull/2204 because it lead to `MyStruct<A>` and `MyStruct<B>` having the same type uuid.
This PR fixes this by generating code like
```rust
#[derive(TypeUuid)]
#[uuid = "69b09733-a21a-4dab-a444-d472986bd672"]
struct Type<T>(T);
impl<T: TypeUuid> TypeUuid for Type<T> {
const TYPE_UUID: TypeUuid = generate_compound_uuid(Uuid::from_bytes([/* 69b0 uuid */]), T::TYPE_UUID);
}
```
where `generate_compound_uuid` will XOR the non-metadata bits of the two UUIDs.
Co-authored-by: XBagon <xbagon@outlook.de>
Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
# Objective
Trait objects that have `Reflect` as a supertrait cannot be upcast to a `dyn Reflect`.
Attempting something like:
```rust
trait MyTrait: Reflect {
// ...
}
fn foo(value: &dyn MyTrait) {
let reflected = value as &dyn Reflect; // Error!
// ...
}
```
Results in `error[E0658]: trait upcasting coercion is experimental`.
The reason this is important is that a lot of `bevy_reflect` methods require a `&dyn Reflect`. This is trivial with concrete types, but if we don't know the concrete type (we only have the trait object), we can't use these methods. For example, we couldn't create a `ReflectSerializer` for the type since it expects a `&dyn Reflect` value— even though we should be able to.
## Solution
Add `as_reflect` and `as_reflect_mut` to `Reflect` to allow upcasting to a `dyn Reflect`:
```rust
trait MyTrait: Reflect {
// ...
}
fn foo(value: &dyn MyTrait) {
let reflected = value.as_reflect();
// ...
}
```
## Alternatives
We could defer this type of logic to the crate/user. They can add these methods to their trait in the same exact way we do here. The main benefit of doing it ourselves is it makes things convenient for them (especially when using the derive macro).
We could also create an `AsReflect` trait with a blanket impl over all reflected types, however, I could not get that to work for trait objects since they aren't sized.
---
## Changelog
- Added trait method `Reflect::as_reflect(&self)`
- Added trait method `Reflect::as_reflect_mut(&mut self)`
## Migration Guide
- Manual implementors of `Reflect` will need to add implementations for the methods above (this should be pretty easy as most cases just need to return `self`)
A couple more uncontroversial changes extracted from #3886.
* Enable full feature of syn
It is necessary for the ItemFn and ItemTrait type. Currently it is indirectly
enabled through the tracing dependency of bevy_utils, but this may no
longer be the case in the future.
* Remove unused function from bevy_macro_utils
# Objective
The `#[reflect_trait]` macro did not maintain the visibility of its trait. It also did not make its accessor methods public, which made them inaccessible outside the current module.
## Solution
Made the `Reflect***` struct match the visibility of its trait and made both the `get` and `get_mut` methods always public.
What is says on the tin.
This has got more to do with making `clippy` slightly more *quiet* than it does with changing anything that might greatly impact readability or performance.
that said, deriving `Default` for a couple of structs is a nice easy win
Dynamic types (`DynamicStruct`, `DynamicTupleStruct`, `DynamicTuple`, `DynamicList` and `DynamicMap`) are used when deserializing scenes, but currently they can only be applied to existing concrete types. This leads to issues when trying to spawn non trivial deserialized scene.
For components, the issue is avoided by requiring that reflected components implement ~~`FromResources`~~ `FromWorld` (or `Default`). When spawning, a new concrete type is created that way, and the dynamic type is applied to it. Unfortunately, some components don't have any valid implementation of these traits.
In addition, any `Vec` or `HashMap` inside a component will panic when a dynamic type is pushed into it (for instance, `Text` panics when adding a text section).
To solve this issue, this PR adds the `FromReflect` trait that creates a concrete type from a dynamic type that represent it, derives the trait alongside the `Reflect` trait, drops the ~~`FromResources`~~ `FromWorld` requirement on reflected components, ~~and enables reflection for UI and Text bundles~~. It also adds the requirement that fields ignored with `#[reflect(ignore)]` implement `Default`, since we need to initialize them somehow.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Objective
During work on #3009 I've found that not all jobs use actions-rs, and therefore, an previous version of Rust is used for them. So while compilation and other stuff can pass, checking markup and Android build may fail with compilation errors.
Solution
This PR adds `action-rs` for any job running cargo, and updates the edition to 2021.
A few minor changes to fix warnings emitted from clippy on the nightly toolchain, including redundant_allocation, unwrap_or_else_default, and collapsible_match, fixes#2698