I created this manually as Github didn't want to run CI for the
workflow-generated PR. I'm guessing we didn't hit this in previous
releases because we used bors.
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
# Objective
**This implementation is based on
https://github.com/bevyengine/rfcs/pull/59.**
---
Resolves#4597
Full details and motivation can be found in the RFC, but here's a brief
summary.
`FromReflect` is a very powerful and important trait within the
reflection API. It allows Dynamic types (e.g., `DynamicList`, etc.) to
be formed into Real ones (e.g., `Vec<i32>`, etc.).
This mainly comes into play concerning deserialization, where the
reflection deserializers both return a `Box<dyn Reflect>` that almost
always contain one of these Dynamic representations of a Real type. To
convert this to our Real type, we need to use `FromReflect`.
It also sneaks up in other ways. For example, it's a required bound for
`T` in `Vec<T>` so that `Vec<T>` as a whole can be made `FromReflect`.
It's also required by all fields of an enum as it's used as part of the
`Reflect::apply` implementation.
So in other words, much like `GetTypeRegistration` and `Typed`, it is
very much a core reflection trait.
The problem is that it is not currently treated like a core trait and is
not automatically derived alongside `Reflect`. This makes using it a bit
cumbersome and easy to forget.
## Solution
Automatically derive `FromReflect` when deriving `Reflect`.
Users can then choose to opt-out if needed using the
`#[reflect(from_reflect = false)]` attribute.
```rust
#[derive(Reflect)]
struct Foo;
#[derive(Reflect)]
#[reflect(from_reflect = false)]
struct Bar;
fn test<T: FromReflect>(value: T) {}
test(Foo); // <-- OK
test(Bar); // <-- Panic! Bar does not implement trait `FromReflect`
```
#### `ReflectFromReflect`
This PR also automatically adds the `ReflectFromReflect` (introduced in
#6245) registration to the derived `GetTypeRegistration` impl— if the
type hasn't opted out of `FromReflect` of course.
<details>
<summary><h4>Improved Deserialization</h4></summary>
> **Warning**
> This section includes changes that have since been descoped from this
PR. They will likely be implemented again in a followup PR. I am mainly
leaving these details in for archival purposes, as well as for reference
when implementing this logic again.
And since we can do all the above, we might as well improve
deserialization. We can now choose to deserialize into a Dynamic type or
automatically convert it using `FromReflect` under the hood.
`[Un]TypedReflectDeserializer::new` will now perform the conversion and
return the `Box`'d Real type.
`[Un]TypedReflectDeserializer::new_dynamic` will work like what we have
now and simply return the `Box`'d Dynamic type.
```rust
// Returns the Real type
let reflect_deserializer = UntypedReflectDeserializer::new(®istry);
let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?;
let output: SomeStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?;
// Returns the Dynamic type
let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(®istry);
let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?;
let output: DynamicStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?;
```
</details>
---
## Changelog
* `FromReflect` is now automatically derived within the `Reflect` derive
macro
* This includes auto-registering `ReflectFromReflect` in the derived
`GetTypeRegistration` impl
* ~~Renamed `TypedReflectDeserializer::new` and
`UntypedReflectDeserializer::new` to
`TypedReflectDeserializer::new_dynamic` and
`UntypedReflectDeserializer::new_dynamic`, respectively~~ **Descoped**
* ~~Changed `TypedReflectDeserializer::new` and
`UntypedReflectDeserializer::new` to automatically convert the
deserialized output using `FromReflect`~~ **Descoped**
## Migration Guide
* `FromReflect` is now automatically derived within the `Reflect` derive
macro. Items with both derives will need to remove the `FromReflect`
one.
```rust
// OLD
#[derive(Reflect, FromReflect)]
struct Foo;
// NEW
#[derive(Reflect)]
struct Foo;
```
If using a manual implementation of `FromReflect` and the `Reflect`
derive, users will need to opt-out of the automatic implementation.
```rust
// OLD
#[derive(Reflect)]
struct Foo;
impl FromReflect for Foo {/* ... */}
// NEW
#[derive(Reflect)]
#[reflect(from_reflect = false)]
struct Foo;
impl FromReflect for Foo {/* ... */}
```
<details>
<summary><h4>Removed Migrations</h4></summary>
> **Warning**
> This section includes changes that have since been descoped from this
PR. They will likely be implemented again in a followup PR. I am mainly
leaving these details in for archival purposes, as well as for reference
when implementing this logic again.
* The reflect deserializers now perform a `FromReflect` conversion
internally. The expected output of `TypedReflectDeserializer::new` and
`UntypedReflectDeserializer::new` is no longer a Dynamic (e.g.,
`DynamicList`), but its Real counterpart (e.g., `Vec<i32>`).
```rust
let reflect_deserializer =
UntypedReflectDeserializer::new_dynamic(®istry);
let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?;
// OLD
let output: DynamicStruct = reflect_deserializer.deserialize(&mut
deserializer)?.take()?;
// NEW
let output: SomeStruct = reflect_deserializer.deserialize(&mut
deserializer)?.take()?;
```
Alternatively, if this behavior isn't desired, use the
`TypedReflectDeserializer::new_dynamic` and
`UntypedReflectDeserializer::new_dynamic` methods instead:
```rust
// OLD
let reflect_deserializer = UntypedReflectDeserializer::new(®istry);
// NEW
let reflect_deserializer =
UntypedReflectDeserializer::new_dynamic(®istry);
```
</details>
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
operate on naga IR directly to improve handling of shader modules.
- give codespan reporting into imported modules
- allow glsl to be used from wgsl and vice-versa
the ultimate objective is to make it possible to
- provide user hooks for core shader functions (to modify light
behaviour within the standard pbr pipeline, for example)
- make automatic binding slot allocation possible
but ... since this is already big, adds some value and (i think) is at
feature parity with the existing code, i wanted to push this now.
## Solution
i made a crate called naga_oil (https://github.com/robtfm/naga_oil -
unpublished for now, could be part of bevy) which manages modules by
- building each module independantly to naga IR
- creating "header" files for each supported language, which are used to
build dependent modules/shaders
- make final shaders by combining the shader IR with the IR for imported
modules
then integrated this into bevy, replacing some of the existing shader
processing stuff. also reworked examples to reflect this.
## Migration Guide
shaders that don't use `#import` directives should work without changes.
the most notable user-facing difference is that imported
functions/variables/etc need to be qualified at point of use, and
there's no "leakage" of visible stuff into your shader scope from the
imports of your imports, so if you used things imported by your imports,
you now need to import them directly and qualify them.
the current strategy of including/'spreading' `mesh_vertex_output`
directly into a struct doesn't work any more, so these need to be
modified as per the examples (e.g. color_material.wgsl, or many others).
mesh data is assumed to be in bindgroup 2 by default, if mesh data is
bound into bindgroup 1 instead then the shader def `MESH_BINDGROUP_1`
needs to be added to the pipeline shader_defs.
# Objective
- Better consistency with `add_systems`.
- Deprecating `add_plugin` in favor of a more powerful `add_plugins`.
- Allow passing `Plugin` to `add_plugins`.
- Allow passing tuples to `add_plugins`.
## Solution
- `App::add_plugins` now takes an `impl Plugins` parameter.
- `App::add_plugin` is deprecated.
- `Plugins` is a new sealed trait that is only implemented for `Plugin`,
`PluginGroup` and tuples over `Plugins`.
- All examples, benchmarks and tests are changed to use `add_plugins`,
using tuples where appropriate.
---
## Changelog
### Changed
- `App::add_plugins` now accepts all types that implement `Plugins`,
which is implemented for:
- Types that implement `Plugin`.
- Types that implement `PluginGroup`.
- Tuples (up to 16 elements) over types that implement `Plugins`.
- Deprecated `App::add_plugin` in favor of `App::add_plugins`.
## Migration Guide
- Replace `app.add_plugin(plugin)` calls with `app.add_plugins(plugin)`.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Use `AppTypeRegistry` on API defined in `bevy_ecs`
(https://github.com/bevyengine/bevy/pull/8895#discussion_r1234748418)
A lot of the API on `Reflect` depends on a registry. When it comes to
the ECS. We should use `AppTypeRegistry` in the general case.
This is however impossible in `bevy_ecs`, since `AppTypeRegistry` is
defined in `bevy_app`.
## Solution
- Move `AppTypeRegistry` resource definition from `bevy_app` to
`bevy_ecs`
- Still add the resource in the `App` plugin, since bevy_ecs itself
doesn't know of plugins
Note that `bevy_ecs` is a dependency of `bevy_app`, so nothing
revolutionary happens.
## Alternative
- Define the API as a trait in `bevy_app` over `bevy_ecs`. (though this
prevents us from using bevy_ecs internals)
- Do not rely on `AppTypeRegistry` for the API in question, requring
users to extract themselves the resource and pass it to the API methods.
---
## Changelog
- Moved `AppTypeRegistry` resource definition from `bevy_app` to
`bevy_ecs`
## Migration Guide
- If you were **not** using a `prelude::*` to import `AppTypeRegistry`,
you should update your imports:
```diff
- use bevy::app::AppTypeRegistry;
+ use bevy::ecs::reflect::AppTypeRegistry
```
# Objective
- Document android code that is currently causing clippy warnings due to
not being documented
## Solution
- Document the two previously undocumented items
# Objective
Discovered that PointLight did not implement FromReflect. Adding
FromReflect where Reflect is used. I overreached and applied this rule
everywhere there was a Reflect without a FromReflect, except from where
the compiler wouldn't allow me.
Based from question: https://github.com/bevyengine/bevy/discussions/8774
## Solution
- Adding FromReflect where Reflect was already derived
## Notes
First PR I do in this ecosystem, so not sure if this is the usual
approach, that is, to touch many files at once.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Updates the requirements on
[notify](https://github.com/notify-rs/notify) to permit the latest
version.
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/notify-rs/notify/blob/main/CHANGELOG.md">notify's
changelog</a>.</em></p>
<blockquote>
<h2>notify 6.0.0 (2023-05-17)</h2>
<ul>
<li>CHANGE: files and directories moved into a watch folder on Linux
will now be reported as <code>rename to</code> events instead of
<code>create</code> events <a
href="https://redirect.github.com/notify-rs/notify/issues/480">#480</a></li>
<li>CHANGE: on Linux <code>rename from</code> events will be emitted
immediately without starting a new thread <a
href="https://redirect.github.com/notify-rs/notify/issues/480">#480</a></li>
<li>CHANGE: raise MSRV to 1.60 <a
href="https://redirect.github.com/notify-rs/notify/issues/480">#480</a></li>
</ul>
<h2>debouncer-mini 0.3.0 (2023-05-17)</h2>
<ul>
<li>CHANGE: upgrade to notify 6.0.0, pushing MSRV to 1.60 <a
href="https://redirect.github.com/notify-rs/notify/issues/480">#480</a></li>
</ul>
<h2>debouncer-full 0.1.0 (2023-05-17)</h2>
<p>Newly introduced alternative debouncer with more features. <a
href="https://redirect.github.com/notify-rs/notify/issues/480">#480</a></p>
<ul>
<li>FEATURE: only emit a single <code>rename</code> event if the rename
<code>From</code> and <code>To</code> events can be matched</li>
<li>FEATURE: merge multiple <code>rename</code> events</li>
<li>FEATURE: keep track of the file system IDs all files and stiches
rename events together (FSevents, Windows)</li>
<li>FEATURE: emit only one <code>remove</code> event when deleting a
directory (inotify)</li>
<li>FEATURE: don't emit duplicate create events</li>
<li>FEATURE: don't emit <code>Modify</code> events after a
<code>Create</code> event</li>
</ul>
<p><a
href="https://redirect.github.com/notify-rs/notify/issues/480">#480</a>:
<a
href="https://redirect.github.com/notify-rs/notify/pull/480">notify-rs/notify#480</a></p>
<h2>notify 5.2.0 (2023-05-17)</h2>
<ul>
<li>CHANGE: implement <code>Copy</code> for <code>EventKind</code> and
<code>ModifyKind</code> <a
href="https://redirect.github.com/notify-rs/notify/issues/481">#481</a></li>
</ul>
<p><a
href="https://redirect.github.com/notify-rs/notify/issues/481">#481</a>:
<a
href="https://redirect.github.com/notify-rs/notify/pull/481">notify-rs/notify#481</a></p>
<h2>notify 5.1.0 (2023-01-15)</h2>
<ul>
<li>CHANGE: switch from winapi to windows-sys <a
href="https://redirect.github.com/notify-rs/notify/issues/457">#457</a></li>
<li>FIX: kqueue-backend: batch file-watching together to improve
performance <a
href="https://redirect.github.com/notify-rs/notify/issues/454">#454</a></li>
<li>DOCS: include license file in crate again <a
href="https://redirect.github.com/notify-rs/notify/issues/461">#461</a></li>
<li>DOCS: typo and examples fixups</li>
</ul>
<p><a
href="https://redirect.github.com/notify-rs/notify/issues/454">#454</a>:
<a
href="https://redirect.github.com/notify-rs/notify/pull/454">notify-rs/notify#454</a>
<a
href="https://redirect.github.com/notify-rs/notify/issues/461">#461</a>:
<a
href="https://redirect.github.com/notify-rs/notify/pull/461">notify-rs/notify#461</a>
<a
href="https://redirect.github.com/notify-rs/notify/issues/457">#457</a>:
<a
href="https://redirect.github.com/notify-rs/notify/pull/457">notify-rs/notify#457</a></p>
<h2>debouncer-mini 0.2.1 (2022-09-05)</h2>
<ul>
<li>DOCS: correctly document the <code>crossbeam</code> feature <a
href="https://redirect.github.com/notify-rs/notify/issues/440">#440</a></li>
</ul>
<p><a
href="https://redirect.github.com/notify-rs/notify/issues/440">#440</a>:
<a
href="https://redirect.github.com/notify-rs/notify/pull/440">notify-rs/notify#440</a></p>
<h2>debouncer-mini 0.2.0 (2022-08-30)</h2>
<p>Upgrade notify dependency to 5.0.0</p>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li>See full diff in <a
href="https://github.com/notify-rs/notify/commits">compare view</a></li>
</ul>
</details>
<br />
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
</details>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
# Objective
Be consistent with `Resource`s and `Components` and have `Event` types
be more self-documenting.
Although not susceptible to accidentally using a function instead of a
value due to `Event`s only being initialized by their type, much of the
same reasoning for removing the blanket impl on `Resource` also applies
here.
* Not immediately obvious if a type is intended to be an event
* Prevent invisible conflicts if the same third-party or primitive types
are used as events
* Allows for further extensions (e.g. opt-in warning for missed events)
## Solution
Remove the blanket impl for the `Event` trait. Add a derive macro for
it.
---
## Changelog
- `Event` is no longer implemented for all applicable types. Add the
`#[derive(Event)]` macro for events.
## Migration Guide
* Add the `#[derive(Event)]` macro for events. Third-party types used as
events should be wrapped in a newtype.
# Objective
I was trying to add some `Diagnostics` to have a better break down of
performance but I noticed that the current implementation uses a
`ResMut` which forces the functions to all run sequentially whereas
before they could run in parallel. This created too great a performance
penalty to be usable.
## Solution
This PR reworks how the diagnostics work with a couple of breaking
changes. The idea is to change how `Diagnostics` works by changing it to
a `SystemParam`. This allows us to hold a `Deferred` buffer of
measurements that can be applied later, avoiding the need for multiple
mutable references to the hashmap. This means we can run systems that
write diagnostic measurements in parallel.
Firstly, we rename the old `Diagnostics` to `DiagnosticsStore`. This
clears up the original name for the new interface while allowing us to
preserve more closely the original API.
Then we create a new `Diagnostics` struct which implements `SystemParam`
and contains a deferred `SystemBuffer`. This can be used very similar to
the old `Diagnostics` for writing new measurements.
```rust
fn system(diagnostics: ResMut<Diagnostics>) { diagnostics.new_measurement(ID, || 10.0)}
// changes to
fn system(mut diagnostics: Diagnostics) { diagnostics.new_measurement(ID, || 10.0)}
```
For reading the diagnostics, the user needs to change from `Diagnostics`
to `DiagnosticsStore` but otherwise the function calls are the same.
Finally, we add a new method to the `App` for registering diagnostics.
This replaces the old method of creating a startup system and adding it
manually.
Testing it, this PR does indeed allow Diagnostic systems to be run in
parallel.
## Changelog
- Change `Diagnostics` to implement `SystemParam` which allows
diagnostic systems to run in parallel.
## Migration Guide
- Register `Diagnostic`'s using the new
`app.register_diagnostic(Diagnostic::new(DIAGNOSTIC_ID,
"diagnostic_name", 10));`
- In systems for writing new measurements, change `mut diagnostics:
ResMut<Diagnostics>` to `mut diagnostics: Diagnostics` to allow the
systems to run in parallel.
- In systems for reading measurements, change `diagnostics:
Res<Diagnostics>` to `diagnostics: Res<DiagnosticsStore>`.
# Objective
- Introduce a stable alternative to
[`std::any::type_name`](https://doc.rust-lang.org/std/any/fn.type_name.html).
- Rewrite of #5805 with heavy inspiration in design.
- On the path to #5830.
- Part of solving #3327.
## Solution
- Add a `TypePath` trait for static stable type path/name information.
- Add a `TypePath` derive macro.
- Add a `impl_type_path` macro for implementing internal and foreign
types in `bevy_reflect`.
---
## Changelog
- Added `TypePath` trait.
- Added `DynamicTypePath` trait and `get_type_path` method to `Reflect`.
- Added a `TypePath` derive macro.
- Added a `bevy_reflect::impl_type_path` for implementing `TypePath` on
internal and foreign types in `bevy_reflect`.
- Changed `bevy_reflect::utility::(Non)GenericTypeInfoCell` to
`(Non)GenericTypedCell<T>` which allows us to be generic over both
`TypeInfo` and `TypePath`.
- `TypePath` is now a supertrait of `Asset`, `Material` and
`Material2d`.
- `impl_reflect_struct` needs a `#[type_path = "..."]` attribute to be
specified.
- `impl_reflect_value` needs to either specify path starting with a
double colon (`::core::option::Option`) or an `in my_crate::foo`
declaration.
- Added `bevy_reflect_derive::ReflectTypePath`.
- Most uses of `Ident` in `bevy_reflect_derive` changed to use
`ReflectTypePath`.
## Migration Guide
- Implementors of `Asset`, `Material` and `Material2d` now also need to
derive `TypePath`.
- Manual implementors of `Reflect` will need to implement the new
`get_type_path` method.
## Open Questions
- [x] ~This PR currently does not migrate any usages of
`std::any::type_name` to use `bevy_reflect::TypePath` to ease the review
process. Should it?~ Migration will be left to a follow-up PR.
- [ ] This PR adds a lot of `#[derive(TypePath)]` and `T: TypePath` to
satisfy new bounds, mostly when deriving `TypeUuid`. Should we make
`TypePath` a supertrait of `TypeUuid`? [Should we remove `TypeUuid` in
favour of
`TypePath`?](2afbd85532 (r961067892))
# Objective
- Fix#5631
## Solution
- Wait 50ms (configurable) after the last modification event before
reloading an asset.
---
## Changelog
- `AssetPlugin::watch_for_changes` is now a `ChangeWatcher` instead of a
`bool`
- Fixed https://github.com/bevyengine/bevy/issues/5631
## Migration Guide
- Replace `AssetPlugin::watch_for_changes: true` with e.g.
`ChangeWatcher::with_delay(Duration::from_millis(200))`
---------
Co-authored-by: François <mockersf@gmail.com>
# Objective
- Add Reflect and FromReflect for AssetPath
- Fixes#8458
## Solution
- Straightforward derive of `Reflect` and `FromReflect` for `AssetPath`
- Implement `Reflect` and `FromReflect` for `Cow<'static, Path>` as to
satisfy the 'static lifetime requierments of bevy_reflect.
Implementation is a direct copy of that for `Cow<'static, str>` so maybe
it begs the question that was already asked in #7429 - maybe it would be
benefitial to write a general implementation for `Reflect` for
`Cow<'static, T>`.
# Objective
Ensure future consistency between the two compare functions for all
types with manual `Ord` and `PartialOrd` implementations.
## Solution
Use `Self::cpm` in the implementation of `partial_cpm` for types
`Handle` and `Name`.
# Objective
Currently, there isn't a clean way of getting an untyped handle to an
asset during asset loading. This is useful for when an asset needs to
reference other assets, but may not know the concrete type of each
asset.
We could "hack" this together by just using some random asset:
```rust
// We don't care what `bar.baz` is, so we "pretend" it's an `Image`
let handle: Handle<Image> = load_context.get_handle("foo/bar.baz");
```
This should work since we don't actually care about the underlying type
in this case. However, we can do better.
## Solution
Add the `LoadContext::get_handle_untyped` method to get untyped handles
to assets.
Links in the api docs are nice. I noticed that there were several places
where structs / functions and other things were referenced in the docs,
but weren't linked. I added the links where possible / logical.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
# Objective
The clippy lint `type_complexity` is known not to play well with bevy.
It frequently triggers when writing complex queries, and taking the
lint's advice of using a type alias almost always just obfuscates the
code with no benefit. Because of this, this lint is currently ignored in
CI, but unfortunately it still shows up when viewing bevy code in an
IDE.
As someone who's made a fair amount of pull requests to this repo, I
will say that this issue has been a consistent thorn in my side. Since
bevy code is filled with spurious, ignorable warnings, it can be very
difficult to spot the *real* warnings that must be fixed -- most of the
time I just ignore all warnings, only to later find out that one of them
was real after I'm done when CI runs.
## Solution
Suppress this lint in all bevy crates. This was previously attempted in
#7050, but the review process ended up making it more complicated than
it needs to be and landed on a subpar solution.
The discussion in https://github.com/rust-lang/rust-clippy/pull/10571
explores some better long-term solutions to this problem. Since there is
no timeline on when these solutions may land, we should resolve this
issue in the meantime by locally suppressing these lints.
### Unresolved issues
Currently, these lints are not suppressed in our examples, since that
would require suppressing the lint in every single source file. They are
still ignored in CI.
# Objective
Fixes#6780
## Solution
- record the asset path of each watched file
- call `AssetIo::watch_for_changes` in `LoadContext::read_asset_bytes`
---
## Changelog
### Fixed
- fixed hot reloading for `LoadContext::read_asset_bytes`
### Changed
- `AssetIo::watch_path_for_changes` allows watched path and path to reload to differ
## Migration Guide
- for custom `AssetIo`s, differentiate paths to watch and asset paths to reload as a consequence
Co-authored-by: Vincent Junge <specificprotagonist@posteo.org>
# Objective
Closes#7573
- Make `StartupSet` a base set
## Solution
- Add `#[system_set(base)]` to the enum declaration
- Replace `.in_set(StartupSet::...)` with `.in_base_set(StartupSet::...)`
**Note**: I don't really know what I'm doing and what exactly the difference between base and non-base sets are. I mostly opened this PR based on discussion in Discord. I also don't really know how to test that I didn't break everything. Your reviews are appreciated!
---
## Changelog
- `StartupSet` is now a base set
## Migration Guide
`StartupSet` is now a base set. This means that you have to use `.in_base_set` instead of `.in_set`:
### Before
```rs
app.add_system(foo.in_set(StartupSet::PreStartup))
```
### After
```rs
app.add_system(foo.in_base_set(StartupSet::PreStartup))
```
# Objective
We have a few old system labels that are now system sets but are still named or documented as labels. Documentation also generally mentioned system labels in some places.
## Solution
- Clean up naming and documentation regarding system sets
## Migration Guide
`PrepareAssetLabel` is now called `PrepareAssetSet`
# Objective
NOTE: This depends on #7267 and should not be merged until #7267 is merged. If you are reviewing this before that is merged, I highly recommend viewing the Base Sets commit instead of trying to find my changes amongst those from #7267.
"Default sets" as described by the [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) have some [unfortunate consequences](https://github.com/bevyengine/bevy/discussions/7365).
## Solution
This adds "base sets" as a variant of `SystemSet`:
A set is a "base set" if `SystemSet::is_base` returns `true`. Typically this will be opted-in to using the `SystemSet` derive:
```rust
#[derive(SystemSet, Clone, Hash, Debug, PartialEq, Eq)]
#[system_set(base)]
enum MyBaseSet {
A,
B,
}
```
**Base sets are exclusive**: a system can belong to at most one "base set". Adding a system to more than one will result in an error. When possible we fail immediately during system-config-time with a nice file + line number. For the more nested graph-ey cases, this will fail at the final schedule build.
**Base sets cannot belong to other sets**: this is where the word "base" comes from
Systems and Sets can only be added to base sets using `in_base_set`. Calling `in_set` with a base set will fail. As will calling `in_base_set` with a normal set.
```rust
app.add_system(foo.in_base_set(MyBaseSet::A))
// X must be a normal set ... base sets cannot be added to base sets
.configure_set(X.in_base_set(MyBaseSet::A))
```
Base sets can still be configured like normal sets:
```rust
app.add_system(MyBaseSet::B.after(MyBaseSet::Ap))
```
The primary use case for base sets is enabling a "default base set":
```rust
schedule.set_default_base_set(CoreSet::Update)
// this will belong to CoreSet::Update by default
.add_system(foo)
// this will override the default base set with PostUpdate
.add_system(bar.in_base_set(CoreSet::PostUpdate))
```
This allows us to build apis that work by default in the standard Bevy style. This is a rough analog to the "default stage" model, but it use the new "stageless sets" model instead, with all of the ordering flexibility (including exclusive systems) that it provides.
---
## Changelog
- Added "base sets" and ported CoreSet to use them.
## Migration Guide
TODO
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.
# Objective
- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45
## Solution
- [x] Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests
## Changelog
### Added
- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`
### Removed
- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.
### Changed
- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
- `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied.
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.
## Migration Guide
- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
- Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
- Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
- For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with
- `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`
## TODO
- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
- [x] unbreak directional lights
- [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
- [x] game menu example shows loading screen and menu simultaneously
- [x] display settings menu is a blank screen
- [x] `without_winit` example panics
- [x] ensure all tests pass
- [x] SubApp doc test fails
- [x] runs_spawn_local tasks fails
- [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)
## Points of Difficulty and Controversy
**Reviewers, please give feedback on these and look closely**
1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.
## Future Work (ideally before 0.10)
- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
# Objective
- Update winit to 0.28
## Solution
- Small API change
- A security advisory has been added for a unmaintained crate used by a dependency of winit build script for wayland
I didn't do anything for Android support in this PR though it should be fixable, it should be done in a separate one, maybe https://github.com/bevyengine/bevy/pull/6830
---
## Changelog
- `window.always_on_top` has been removed, you can now use `window.window_level`
## Migration Guide
before:
```rust
app.new()
.add_plugins(DefaultPlugins.set(WindowPlugin {
primary_window: Some(Window {
always_on_top: true,
..default()
}),
..default()
}));
```
after:
```rust
app.new()
.add_plugins(DefaultPlugins.set(WindowPlugin {
primary_window: Some(Window {
window_level: bevy:🪟:WindowLevel::AlwaysOnTop,
..default()
}),
..default()
}));
```
# Objective
- Resolve a Fixme to remove the `Default` impl for `HandleType`, once Reflection no longer requires it.
- Presumebly this Comment was made before the `FromReflect` Derive used the `#[reflect(Default)]`, to substitute for the requirment that a ignored field has a `Default`.
## Solution
- Just remove the `Default` derive and comment.
alternative to #5922, implements #5956
builds on top of https://github.com/bevyengine/bevy/pull/6402
# Objective
https://github.com/bevyengine/bevy/issues/5956 goes into more detail, but the TLDR is:
- bevy systems ensure disjoint accesses to resources and components, and for that to work there are methods `World::get_resource_unchecked_mut(&self)`, ..., `EntityRef::get_mut_unchecked(&self)` etc.
- we don't have these unchecked methods for `by_id` variants, so third-party crate authors cannot build their own safe disjoint-access abstractions with these
- having `_unchecked_mut` methods is not great, because in their presence safe code can accidentally violate subtle invariants. Having to go through `world.as_unsafe_world_cell().unsafe_method()` forces you to stop and think about what you want to write in your `// SAFETY` comment.
The alternative is to keep exposing `_unchecked_mut` variants for every operation that we want third-party crates to build upon, but we'd prefer to avoid using these methods alltogether: https://github.com/bevyengine/bevy/pull/5922#issuecomment-1241954543
Also, this is something that **cannot be implemented outside of bevy**, so having either this PR or #5922 as an escape hatch with lots of discouraging comments would be great.
## Solution
- add `UnsafeWorldCell` with `unsafe fn get_resource(&self)`, `unsafe fn get_resource_mut(&self)`
- add `fn World::as_unsafe_world_cell(&mut self) -> UnsafeWorldCell<'_>` (and `as_unsafe_world_cell_readonly(&self)`)
- add `UnsafeWorldCellEntityRef` with `unsafe fn get`, `unsafe fn get_mut` and the other utilities on `EntityRef` (no methods for spawning, despawning, insertion)
- use the `UnsafeWorldCell` abstraction in `ReflectComponent`, `ReflectResource` and `ReflectAsset`, so these APIs are easier to reason about
- remove `World::get_resource_mut_unchecked`, `EntityRef::get_mut_unchecked` and use `unsafe { world.as_unsafe_world_cell().get_mut() }` and `unsafe { world.as_unsafe_world_cell().get_entity(entity)?.get_mut() }` instead
This PR does **not** make use of `UnsafeWorldCell` for anywhere else in `bevy_ecs` such as `SystemParam` or `Query`. That is a much larger change, and I am convinced that having `UnsafeWorldCell` is already useful for third-party crates.
Implemented API:
```rust
struct World { .. }
impl World {
fn as_unsafe_world_cell(&self) -> UnsafeWorldCell<'_>;
}
struct UnsafeWorldCell<'w>(&'w World);
impl<'w> UnsafeWorldCell {
unsafe fn world(&self) -> &World;
fn get_entity(&self) -> UnsafeWorldCellEntityRef<'w>; // returns 'w which is `'self` of the `World::as_unsafe_world_cell(&'w self)`
unsafe fn get_resource<T>(&self) -> Option<&'w T>;
unsafe fn get_resource_by_id(&self, ComponentId) -> Option<&'w T>;
unsafe fn get_resource_mut<T>(&self) -> Option<Mut<'w, T>>;
unsafe fn get_resource_mut_by_id(&self) -> Option<MutUntyped<'w>>;
unsafe fn get_non_send_resource<T>(&self) -> Option<&'w T>;
unsafe fn get_non_send_resource_mut<T>(&self) -> Option<Mut<'w, T>>>;
// not included: remove, remove_resource, despawn, anything that might change archetypes
}
struct UnsafeWorldCellEntityRef<'w> { .. }
impl UnsafeWorldCellEntityRef<'w> {
unsafe fn get<T>(&self, Entity) -> Option<&'w T>;
unsafe fn get_by_id(&self, Entity, ComponentId) -> Option<Ptr<'w>>;
unsafe fn get_mut<T>(&self, Entity) -> Option<Mut<'w, T>>;
unsafe fn get_mut_by_id(&self, Entity, ComponentId) -> Option<MutUntyped<'w>>;
unsafe fn get_change_ticks<T>(&self, Entity) -> Option<Mut<'w, T>>;
// fn id, archetype, contains, contains_id, containts_type_id
}
```
<details>
<summary>UnsafeWorldCell docs</summary>
Variant of the [`World`] where resource and component accesses takes a `&World`, and the responsibility to avoid
aliasing violations are given to the caller instead of being checked at compile-time by rust's unique XOR shared rule.
### Rationale
In rust, having a `&mut World` means that there are absolutely no other references to the safe world alive at the same time,
without exceptions. Not even unsafe code can change this.
But there are situations where careful shared mutable access through a type is possible and safe. For this, rust provides the [`UnsafeCell`](std::cell::UnsafeCell)
escape hatch, which allows you to get a `*mut T` from a `&UnsafeCell<T>` and around which safe abstractions can be built.
Access to resources and components can be done uniquely using [`World::resource_mut`] and [`World::entity_mut`], and shared using [`World::resource`] and [`World::entity`].
These methods use lifetimes to check at compile time that no aliasing rules are being broken.
This alone is not enough to implement bevy systems where multiple systems can access *disjoint* parts of the world concurrently. For this, bevy stores all values of
resources and components (and [`ComponentTicks`](crate::component::ComponentTicks)) in [`UnsafeCell`](std::cell::UnsafeCell)s, and carefully validates disjoint access patterns using
APIs like [`System::component_access`](crate::system::System::component_access).
A system then can be executed using [`System::run_unsafe`](crate::system::System::run_unsafe) with a `&World` and use methods with interior mutability to access resource values.
access resource values.
### Example Usage
[`UnsafeWorldCell`] can be used as a building block for writing APIs that safely allow disjoint access into the world.
In the following example, the world is split into a resource access half and a component access half, where each one can
safely hand out mutable references.
```rust
use bevy_ecs::world::World;
use bevy_ecs::change_detection::Mut;
use bevy_ecs::system::Resource;
use bevy_ecs::world::unsafe_world_cell_world::UnsafeWorldCell;
// INVARIANT: existance of this struct means that users of it are the only ones being able to access resources in the world
struct OnlyResourceAccessWorld<'w>(UnsafeWorldCell<'w>);
// INVARIANT: existance of this struct means that users of it are the only ones being able to access components in the world
struct OnlyComponentAccessWorld<'w>(UnsafeWorldCell<'w>);
impl<'w> OnlyResourceAccessWorld<'w> {
fn get_resource_mut<T: Resource>(&mut self) -> Option<Mut<'w, T>> {
// SAFETY: resource access is allowed through this UnsafeWorldCell
unsafe { self.0.get_resource_mut::<T>() }
}
}
// impl<'w> OnlyComponentAccessWorld<'w> {
// ...
// }
// the two interior mutable worlds borrow from the `&mut World`, so it cannot be accessed while they are live
fn split_world_access(world: &mut World) -> (OnlyResourceAccessWorld<'_>, OnlyComponentAccessWorld<'_>) {
let resource_access = OnlyResourceAccessWorld(unsafe { world.as_unsafe_world_cell() });
let component_access = OnlyComponentAccessWorld(unsafe { world.as_unsafe_world_cell() });
(resource_access, component_access)
}
```
</details>
# Objective
- Enabling the `debug_asset_server` feature doesn't compile when using it with `load_internal_binary_asset!()`. The issue is because it assumes the loader takes an `&'static str` as a parameter, but binary assets loader expect `&'static [u8]`.
## Solution
- Add a generic type for the loader and use a different type in `load_internal_asset` and `load_internal_binary_asset`
# Objective
- Fixes#7081.
## Solution
- Moved functionality from kitchen sink plugin `CorePlugin` to separate plugins, `TaskPoolPlugin`, `TypeRegistrationPlugin`, `FrameCountPlugin`. `TaskPoolOptions` resource should now be used with `TaskPoolPlugin`.
## Changelog
Minimal changes made (code kept in `bevy_core/lib.rs`).
## Migration Guide
- `CorePlugin` broken into separate plugins. If not using `DefaultPlugins` or `MinimalPlugins` `PluginGroup`s, the replacement for `CorePlugin` is now to add `TaskPoolPlugin`, `TypeRegistrationPlugin`, and `FrameCountPlugin` to the app.
## Notes
- Consistent with Bevy goal "modularity over deep integration" but the functionality of `TypeRegistrationPlugin` and `FrameCountPlugin` is weak (the code has to go somewhere, though!).
- No additional tests written.
# Objective
It is currently possible to break reference counting for assets by creating a strong `HandleUntyped` and then modifying the `id` field before dropping the handle. This should not be allowed.
## Solution
Change the `id` field visibility to private and add a getter instead. The same change was previously done for `Handle<T>` in #6176, but `HandleUntyped` was forgotten.
---
## Migration Guide
- Instead of directly accessing the ID of a `HandleUntyped` as `handle.id`, use the new getter `handle.id()`.
# Objective
- Derive Clone and Debug for `AssetPlugin`
- Make it possible to log asset server settings
- And get an owned instance if wrapping `AssetPlugin` in another plugin. See: 129224ef72/src/web_asset_plugin.rs (L45)
# Objective
The `load_internal_asset` macro is helpful when creating rendering plugins, but it doesn't support load binary assets (like those compiled as spir-v).
## Solution
Add a `load_internal_binary_asset` macro that use `include_bytes!`.
This reverts commit 53d387f340.
# Objective
Reverts #6448. This didn't have the intended effect: we're now getting bevy::prelude shown in the docs again.
Co-authored-by: Alejandro Pascual <alejandro.pascual.pozo@gmail.com>
# Objective
- Right now re-exports are completely hidden in prelude docs.
- Fixes#6433
## Solution
- We could show the re-exports without inlining their documentation.
# Objective
Following discussion on #3536 and #3522, `Handle::as_weak()` takes a type `U`, reinterpreting the handle as of another asset type while keeping the same ID. This is mainly used today in font atlas code. This PR does two things:
- Rename the method to `cast_weak()` to make its intent more clear
- Actually change the type uuid in the handle if it's not an asset path variant.
## Migration Guide
- Rename `Handle::as_weak` uses to `Handle::cast_weak`
The method now properly sets the associated type uuid if the handle is a direct reference (e.g. not a reference to an `AssetPath`), so adjust you code accordingly if you relied on the previous behavior.
# Objective
- fix new clippy lints before they get stable and break CI
## Solution
- run `clippy --fix` to auto-fix machine-applicable lints
- silence `clippy::should_implement_trait` for `fn HandleId::default<T: Asset>`
## Changes
- always prefer `format!("{inline}")` over `format!("{}", not_inline)`
- prefer `Box::default` (or `Box::<T>::default` if necessary) over `Box::new(T::default())`
# Objective
![image](https://user-images.githubusercontent.com/22177966/189350194-639a0211-e984-4f73-ae62-0ede44891eb9.png)
^ enable this
Concretely, I need to
- list all handle ids for an asset type
- fetch the asset as `dyn Reflect`, given a `HandleUntyped`
- when encountering a `Handle<T>`, find out what asset type that handle refers to (`T`'s type id) and turn the handle into a `HandleUntyped`
## Solution
- add `ReflectAsset` type containing function pointers for working with assets
```rust
pub struct ReflectAsset {
type_uuid: Uuid,
assets_resource_type_id: TypeId, // TypeId of the `Assets<T>` resource
get: fn(&World, HandleUntyped) -> Option<&dyn Reflect>,
get_mut: fn(&mut World, HandleUntyped) -> Option<&mut dyn Reflect>,
get_unchecked_mut: unsafe fn(&World, HandleUntyped) -> Option<&mut dyn Reflect>,
add: fn(&mut World, &dyn Reflect) -> HandleUntyped,
set: fn(&mut World, HandleUntyped, &dyn Reflect) -> HandleUntyped,
len: fn(&World) -> usize,
ids: for<'w> fn(&'w World) -> Box<dyn Iterator<Item = HandleId> + 'w>,
remove: fn(&mut World, HandleUntyped) -> Option<Box<dyn Reflect>>,
}
```
- add `ReflectHandle` type relating the handle back to the asset type and providing a way to create a `HandleUntyped`
```rust
pub struct ReflectHandle {
type_uuid: Uuid,
asset_type_id: TypeId,
downcast_handle_untyped: fn(&dyn Any) -> Option<HandleUntyped>,
}
```
- add the corresponding `FromType` impls
- add a function `app.register_asset_reflect` which is supposed to be called after `.add_asset` and registers `ReflectAsset` and `ReflectHandle` in the type registry
---
## Changelog
- add `ReflectAsset` and `ReflectHandle` types, which allow code to use reflection to manipulate arbitrary assets without knowing their types at compile time
# Objective
- Proactive changing of code to comply with warnings generated by beta of rustlang version of cargo clippy.
## Solution
- Code changed as recommended by `rustup update`, `rustup default beta`, `cargo run -p ci -- clippy`.
- Tested using `beta` and `stable`. No clippy warnings in either after changes made.
---
## Changelog
- Warnings fixed were: `clippy::explicit-auto-deref` (present in 11 files), `clippy::needless-borrow` (present in 2 files), and `clippy::only-used-in-recursion` (only 1 file).
# Objective
- Build on #6336 for more plugin configurations
## Solution
- `LogSettings`, `ImageSettings` and `DefaultTaskPoolOptions` are now plugins settings rather than resources
---
## Changelog
- `LogSettings` plugin settings have been move to `LogPlugin`, `ImageSettings` to `ImagePlugin` and `DefaultTaskPoolOptions` to `CorePlugin`
## Migration Guide
The `LogSettings` settings have been moved from a resource to `LogPlugin` configuration:
```rust
// Old (Bevy 0.8)
app
.insert_resource(LogSettings {
level: Level::DEBUG,
filter: "wgpu=error,bevy_render=info,bevy_ecs=trace".to_string(),
})
.add_plugins(DefaultPlugins)
// New (Bevy 0.9)
app.add_plugins(DefaultPlugins.set(LogPlugin {
level: Level::DEBUG,
filter: "wgpu=error,bevy_render=info,bevy_ecs=trace".to_string(),
}))
```
The `ImageSettings` settings have been moved from a resource to `ImagePlugin` configuration:
```rust
// Old (Bevy 0.8)
app
.insert_resource(ImageSettings::default_nearest())
.add_plugins(DefaultPlugins)
// New (Bevy 0.9)
app.add_plugins(DefaultPlugins.set(ImagePlugin::default_nearest()))
```
The `DefaultTaskPoolOptions` settings have been moved from a resource to `CorePlugin::task_pool_options`:
```rust
// Old (Bevy 0.8)
app
.insert_resource(DefaultTaskPoolOptions::with_num_threads(4))
.add_plugins(DefaultPlugins)
// New (Bevy 0.9)
app.add_plugins(DefaultPlugins.set(CorePlugin {
task_pool_options: TaskPoolOptions::with_num_threads(4),
}))
```
# Objective
Fixes#5884#2879
Alternative to #2988#5885#2886
"Immutable" Plugin settings are currently represented as normal ECS resources, which are read as part of plugin init. This presents a number of problems:
1. If a user inserts the plugin settings resource after the plugin is initialized, it will be silently ignored (and use the defaults instead)
2. Users can modify the plugin settings resource after the plugin has been initialized. This creates a false sense of control over settings that can no longer be changed.
(1) and (2) are especially problematic and confusing for the `WindowDescriptor` resource, but this is a general problem.
## Solution
Immutable Plugin settings now live on each Plugin struct (ex: `WindowPlugin`). PluginGroups have been reworked to support overriding plugin values. This also removes the need for the `add_plugins_with` api, as the `add_plugins` api can use the builder pattern directly. Settings that can be used at runtime continue to be represented as ECS resources.
Plugins are now configured like this:
```rust
app.add_plugin(AssetPlugin {
watch_for_changes: true,
..default()
})
```
PluginGroups are now configured like this:
```rust
app.add_plugins(DefaultPlugins
.set(AssetPlugin {
watch_for_changes: true,
..default()
})
)
```
This is an alternative to #2988, which is similar. But I personally prefer this solution for a couple of reasons:
* ~~#2988 doesn't solve (1)~~ #2988 does solve (1) and will panic in that case. I was wrong!
* This PR directly ties plugin settings to Plugin types in a 1:1 relationship, rather than a loose "setup resource" <-> plugin coupling (where the setup resource is consumed by the first plugin that uses it).
* I'm not a huge fan of overloading the ECS resource concept and implementation for something that has very different use cases and constraints.
## Changelog
- PluginGroups can now be configured directly using the builder pattern. Individual plugin values can be overridden by using `plugin_group.set(SomePlugin {})`, which enables overriding default plugin values.
- `WindowDescriptor` plugin settings have been moved to `WindowPlugin` and `AssetServerSettings` have been moved to `AssetPlugin`
- `app.add_plugins_with` has been replaced by using `add_plugins` with the builder pattern.
## Migration Guide
The `WindowDescriptor` settings have been moved from a resource to `WindowPlugin::window`:
```rust
// Old (Bevy 0.8)
app
.insert_resource(WindowDescriptor {
width: 400.0,
..default()
})
.add_plugins(DefaultPlugins)
// New (Bevy 0.9)
app.add_plugins(DefaultPlugins.set(WindowPlugin {
window: WindowDescriptor {
width: 400.0,
..default()
},
..default()
}))
```
The `AssetServerSettings` resource has been removed in favor of direct `AssetPlugin` configuration:
```rust
// Old (Bevy 0.8)
app
.insert_resource(AssetServerSettings {
watch_for_changes: true,
..default()
})
.add_plugins(DefaultPlugins)
// New (Bevy 0.9)
app.add_plugins(DefaultPlugins.set(AssetPlugin {
watch_for_changes: true,
..default()
}))
```
`add_plugins_with` has been replaced by `add_plugins` in combination with the builder pattern:
```rust
// Old (Bevy 0.8)
app.add_plugins_with(DefaultPlugins, |group| group.disable::<AssetPlugin>());
// New (Bevy 0.9)
app.add_plugins(DefaultPlugins.build().disable::<AssetPlugin>());
```
# Objective
- Update `wgpu` to 0.14.0, `naga` to `0.10.0`, `winit` to 0.27.4, `raw-window-handle` to 0.5.0, `ndk` to 0.7.
## Solution
---
## Changelog
### Changed
- Changed `RawWindowHandleWrapper` to `RawHandleWrapper` which wraps both `RawWindowHandle` and `RawDisplayHandle`, which satisfies the `impl HasRawWindowHandle and HasRawDisplayHandle` that `wgpu` 0.14.0 requires.
- Changed `bevy_window::WindowDescriptor`'s `cursor_locked` to `cursor_grab_mode`, change its type from `bool` to `bevy_window::CursorGrabMode`.
## Migration Guide
- Adjust usage of `bevy_window::WindowDescriptor`'s `cursor_locked` to `cursor_grab_mode`, and adjust its type from `bool` to `bevy_window::CursorGrabMode`.
# Objective
- Reflecting `Default` is required for scripts to create `Reflect` types at runtime with no static type information.
- Reflecting `Default` on `Handle<T>` and `ComputedVisibility` should allow scripts from `bevy_mod_js_scripting` to actually spawn sprites from scratch, without needing any hand-holding from the host-game.
## Solution
- Derive `ReflectDefault` for `Handle<T>` and `ComputedVisiblity`.
---
## Changelog
> This section is optional. If this was a trivial fix, or has no externally-visible impact, you can delete this section.
- The `Default` trait is now reflected for `Handle<T>` and `ComputedVisibility`
# Objective
- Field `id` of `Handle<T>` is public: https://docs.rs/bevy/latest/bevy/asset/struct.Handle.html#structfield.id
- Changing the value of this field doesn't make sense as it could mean changing the previous handle without dropping it, breaking asset cleanup detection for the old handle and the new one
## Solution
- Make the field private, and add a public getter
Opened after discussion in #6171. Pinging @zicklag
---
## Migration Guide
- If you were accessing the value `handle.id`, you can now do so with `handle.id()`
# Objective
`AssetServer::watch_for_changes()` is racy and redundant with `AssetServerSettings`.
Closes#5964.
## Changelog
* Remove `AssetServer::watch_for_changes()`
* Add `AssetServerSettings` to the prelude.
* Minor cleanup.
## Migration Guide
`AssetServer::watch_for_changes()` was removed.
Instead, use the `AssetServerSettings` resource.
```rust
app // AssetServerSettings must be inserted before adding the AssetPlugin or DefaultPlugins.
.insert_resource(AssetServerSettings {
watch_for_changes: true,
..default()
})
```
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
- Update notify dependency to 5.0.0 stable
- Fix breaking changes
- Closes#5861
## Solution
- RecommendedWatcher now takes a Config argument. Giving it the default Config should be the same behavior as before (check every 30 seconds)
# Objective
It's not obvious that the `AssetServerSettings` resource must be added before the `AssetPlugin`.
## Solution
Add a doc comment to this effect.
# Objective
Help users who are using `load_folder` in wasm builds to find a slightly shorter path to figuring out why their stuff is broken.
## Solution
Adds a warning to `read_directory` in the `WasmAssetIo`.
This is extremely similar to the warning already emitted a few lines below for `watch_for_changes`.
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.
While ergonomic, this results in several drawbacks:
* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
* Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
*ira: My commits are not as well organized :')*
* I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
* I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.
## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.
## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.
If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.
`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.
Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- `#![warn(missing_docs)]` was added to bevy_asset in #3536
- A method was not documented when targeting wasm
## Solution
- Add documentation for it
# Objective
I want to use the `deno_runtime` crate in my game, but it has a conflict with the version of the `notify` crate that Bevy depends on.
## Solution
Updates the version of the `notify` crate the Bevy depends on.
If users try to implement a custom asset loader, they must manually import anyhow::error as it's used by the asset loader trait but not exported.
2b93ab5812/examples/asset/custom_asset.rs (L25)Fixes#3138
Co-authored-by: sark <sarkahn@hotmail.com>
This replaces `rand` with `fastrand` as the source of randomness for `HandleId::new()` in `bevy_asset`. This was the only crate with a dependency on `rand`, and now the dependency exists only as a dev-dependency.
`fastrand` was already in the dependency tree, thanks to `futures-lite`, `async-executor`, and `tempfile` to name a few.
## Changelog
Removed `rand` from dependencies in `bevy_asset` in favor of existing in-tree `fast-rand`
# Objective
This PR aims to document the `bevy_asset` crate to complete coverage, while also trying to improve some bits of UX.
### Progress
- [x] Root items
- [x] `handle` module
- [x] `info` module
- [x] `path` module
- [x] `loader` module
- [x] `io` and `filesystem_watcher` module
- [x] `assets` module
- [x] `asset_server` module
- [x] `diagnostic` module
- [x] `debug_asset_server` module
- [x] Crate level documentation
- [x] Add `#![warn(missing_docs)]` lint
Coverage: 100%
## Migration Guide
- Rename `FileAssetIo::get_root_path` uses to `FileAssetIo::get_base_path`
`FileAssetIo::root_path()` is a getter for the `root_path` field, while `FileAssetIo::get_root_path` returned the parent directory of the asset root path, which was the executable's directory unless `CARGO_MANIFEST_DIR` was set. This change solves the ambiguity between the two methods.
Remove unnecessary calls to `iter()`/`iter_mut()`.
Mainly updates the use of queries in our code, docs, and examples.
```rust
// From
for _ in list.iter() {
for _ in list.iter_mut() {
// To
for _ in &list {
for _ in &mut list {
```
We already enable the pedantic lint [clippy::explicit_iter_loop](https://rust-lang.github.io/rust-clippy/stable/) inside of Bevy. However, this only warns for a few known types from the standard library.
## Note for reviewers
As you can see the additions and deletions are exactly equal.
Maybe give it a quick skim to check I didn't sneak in a crypto miner, but you don't have to torture yourself by reading every line.
I already experienced enough pain making this PR :)
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
Fixes#5153
## Solution
Search for all enums and manually check if they have default impls that can use this new derive.
By my reckoning:
| enum | num |
|-|-|
| total | 159 |
| has default impl | 29 |
| default is unit variant | 23 |
# Objective
Add support for custom `AssetIo` implementations to trigger reloading of an asset.
## Solution
- Add a public method to `AssetServer` to allow forcing the reloading of an asset.
---
## Changelog
- Add method `reload_asset` to `AssetServer`.
Co-authored-by: Robert G. Jakabosky <rjakabosky+neopallium@neoawareness.com>
builds on top of #4780
# Objective
`Reflect` and `Serialize` are currently very tied together because `Reflect` has a `fn serialize(&self) -> Option<Serializable<'_>>` method. Because of that, we can either implement `Reflect` for types like `Option<T>` with `T: Serialize` and have `fn serialize` be implemented, or without the bound but having `fn serialize` return `None`.
By separating `ReflectSerialize` into a separate type (like how it already is for `ReflectDeserialize`, `ReflectDefault`), we could separately `.register::<Option<T>>()` and `.register_data::<Option<T>, ReflectSerialize>()` only if the type `T: Serialize`.
This PR does not change the registration but allows it to be changed in a future PR.
## Solution
- add the type
```rust
struct ReflectSerialize { .. }
impl<T: Reflect + Serialize> FromType<T> for ReflectSerialize { .. }
```
- remove `#[reflect(Serialize)]` special casing.
- when serializing reflect value types, look for `ReflectSerialize` in the `TypeRegistry` instead of calling `value.serialize()`
- changed `EntityCountDiagnosticsPlugin` to not use an exclusive system to get its entity count
- removed mention of `WgpuResourceDiagnosticsPlugin` in example `log_diagnostics` as it doesn't exist anymore
- added ability to enable, disable ~~or toggle~~ a diagnostic (fix#3767)
- made diagnostic values lazy, so they are only computed if the diagnostic is enabled
- do not log an average for diagnostics with only one value
- removed `sum` function from diagnostic as it isn't really useful
- ~~do not keep an average of the FPS diagnostic. it is already an average on the last 20 frames, so the average FPS was an average of the last 20 frames over the last 20 frames~~
- do not compute the FPS value as an average over the last 20 frames but give the actual "instant FPS"
- updated log format to use variable capture
- added some doc
- the frame counter diagnostic value can be reseted to 0
Right now, a direct reference to the target TaskPool is required to launch tasks on the pools, despite the three newtyped pools (AsyncComputeTaskPool, ComputeTaskPool, and IoTaskPool) effectively acting as global instances. The need to pass a TaskPool reference adds notable friction to spawning subtasks within existing tasks. Possible use cases for this may include chaining tasks within the same pool like spawning separate send/receive I/O tasks after waiting on a network connection to be established, or allowing cross-pool dependent tasks like starting dependent multi-frame computations following a long I/O load.
Other task execution runtimes provide static access to spawning tasks (i.e. `tokio::spawn`), which is notably easier to use than the reference passing required by `bevy_tasks` right now.
This PR makes does the following:
* Adds `*TaskPool::init` which initializes a `OnceCell`'ed with a provided TaskPool. Failing if the pool has already been initialized.
* Adds `*TaskPool::get` which fetches the initialized global pool of the respective type or panics. This generally should not be an issue in normal Bevy use, as the pools are initialized before they are accessed.
* Updated default task pool initialization to either pull the global handles and save them as resources, or if they are already initialized, pull the a cloned global handle as the resource.
This should make it notably easier to build more complex task hierarchies for dependent tasks. It should also make writing bevy-adjacent, but not strictly bevy-only plugin crates easier, as the global pools ensure it's all running on the same threads.
One alternative considered is keeping a thread-local reference to the pool for all threads in each pool to enable the same `tokio::spawn` interface. This would spawn tasks on the same pool that a task is currently running in. However this potentially leads to potential footgun situations where long running blocking tasks run on `ComputeTaskPool`.
# Objective
- Upgrading ndk-glue (our Android interop layer) desynchronized us from winit
- This further broke Android builds, see #4905 (oops...)
- Reverting to 0.5 should help with this, until the new `winit` version releases
- Fixes#4774 and closes#4529
# Objective
- Sometimes, people might load an asset as one type, then use it with an `Asset`s for a different type.
- See e.g. #4784.
- This is especially likely with the Gltf types, since users may not have a clear conceptual model of what types the assets will be.
- We had an instance of this ourselves, in the `scene_viewer` example
## Solution
- Make `Assets::get` require a type safe handle.
---
## Changelog
### Changed
- `Assets::<T>::get` and `Assets::<T>::get_mut` now require that the passed handles are `Handle<T>`, improving the type safety of handles.
### Added
- `HandleUntyped::typed_weak`, a helper function for creating a weak typed version of an exisitng `HandleUntyped`.
## Migration Guide
`Assets::<T>::get` and `Assets::<T>::get_mut` now require that the passed handles are `Handle<T>`, improving the type safety of handles. If you were previously passing in:
- a `HandleId`, use `&Handle::weak(id)` instead, to create a weak handle. You may have been able to store a type safe `Handle` instead.
- a `HandleUntyped`, use `&handle_untyped.typed_weak()` to create a weak handle of the specified type. This is most likely to be the useful when using [load_folder](https://docs.rs/bevy_asset/latest/bevy_asset/struct.AssetServer.html#method.load_folder)
- a `Handle<U>` of of a different type, consider whether this is the correct handle type to store. If it is (i.e. the same handle id is used for multiple different Asset types) use `Handle::weak(handle.id)` to cast to a different type.
# Objective
We have some macros that are public but only used internally for now. They fail on user's code due to the use of crate names like `bevy_utils`, while the user only has `bevy::utils`. There are two affected macros.
- `bevy_utils::define_label`: it may be useful in user's code for defining custom kinds of label traits (this is why I made this PR).
- `bevy_asset::load_internal_asset`: not useful currently due to limitations of the debug asset server, but this may change in the future.
## Solution
We can make them work by using `$crate` instead of names of their own crates, which can refer to the macro's defining crate regardless of the user's setup. Even though our objective is rather low-priority here, the solution adds no maintenance cost so it is still worthwhile.
This is a replacement for #2106
This adds a `Metadata` struct which contains metadata information about a file, at the moment only the file type.
It also adds a `get_metadata` to `AssetIo` trait and an `asset_io` accessor method to `AssetServer` and `LoadContext`
I am not sure about the changes in `AndroidAssetIo ` and `WasmAssetIo`.
# Objective
- Code quality bad
## Solution
- Code quality better
- Using rust-analyzer's inline function and inline variable quick assists, I validated that the call to `AssetServer::new` is exactly the same code as the previous version.
# Objective
- `Assets<T>::iter_mut` sends `Modified` event for all assets first, then returns the iterator
- This means that events could be sent for assets that would not have been mutated if iteration was stopped before
## Solution
- Send `Modified` event when assets are iterated over.
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
# Objective
- In the large majority of cases, users were calling `.unwrap()` immediately after `.get_resource`.
- Attempting to add more helpful error messages here resulted in endless manual boilerplate (see #3899 and the linked PRs).
## Solution
- Add an infallible variant named `.resource` and so on.
- Use these infallible variants over `.get_resource().unwrap()` across the code base.
## Notes
I did not provide equivalent methods on `WorldCell`, in favor of removing it entirely in #3939.
## Migration Guide
Infallible variants of `.get_resource` have been added that implicitly panic, rather than needing to be unwrapped.
Replace `world.get_resource::<Foo>().unwrap()` with `world.resource::<Foo>()`.
## Impact
- `.unwrap` search results before: 1084
- `.unwrap` search results after: 942
- internal `unwrap_or_else` calls added: 4
- trivial unwrap calls removed from tests and code: 146
- uses of the new `try_get_resource` API: 11
- percentage of the time the unwrapping API was used internally: 93%
Adds "hot reloading" of internal assets, which is normally not possible because they are loaded using `include_str` / direct Asset collection access.
This is accomplished via the following:
* Add a new `debug_asset_server` feature flag
* When that feature flag is enabled, create a second App with a second AssetServer that points to a configured location (by default the `crates` folder). Plugins that want to add hot reloading support for their assets can call the new `app.add_debug_asset::<T>()` and `app.init_debug_asset_loader::<T>()` functions.
* Load "internal" assets using the new `load_internal_asset` macro. By default this is identical to the current "include_str + register in asset collection" approach. But if the `debug_asset_server` feature flag is enabled, it will also load the asset dynamically in the debug asset server using the file path. It will then set up a correlation between the "debug asset" and the "actual asset" by listening for asset change events.
This is an alternative to #3673. The goal was to keep the boilerplate and features flags to a minimum for bevy plugin authors, and allow them to home their shaders near relevant code.
This is a draft because I haven't done _any_ quality control on this yet. I'll probably rename things and remove a bunch of unwraps. I just got it working and wanted to use it to start a conversation.
Fixes#3660
For some keys, it is too expensive to hash them on every lookup. Historically in Bevy, we have regrettably done the "wrong" thing in these cases (pre-computing hashes, then re-hashing them) because Rust's built in hashed collections don't give us the tools we need to do otherwise. Doing this is "wrong" because two different values can result in the same hash. Hashed collections generally get around this by falling back to equality checks on hash collisions. You can't do that if the key _is_ the hash. Additionally, re-hashing a hash increase the odds of collision!
#3959 needs pre-hashing to be viable, so I decided to finally properly solve the problem. The solution involves two different changes:
1. A new generalized "pre-hashing" solution in bevy_utils: `Hashed<T>` types, which store a value alongside a pre-computed hash. And `PreHashMap<K, V>` (which uses `Hashed<T>` internally) . `PreHashMap` is just an alias for a normal HashMap that uses `Hashed<T>` as the key and a new `PassHash` implementation as the Hasher.
2. Replacing the `std::collections` re-exports in `bevy_utils` with equivalent `hashbrown` impls. Avoiding re-hashes requires the `raw_entry_mut` api, which isn't stabilized yet (and may never be ... `entry_ref` has favor now, but also isn't available yet). If std's HashMap ever provides the tools we need, we can move back to that. The latest version of `hashbrown` adds support for the `entity_ref` api, so we can move to that in preparation for an std migration, if thats the direction they seem to be going in. Note that adding hashbrown doesn't increase our dependency count because it was already in our tree.
In addition to providing these core tools, I also ported the "table identity hashing" in `bevy_ecs` to `raw_entry_mut`, which was a particularly egregious case.
The biggest outstanding case is `AssetPathId`, which stores a pre-hash. We need AssetPathId to be cheaply clone-able (and ideally Copy), but `Hashed<AssetPath>` requires ownership of the AssetPath, which makes cloning ids way more expensive. We could consider doing `Hashed<Arc<AssetPath>>`, but cloning an arc is still a non-trivial expensive that needs to be considered. I would like to handle this in a separate PR. And given that we will be re-evaluating the Bevy Assets implementation in the very near future, I'd prefer to hold off until after that conversation is concluded.
What is says on the tin.
This has got more to do with making `clippy` slightly more *quiet* than it does with changing anything that might greatly impact readability or performance.
that said, deriving `Default` for a couple of structs is a nice easy win
# Objective
- Fix#3559
- Avoid erasing existing resource `Assets<T>` when adding it twice
## Solution
- Before creating a new `Assets<T>`, check if it has already been added to the world
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
Co-authored-by: Aevyrie Roessler <aevyrie@gmail.com>
# Objective
- `asset_server.watch_for_changes().unwrap()` only watches changes for assets loaded **_after_** that call.
- Technically, the `hot_asset_reloading` example is racey as the watch on the asset path is set up in an async task scheduled from the asset `load()`, but the filesystem watcher is only constructed in a call that comes **_after_** the call to `load()`.
## Solution
- It feels safest to allow enabling watching the filesystem for changes on the asset server from the point of its construction. Therefore, adding such an option to `AssetServerSettings` seemed to be the correct solution.
- Fix `hot_asset_reloading` by inserting the `AssetServerSettings` resource with `watch_for_changes: true` instead of calling `asset_server.watch_for_changes().unwrap()`.
- Document the shortcomings of `.watch_for_changes()`
# Objective
- Users can get confused when they ask for watching to be unsupported, then find it isn't supported
- Fixes https://github.com/bevyengine/bevy/issues/3683
## Solution
- Add a warning if the `watch_for_changes` call would do nothing
# Objective
CI should check for missing backticks in doc comments.
Fixes#3435
## Solution
`clippy` has a lint for this: `doc_markdown`. This enables that lint in the CI script.
Of course, enabling this lint in CI causes a bunch of lint errors, so I've gone through and fixed all of them. This was a huge edit that touched a ton of files, so I split the PR up by crate.
When all of the following are merged, the CI should pass and this can be merged.
+ [x] #3467
+ [x] #3468
+ [x] #3470
+ [x] #3469
+ [x] #3471
+ [x] #3472
+ [x] #3473
+ [x] #3474
+ [x] #3475
+ [x] #3476
+ [x] #3477
+ [x] #3478
+ [x] #3479
+ [x] #3480
+ [x] #3481
+ [x] #3482
+ [x] #3483
+ [x] #3484
+ [x] #3485
+ [x] #3486
#3457 adds the `doc_markdown` clippy lint, which checks doc comments to make sure code identifiers are escaped with backticks. This causes a lot of lint errors, so this is one of a number of PR's that will fix those lint errors one crate at a time.
This PR fixes lints in the `bevy_asset` crate.
Dynamic types (`DynamicStruct`, `DynamicTupleStruct`, `DynamicTuple`, `DynamicList` and `DynamicMap`) are used when deserializing scenes, but currently they can only be applied to existing concrete types. This leads to issues when trying to spawn non trivial deserialized scene.
For components, the issue is avoided by requiring that reflected components implement ~~`FromResources`~~ `FromWorld` (or `Default`). When spawning, a new concrete type is created that way, and the dynamic type is applied to it. Unfortunately, some components don't have any valid implementation of these traits.
In addition, any `Vec` or `HashMap` inside a component will panic when a dynamic type is pushed into it (for instance, `Text` panics when adding a text section).
To solve this issue, this PR adds the `FromReflect` trait that creates a concrete type from a dynamic type that represent it, derives the trait alongside the `Reflect` trait, drops the ~~`FromResources`~~ `FromWorld` requirement on reflected components, ~~and enables reflection for UI and Text bundles~~. It also adds the requirement that fields ignored with `#[reflect(ignore)]` implement `Default`, since we need to initialize them somehow.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release.
The examples are all ported over and operational with a few exceptions:
* I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure.
* Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example.
* Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority.
# Objective
Make it easier to build and use an asset path with `format!()`. This can be useful for accessing assets in a loop.
Enabled by this PR:
```rust
let monkey_handle = asset_server.get_handle(&format!("models/monkey/Monkey.gltf#Mesh0/Primitive0"));
let monkey_handle = asset_server.get_handle(format!("models/monkey/Monkey.gltf#Mesh0/Primitive0"));
```
Before this PR:
```rust
let monkey_handle = asset_server.get_handle(format!("models/monkey/Monkey.gltf#Mesh0/Primitive0").as_str());
```
It's just a tiny improvement in ergonomics, but i ran into it and was wondering why the function does not accept a `String` and Bevy is all about simplicity/ergonomics, right? 😄😉
## Solution
Implement `Into<HandleId>` for `String` and `&String`.
# Objective
- there are a few new versions for `ron`, `winit`, `ndk`, `raw-window-handle`
- `cargo-deny` is failing due to new security issues / duplicated dependencies
## Solution
- Update our dependencies
- Note all new security issues, with which of Bevy direct dependency it comes from
- Update duplicate crate list, with which of Bevy direct dependency it comes from
`notify` is not updated here as it's in #2993
# Objective
- New clippy lints with rust 1.57 are failing
## Solution
- Fixed clippy lints following suggestions
- I ignored clippy in old renderer because there was many and it will be removed soon
## Shader Imports
This adds "whole file" shader imports. These come in two flavors:
### Asset Path Imports
```rust
// /assets/shaders/custom.wgsl
#import "shaders/custom_material.wgsl"
[[stage(fragment)]]
fn fragment() -> [[location(0)]] vec4<f32> {
return get_color();
}
```
```rust
// /assets/shaders/custom_material.wgsl
[[block]]
struct CustomMaterial {
color: vec4<f32>;
};
[[group(1), binding(0)]]
var<uniform> material: CustomMaterial;
```
### Custom Path Imports
Enables defining custom import paths. These are intended to be used by crates to export shader functionality:
```rust
// bevy_pbr2/src/render/pbr.wgsl
#import bevy_pbr::mesh_view_bind_group
#import bevy_pbr::mesh_bind_group
[[block]]
struct StandardMaterial {
base_color: vec4<f32>;
emissive: vec4<f32>;
perceptual_roughness: f32;
metallic: f32;
reflectance: f32;
flags: u32;
};
/* rest of PBR fragment shader here */
```
```rust
impl Plugin for MeshRenderPlugin {
fn build(&self, app: &mut bevy_app::App) {
let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap();
shaders.set_untracked(
MESH_BIND_GROUP_HANDLE,
Shader::from_wgsl(include_str!("mesh_bind_group.wgsl"))
.with_import_path("bevy_pbr::mesh_bind_group"),
);
shaders.set_untracked(
MESH_VIEW_BIND_GROUP_HANDLE,
Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl"))
.with_import_path("bevy_pbr::mesh_view_bind_group"),
);
```
By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention.
Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that.
## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin
This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials.
## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache
This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`.
## RenderCommands are now fallible
This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet".
# Next Steps
* Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct)
* Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders
* Move shader import logic into the asset preprocessor once bevy gets support for that.
Fixes#3132
# Objective
Document that `AssetServer::load()` is asynchronous.
## Solution
Document that `AssetServer::load()` is asynchronous, and that the asset
will not be immediately available once the call returns. Instead,
explain that the user must call `AssetServer::get_load_state()` to
monitor the loading state of an asset.
# Objective
- `bevy_ecs` exposes as an optional feature `bevy_reflect`. Disabling it doesn't compile.
- `bevy_asset` exposes as an optional feature `filesystem_watcher`. Disabling it doesn't compile. It is also not possible to disable this feature from Bevy
## Solution
- Fix compilation errors when disabling the default features. Make it possible to disable the feature `filesystem_watcher` from Bevy
Objective
During work on #3009 I've found that not all jobs use actions-rs, and therefore, an previous version of Rust is used for them. So while compilation and other stuff can pass, checking markup and Android build may fail with compilation errors.
Solution
This PR adds `action-rs` for any job running cargo, and updates the edition to 2021.
This implements the most minimal variant of #1843 - a derive for marker trait. This is a prerequisite to more complicated features like statically defined storage type or opt-out component reflection.
In order to make component struct's purpose explicit and avoid misuse, it must be annotated with `#[derive(Component)]` (manual impl is discouraged for compatibility). Right now this is just a marker trait, but in the future it might be expanded. Making this change early allows us to make further changes later without breaking backward compatibility for derive macro users.
This already prevents a lot of issues, like using bundles in `insert` calls. Primitive types are no longer valid components as well. This can be easily worked around by adding newtype wrappers and deriving `Component` for them.
One funny example of prevented bad code (from our own tests) is when an newtype struct or enum variant is used. Previously, it was possible to write `insert(Newtype)` instead of `insert(Newtype(value))`. That code compiled, because function pointers (in this case newtype struct constructor) implement `Send + Sync + 'static`, so we allowed them to be used as components. This is no longer the case and such invalid code will trigger a compile error.
Co-authored-by: = <=>
Co-authored-by: TheRawMeatball <therawmeatball@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This changes how render logic is composed to make it much more modular. Previously, all extraction logic was centralized for a given "type" of rendered thing. For example, we extracted meshes into a vector of ExtractedMesh, which contained the mesh and material asset handles, the transform, etc. We looked up bindings for "drawn things" using their index in the `Vec<ExtractedMesh>`. This worked fine for built in rendering, but made it hard to reuse logic for "custom" rendering. It also prevented us from reusing things like "extracted transforms" across contexts.
To make rendering more modular, I made a number of changes:
* Entities now drive rendering:
* We extract "render components" from "app components" and store them _on_ entities. No more centralized uber lists! We now have true "ECS-driven rendering"
* To make this perform well, I implemented #2673 in upstream Bevy for fast batch insertions into specific entities. This was merged into the `pipelined-rendering` branch here: #2815
* Reworked the `Draw` abstraction:
* Generic `PhaseItems`: each draw phase can define its own type of "rendered thing", which can define its own "sort key"
* Ported the 2d, 3d, and shadow phases to the new PhaseItem impl (currently Transparent2d, Transparent3d, and Shadow PhaseItems)
* `Draw` trait and and `DrawFunctions` are now generic on PhaseItem
* Modular / Ergonomic `DrawFunctions` via `RenderCommands`
* RenderCommand is a trait that runs an ECS query and produces one or more RenderPass calls. Types implementing this trait can be composed to create a final DrawFunction. For example the DrawPbr DrawFunction is created from the following DrawCommand tuple. Const generics are used to set specific bind group locations:
```rust
pub type DrawPbr = (
SetPbrPipeline,
SetMeshViewBindGroup<0>,
SetStandardMaterialBindGroup<1>,
SetTransformBindGroup<2>,
DrawMesh,
);
```
* The new `custom_shader_pipelined` example illustrates how the commands above can be reused to create a custom draw function:
```rust
type DrawCustom = (
SetCustomMaterialPipeline,
SetMeshViewBindGroup<0>,
SetTransformBindGroup<2>,
DrawMesh,
);
```
* ExtractComponentPlugin and UniformComponentPlugin:
* Simple, standardized ways to easily extract individual components and write them to GPU buffers
* Ported PBR and Sprite rendering to the new primitives above.
* Removed staging buffer from UniformVec in favor of direct Queue usage
* Makes UniformVec much easier to use and more ergonomic. Completely removes the need for custom render graph nodes in these contexts (see the PbrNode and view Node removals and the much simpler call patterns in the relevant Prepare systems).
* Added a many_cubes_pipelined example to benchmark baseline 3d rendering performance and ensure there were no major regressions during this port. Avoiding regressions was challenging given that the old approach of extracting into centralized vectors is basically the "optimal" approach. However thanks to a various ECS optimizations and render logic rephrasing, we pretty much break even on this benchmark!
* Lifetimeless SystemParams: this will be a bit divisive, but as we continue to embrace "trait driven systems" (ex: ExtractComponentPlugin, UniformComponentPlugin, DrawCommand), the ergonomics of `(Query<'static, 'static, (&'static A, &'static B, &'static)>, Res<'static, C>)` were getting very hard to bear. As a compromise, I added "static type aliases" for the relevant SystemParams. The previous example can now be expressed like this: `(SQuery<(Read<A>, Read<B>)>, SRes<C>)`. If anyone has better ideas / conflicting opinions, please let me know!
* RunSystem trait: a way to define Systems via a trait with a SystemParam associated type. This is used to implement the various plugins mentioned above. I also added SystemParamItem and QueryItem type aliases to make "trait stye" ecs interactions nicer on the eyes (and fingers).
* RenderAsset retrying: ensures that render assets are only created when they are "ready" and allows us to create bind groups directly inside render assets (which significantly simplified the StandardMaterial code). I think ultimately we should swap this out on "asset dependency" events to wait for dependencies to load, but this will require significant asset system changes.
* Updated some built in shaders to account for missing MeshUniform fields
A few minor changes to fix warnings emitted from clippy on the nightly toolchain, including redundant_allocation, unwrap_or_else_default, and collapsible_match, fixes#2698
# Objective
- We currently depends on ndk 0.2, 0.3, 0.4
- Only 0.2 dependencies comes from Bevy itself
## Solution
- Replace #1371
- Update Bevy to ndk-glue 0.4
- Also fixes duplicate dependency CI issue
# Objective
notify 5.0.0-pre.11 breaks the interface again, but apparently in a way that's similar to how it used to be
## Solution
Bump `bevy_asset` dependency on notify to `5.0.0-pre.11` and fix the errors that crop up.
It looks like `pre.11` was mentioned in #2528 by @mockersf but there's no mention of why `pre.10` was chosen ultimately.
# Objective
- Remove all the `.system()` possible.
- Check for remaining missing cases.
## Solution
- Remove all `.system()`, fix compile errors
- 32 calls to `.system()` remains, mostly internals, the few others should be removed after #2446
This is extracted out of eb8f973646476b4a4926ba644a77e2b3a5772159 and includes some additional changes to remove all references to AppBuilder and fix examples that still used App::build() instead of App::new(). In addition I didn't extract the sub app feature as it isn't ready yet.
You can use `git diff --diff-filter=M eb8f973646476b4a4926ba644a77e2b3a5772159` to find all differences in this PR. The `--diff-filtered=M` filters all files added in the original commit but not in this commit away.
Co-Authored-By: Carter Anderson <mcanders1@gmail.com>
This relicenses Bevy under the dual MIT or Apache-2.0 license. For rationale, see #2373.
* Changes the LICENSE file to describe the dual license. Moved the MIT license to docs/LICENSE-MIT. Added the Apache-2.0 license to docs/LICENSE-APACHE. I opted for this approach over dumping both license files at the root (the more common approach) for a number of reasons:
* Github links to the "first" license file (LICENSE-APACHE) in its license links (you can see this in the wgpu and rust-analyzer repos). People clicking these links might erroneously think that the apache license is the only option. Rust and Amethyst both use COPYRIGHT or COPYING files to solve this problem, but this creates more file noise (if you do everything at the root) and the naming feels way less intuitive.
* People have a reflex to look for a LICENSE file. By providing a single license file at the root, we make it easy for them to understand our licensing approach.
* I like keeping the root clean and noise free
* There is precedent for putting the apache and mit license text in sub folders (amethyst)
* Removed the `Copyright (c) 2020 Carter Anderson` copyright notice from the MIT license. I don't care about this attribution, it might make license compliance more difficult in some cases, and it didn't properly attribute other contributors. We shoudn't replace it with something like "Copyright (c) 2021 Bevy Contributors" because "Bevy Contributors" is not a legal entity. Instead, we just won't include the copyright line (which has precedent ... Rust also uses this approach).
* Updates crates to use the new "MIT OR Apache-2.0" license value
* Removes the old legion-transform license file from bevy_transform. bevy_transform has been its own, fully custom implementation for a long time and that license no longer applies.
* Added a License section to the main readme
* Updated our Bevy Plugin licensing guidelines.
As a follow-up we should update the website to properly describe the new license.
Closes#2373
This was tested using cargo generate-lockfile -Zminimal-versions.
The following indirect dependencies also have minimal version
dependencies. For at least num, rustc-serialize and rand this is
necessary to compile on rustc versions that are not older than 1.0.
* num = "0.1.27"
* rustc-serialize = "0.3.20"
* termcolor = "1.0.4"
* libudev-sys = "0.1.1"
* rand = "0.3.14"
* ab_glyph = "0.2.7
Based on https://github.com/bevyengine/bevy/pull/2455
# Objective
Reduce compilation time
# Solution
Remove unused dependencies. While this PR doesn't remove any crates from `Cargo.lock`, it may unlock more build parallelism.
# Objective
Fixes a possible deadlock between `AssetServer::get_asset_loader` / `AssetServer::add_loader`
A thread could take the `extension_to_loader_index` read lock,
and then have the `server.loader` write lock taken in add_loader
before it can. Then add_loader can't take the extension_to_loader_index
lock, and the program deadlocks.
To be more precise:
## Step 1: Thread 1 grabs the `extension_to_loader_index` lock on lines 138..139:
3a1867a92e/crates/bevy_asset/src/asset_server.rs (L133-L145)
## Step 2: Thread 2 grabs the `server.loader` write lock on line 107:
3a1867a92e/crates/bevy_asset/src/asset_server.rs (L103-L116)
## Step 3: Deadlock, since Thread 1 wants to grab `server.loader` on line 141...:
3a1867a92e/crates/bevy_asset/src/asset_server.rs (L133-L145)
... and Thread 2 wants to grab 'extension_to_loader_index` on lines 111..112:
3a1867a92e/crates/bevy_asset/src/asset_server.rs (L103-L116)
## Solution
Fixed by descoping the extension_to_loader_index lock, since
`get_asset_loader` doesn't need to hold the read lock on the extensions map for the duration,
just to get a copyable usize. The block might not be needed,
I think I could have gotten away with just inserting a `copied()`
call into the chain, but I wanted to make the reasoning clear for
future maintainers.
# Objective
- Currently `AssetServer::get_handle_path` always returns `None` since the inner hash map is never written to.
## Solution
- Inside the `load_untracked` function, insert the asset path into the map.
This is similar to #1290 (thanks @TheRawMeatball)
# Objective
- Currently, when calling any of the `AssetServer`'s `load` functions, if the extension does not exist for the given path, the returned handle's load state is always `LoadState::NotLoaded`.
- This is due to the `load_async` function early returning without properly creating a `SourceInfo` for the requested asset.
- Fixes#2261
## Solution
- Add the `SourceInfo` prior to checking for valid extension loaders. And set the `LoadState` to `Failed` if the according loader does not exist.
1) Sets `LoadState` properly on all failing cases in `AssetServer::load_async`
2) Adds more tests for sad and happy paths of asset loading
_Note_: this brings in the `tempfile` crate.
# Objective
- When creating an asset, the `update_asset_storage` function was unnecessarily creating an extraneous `Handle` to the created asset via calling `set`. This has some overhead as the `RefChange::Increment/Decrement` event was being sent.
- A similar exteraneous handle is also created in `load_async` when loading dependencies.
## Solution
- Have the implementation use `Assets::set_untracked` and `AssetServer::load_untracked` so no intermediate handle is created.
## Objective
- Fixes: #2275
- `Assets` were being flagged as 'changed' each frame regardless of if the assets were actually being updated.
## Solution
- Only have `Assets` change detection be triggered when the collection is actually modified.
- This includes utilizing `ResMut` further down the stack instead of a `&mut Assets` directly.
fixes#824fixes#1956
* marked asset loading methods as `must_use`
* fixed asset re-loading while asset is still loading to work as comment is describing code
* introduced a 1 frame delay between unused asset marking and actual asset removal
Hi, ran into this problem with the derive macro.
It fails trying to derive the Default trait when the asset does not implements it also. This is unnecessary because this plugin does not need that from the asset type, just needs to create the phantom data.
While trying to reduce load time of gltf files, I noticed most of the loading time is spent transforming bytes into an actual texture.
This PR add asynchronously loading for them using io task pool in gltf loader. It reduces loading of a large glb file from 15 seconds to 6~8 on my laptop
To allow asynchronous tasks in an asset loader, I added a reference to the task pool from the asset server in the load context, which I can use later in the loader.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Fixes#1892
The following code is a cut down version of the issue, and crashes the same way:
```rust
enum AssetLifecycleEvent <T> {
Create(T),
Free
}
fn main() {
let (sender, _receiver) = crossbeam_channel::unbounded();
sender.send(AssetLifecycleEvent::<[u32; 32000]>::Free).unwrap();
}
```
- We're creating a channel that need to be able to hold `AssetLifecycleEvent::Create(T)` which has the size of our type `T`
- The two variants of the enums have a very different size
By keeping `T` boxed while sending through the channel, it doesn't crash
This was nowhere documented inside Bevy.
Should I also mention the use case of debugging a project?
Closes#810
Co-authored-by: MinerSebas <66798382+MinerSebas@users.noreply.github.com>
This reduces the size of executables when using bevy as dylib by
ensuring that they get codegened in bevy_assets instead of the game
itself. This by extension avoids pulling in parts of bevy_tasks and
async_task.
Before this change the breakout example was 923k big after this change
it is only 775k big for cg_clif. For cg_llvm in release mode breakout
shrinks from 356k to 316k. For cg_llvm in debug mode breakout shrinks
from 3814k to 3057k.
Error message noticed in #1475
When an asset type hasn't been added to the app but a load was attempted, the error message wasn't helpful:
```
thread 'IO Task Pool (0)' panicked at 'Failed to find AssetLifecycle for label Some("Mesh0/Primitive0"), which has an asset type 8ecbac0f-f545-4473-ad43-e1f4243af51e. Are you sure that is a registered asset type?', /.cargo/git/checkouts/bevy-f7ffde730c324c74/89a41bc/crates/bevy_asset/src/asset_server.rs:435:17
```
means that
```rust
.add_asset::<bevy::render::prelude::Mesh>()
```
needs to be added.
* type name was not given, only UUID, which may make it hard to identify type across bevy/plugins
* instruction were not helpful as the `register_asset_type` method is not public
new error message:
```
thread 'IO Task Pool (1)' panicked at 'Failed to find AssetLifecycle for label 'Some("Mesh0/Primitive0")', which has an asset type "bevy_render::mesh::mesh::Mesh" (UUID 8ecbac0f-f545-4473-ad43-e1f4243af51e). Are you sure this asset type has been added to your app builder?', /bevy/crates/bevy_asset/src/asset_server.rs:435:17
```
As mentioned in #1609.
I'm not sure if this is desirable, but on top of factoring the `set` and `set_untracked` methods I added a warning when the return value of `set` isn't used to mitigate similar issues.
I silenced it for the only occurence where it's currently done 68606934e3/crates/bevy_asset/src/asset_server.rs (L468)
This adds a `EventWriter<T>` `SystemParam` that is just a thin wrapper around `ResMut<Events<T>>`. This is primarily to have API symmetry between the reader and writer, and has the added benefit of easily improving the API later with no breaking changes.
# Bevy ECS V2
This is a rewrite of Bevy ECS (basically everything but the new executor/schedule, which are already awesome). The overall goal was to improve the performance and versatility of Bevy ECS. Here is a quick bulleted list of changes before we dive into the details:
* Complete World rewrite
* Multiple component storage types:
* Tables: fast cache friendly iteration, slower add/removes (previously called Archetypes)
* Sparse Sets: fast add/remove, slower iteration
* Stateful Queries (caches query results for faster iteration. fragmented iteration is _fast_ now)
* Stateful System Params (caches expensive operations. inspired by @DJMcNab's work in #1364)
* Configurable System Params (users can set configuration when they construct their systems. once again inspired by @DJMcNab's work)
* Archetypes are now "just metadata", component storage is separate
* Archetype Graph (for faster archetype changes)
* Component Metadata
* Configure component storage type
* Retrieve information about component size/type/name/layout/send-ness/etc
* Components are uniquely identified by a densely packed ComponentId
* TypeIds are now totally optional (which should make implementing scripting easier)
* Super fast "for_each" query iterators
* Merged Resources into World. Resources are now just a special type of component
* EntityRef/EntityMut builder apis (more efficient and more ergonomic)
* Fast bitset-backed `Access<T>` replaces old hashmap-based approach everywhere
* Query conflicts are determined by component access instead of archetype component access (to avoid random failures at runtime)
* With/Without are still taken into account for conflicts, so this should still be comfy to use
* Much simpler `IntoSystem` impl
* Significantly reduced the amount of hashing throughout the ecs in favor of Sparse Sets (indexed by densely packed ArchetypeId, ComponentId, BundleId, and TableId)
* Safety Improvements
* Entity reservation uses a normal world reference instead of unsafe transmute
* QuerySets no longer transmute lifetimes
* Made traits "unsafe" where relevant
* More thorough safety docs
* WorldCell
* Exposes safe mutable access to multiple resources at a time in a World
* Replaced "catch all" `System::update_archetypes(world: &World)` with `System::new_archetype(archetype: &Archetype)`
* Simpler Bundle implementation
* Replaced slow "remove_bundle_one_by_one" used as fallback for Commands::remove_bundle with fast "remove_bundle_intersection"
* Removed `Mut<T>` query impl. it is better to only support one way: `&mut T`
* Removed with() from `Flags<T>` in favor of `Option<Flags<T>>`, which allows querying for flags to be "filtered" by default
* Components now have is_send property (currently only resources support non-send)
* More granular module organization
* New `RemovedComponents<T>` SystemParam that replaces `query.removed::<T>()`
* `world.resource_scope()` for mutable access to resources and world at the same time
* WorldQuery and QueryFilter traits unified. FilterFetch trait added to enable "short circuit" filtering. Auto impled for cases that don't need it
* Significantly slimmed down SystemState in favor of individual SystemParam state
* System Commands changed from `commands: &mut Commands` back to `mut commands: Commands` (to allow Commands to have a World reference)
Fixes#1320
## `World` Rewrite
This is a from-scratch rewrite of `World` that fills the niche that `hecs` used to. Yes, this means Bevy ECS is no longer a "fork" of hecs. We're going out our own!
(the only shared code between the projects is the entity id allocator, which is already basically ideal)
A huge shout out to @SanderMertens (author of [flecs](https://github.com/SanderMertens/flecs)) for sharing some great ideas with me (specifically hybrid ecs storage and archetype graphs). He also helped advise on a number of implementation details.
## Component Storage (The Problem)
Two ECS storage paradigms have gained a lot of traction over the years:
* **Archetypal ECS**:
* Stores components in "tables" with static schemas. Each "column" stores components of a given type. Each "row" is an entity.
* Each "archetype" has its own table. Adding/removing an entity's component changes the archetype.
* Enables super-fast Query iteration due to its cache-friendly data layout
* Comes at the cost of more expensive add/remove operations for an Entity's components, because all components need to be copied to the new archetype's "table"
* **Sparse Set ECS**:
* Stores components of the same type in densely packed arrays, which are sparsely indexed by densely packed unsigned integers (Entity ids)
* Query iteration is slower than Archetypal ECS because each entity's component could be at any position in the sparse set. This "random access" pattern isn't cache friendly. Additionally, there is an extra layer of indirection because you must first map the entity id to an index in the component array.
* Adding/removing components is a cheap, constant time operation
Bevy ECS V1, hecs, legion, flec, and Unity DOTS are all "archetypal ecs-es". I personally think "archetypal" storage is a good default for game engines. An entity's archetype doesn't need to change frequently in general, and it creates "fast by default" query iteration (which is a much more common operation). It is also "self optimizing". Users don't need to think about optimizing component layouts for iteration performance. It "just works" without any extra boilerplate.
Shipyard and EnTT are "sparse set ecs-es". They employ "packing" as a way to work around the "suboptimal by default" iteration performance for specific sets of components. This helps, but I didn't think this was a good choice for a general purpose engine like Bevy because:
1. "packs" conflict with each other. If bevy decides to internally pack the Transform and GlobalTransform components, users are then blocked if they want to pack some custom component with Transform.
2. users need to take manual action to optimize
Developers selecting an ECS framework are stuck with a hard choice. Select an "archetypal" framework with "fast iteration everywhere" but without the ability to cheaply add/remove components, or select a "sparse set" framework to cheaply add/remove components but with slower iteration performance.
## Hybrid Component Storage (The Solution)
In Bevy ECS V2, we get to have our cake and eat it too. It now has _both_ of the component storage types above (and more can be added later if needed):
* **Tables** (aka "archetypal" storage)
* The default storage. If you don't configure anything, this is what you get
* Fast iteration by default
* Slower add/remove operations
* **Sparse Sets**
* Opt-in
* Slower iteration
* Faster add/remove operations
These storage types complement each other perfectly. By default Query iteration is fast. If developers know that they want to add/remove a component at high frequencies, they can set the storage to "sparse set":
```rust
world.register_component(
ComponentDescriptor:🆕:<MyComponent>(StorageType::SparseSet)
).unwrap();
```
## Archetypes
Archetypes are now "just metadata" ... they no longer store components directly. They do store:
* The `ComponentId`s of each of the Archetype's components (and that component's storage type)
* Archetypes are uniquely defined by their component layouts
* For example: entities with "table" components `[A, B, C]` _and_ "sparse set" components `[D, E]` will always be in the same archetype.
* The `TableId` associated with the archetype
* For now each archetype has exactly one table (which can have no components),
* There is a 1->Many relationship from Tables->Archetypes. A given table could have any number of archetype components stored in it:
* Ex: an entity with "table storage" components `[A, B, C]` and "sparse set" components `[D, E]` will share the same `[A, B, C]` table as an entity with `[A, B, C]` table component and `[F]` sparse set components.
* This 1->Many relationship is how we preserve fast "cache friendly" iteration performance when possible (more on this later)
* A list of entities that are in the archetype and the row id of the table they are in
* ArchetypeComponentIds
* unique densely packed identifiers for (ArchetypeId, ComponentId) pairs
* used by the schedule executor for cheap system access control
* "Archetype Graph Edges" (see the next section)
## The "Archetype Graph"
Archetype changes in Bevy (and a number of other archetypal ecs-es) have historically been expensive to compute. First, you need to allocate a new vector of the entity's current component ids, add or remove components based on the operation performed, sort it (to ensure it is order-independent), then hash it to find the archetype (if it exists). And thats all before we get to the _already_ expensive full copy of all components to the new table storage.
The solution is to build a "graph" of archetypes to cache these results. @SanderMertens first exposed me to the idea (and he got it from @gjroelofs, who came up with it). They propose adding directed edges between archetypes for add/remove component operations. If `ComponentId`s are densely packed, you can use sparse sets to cheaply jump between archetypes.
Bevy takes this one step further by using add/remove `Bundle` edges instead of `Component` edges. Bevy encourages the use of `Bundles` to group add/remove operations. This is largely for "clearer game logic" reasons, but it also helps cut down on the number of archetype changes required. `Bundles` now also have densely-packed `BundleId`s. This allows us to use a _single_ edge for each bundle operation (rather than needing to traverse N edges ... one for each component). Single component operations are also bundles, so this is strictly an improvement over a "component only" graph.
As a result, an operation that used to be _heavy_ (both for allocations and compute) is now two dirt-cheap array lookups and zero allocations.
## Stateful Queries
World queries are now stateful. This allows us to:
1. Cache archetype (and table) matches
* This resolves another issue with (naive) archetypal ECS: query performance getting worse as the number of archetypes goes up (and fragmentation occurs).
2. Cache Fetch and Filter state
* The expensive parts of fetch/filter operations (such as hashing the TypeId to find the ComponentId) now only happen once when the Query is first constructed
3. Incrementally build up state
* When new archetypes are added, we only process the new archetypes (no need to rebuild state for old archetypes)
As a result, the direct `World` query api now looks like this:
```rust
let mut query = world.query::<(&A, &mut B)>();
for (a, mut b) in query.iter_mut(&mut world) {
}
```
Requiring `World` to generate stateful queries (rather than letting the `QueryState` type be constructed separately) allows us to ensure that _all_ queries are properly initialized (and the relevant world state, such as ComponentIds). This enables QueryState to remove branches from its operations that check for initialization status (and also enables query.iter() to take an immutable world reference because it doesn't need to initialize anything in world).
However in systems, this is a non-breaking change. State management is done internally by the relevant SystemParam.
## Stateful SystemParams
Like Queries, `SystemParams` now also cache state. For example, `Query` system params store the "stateful query" state mentioned above. Commands store their internal `CommandQueue`. This means you can now safely use as many separate `Commands` parameters in your system as you want. `Local<T>` system params store their `T` value in their state (instead of in Resources).
SystemParam state also enabled a significant slim-down of SystemState. It is much nicer to look at now.
Per-SystemParam state naturally insulates us from an "aliased mut" class of errors we have hit in the past (ex: using multiple `Commands` system params).
(credit goes to @DJMcNab for the initial idea and draft pr here #1364)
## Configurable SystemParams
@DJMcNab also had the great idea to make SystemParams configurable. This allows users to provide some initial configuration / values for system parameters (when possible). Most SystemParams have no config (the config type is `()`), but the `Local<T>` param now supports user-provided parameters:
```rust
fn foo(value: Local<usize>) {
}
app.add_system(foo.system().config(|c| c.0 = Some(10)));
```
## Uber Fast "for_each" Query Iterators
Developers now have the choice to use a fast "for_each" iterator, which yields ~1.5-3x iteration speed improvements for "fragmented iteration", and minor ~1.2x iteration speed improvements for unfragmented iteration.
```rust
fn system(query: Query<(&A, &mut B)>) {
// you now have the option to do this for a speed boost
query.for_each_mut(|(a, mut b)| {
});
// however normal iterators are still available
for (a, mut b) in query.iter_mut() {
}
}
```
I think in most cases we should continue to encourage "normal" iterators as they are more flexible and more "rust idiomatic". But when that extra "oomf" is needed, it makes sense to use `for_each`.
We should also consider using `for_each` for internal bevy systems to give our users a nice speed boost (but that should be a separate pr).
## Component Metadata
`World` now has a `Components` collection, which is accessible via `world.components()`. This stores mappings from `ComponentId` to `ComponentInfo`, as well as `TypeId` to `ComponentId` mappings (where relevant). `ComponentInfo` stores information about the component, such as ComponentId, TypeId, memory layout, send-ness (currently limited to resources), and storage type.
## Significantly Cheaper `Access<T>`
We used to use `TypeAccess<TypeId>` to manage read/write component/archetype-component access. This was expensive because TypeIds must be hashed and compared individually. The parallel executor got around this by "condensing" type ids into bitset-backed access types. This worked, but it had to be re-generated from the `TypeAccess<TypeId>`sources every time archetypes changed.
This pr removes TypeAccess in favor of faster bitset access everywhere. We can do this thanks to the move to densely packed `ComponentId`s and `ArchetypeComponentId`s.
## Merged Resources into World
Resources had a lot of redundant functionality with Components. They stored typed data, they had access control, they had unique ids, they were queryable via SystemParams, etc. In fact the _only_ major difference between them was that they were unique (and didn't correlate to an entity).
Separate resources also had the downside of requiring a separate set of access controls, which meant the parallel executor needed to compare more bitsets per system and manage more state.
I initially got the "separate resources" idea from `legion`. I think that design was motivated by the fact that it made the direct world query/resource lifetime interactions more manageable. It certainly made our lives easier when using Resources alongside hecs/bevy_ecs. However we already have a construct for safely and ergonomically managing in-world lifetimes: systems (which use `Access<T>` internally).
This pr merges Resources into World:
```rust
world.insert_resource(1);
world.insert_resource(2.0);
let a = world.get_resource::<i32>().unwrap();
let mut b = world.get_resource_mut::<f64>().unwrap();
*b = 3.0;
```
Resources are now just a special kind of component. They have their own ComponentIds (and their own resource TypeId->ComponentId scope, so they don't conflict wit components of the same type). They are stored in a special "resource archetype", which stores components inside the archetype using a new `unique_components` sparse set (note that this sparse set could later be used to implement Tags). This allows us to keep the code size small by reusing existing datastructures (namely Column, Archetype, ComponentFlags, and ComponentInfo). This allows us the executor to use a single `Access<ArchetypeComponentId>` per system. It should also make scripting language integration easier.
_But_ this merge did create problems for people directly interacting with `World`. What if you need mutable access to multiple resources at the same time? `world.get_resource_mut()` borrows World mutably!
## WorldCell
WorldCell applies the `Access<ArchetypeComponentId>` concept to direct world access:
```rust
let world_cell = world.cell();
let a = world_cell.get_resource_mut::<i32>().unwrap();
let b = world_cell.get_resource_mut::<f64>().unwrap();
```
This adds cheap runtime checks (a sparse set lookup of `ArchetypeComponentId` and a counter) to ensure that world accesses do not conflict with each other. Each operation returns a `WorldBorrow<'w, T>` or `WorldBorrowMut<'w, T>` wrapper type, which will release the relevant ArchetypeComponentId resources when dropped.
World caches the access sparse set (and only one cell can exist at a time), so `world.cell()` is a cheap operation.
WorldCell does _not_ use atomic operations. It is non-send, does a mutable borrow of world to prevent other accesses, and uses a simple `Rc<RefCell<ArchetypeComponentAccess>>` wrapper in each WorldBorrow pointer.
The api is currently limited to resource access, but it can and should be extended to queries / entity component access.
## Resource Scopes
WorldCell does not yet support component queries, and even when it does there are sometimes legitimate reasons to want a mutable world ref _and_ a mutable resource ref (ex: bevy_render and bevy_scene both need this). In these cases we could always drop down to the unsafe `world.get_resource_unchecked_mut()`, but that is not ideal!
Instead developers can use a "resource scope"
```rust
world.resource_scope(|world: &mut World, a: &mut A| {
})
```
This temporarily removes the `A` resource from `World`, provides mutable pointers to both, and re-adds A to World when finished. Thanks to the move to ComponentIds/sparse sets, this is a cheap operation.
If multiple resources are required, scopes can be nested. We could also consider adding a "resource tuple" to the api if this pattern becomes common and the boilerplate gets nasty.
## Query Conflicts Use ComponentId Instead of ArchetypeComponentId
For safety reasons, systems cannot contain queries that conflict with each other without wrapping them in a QuerySet. On bevy `main`, we use ArchetypeComponentIds to determine conflicts. This is nice because it can take into account filters:
```rust
// these queries will never conflict due to their filters
fn filter_system(a: Query<&mut A, With<B>>, b: Query<&mut B, Without<B>>) {
}
```
But it also has a significant downside:
```rust
// these queries will not conflict _until_ an entity with A, B, and C is spawned
fn maybe_conflicts_system(a: Query<(&mut A, &C)>, b: Query<(&mut A, &B)>) {
}
```
The system above will panic at runtime if an entity with A, B, and C is spawned. This makes it hard to trust that your game logic will run without crashing.
In this pr, I switched to using `ComponentId` instead. This _is_ more constraining. `maybe_conflicts_system` will now always fail, but it will do it consistently at startup. Naively, it would also _disallow_ `filter_system`, which would be a significant downgrade in usability. Bevy has a number of internal systems that rely on disjoint queries and I expect it to be a common pattern in userspace.
To resolve this, I added a new `FilteredAccess<T>` type, which wraps `Access<T>` and adds with/without filters. If two `FilteredAccess` have with/without values that prove they are disjoint, they will no longer conflict.
## EntityRef / EntityMut
World entity operations on `main` require that the user passes in an `entity` id to each operation:
```rust
let entity = world.spawn((A, )); // create a new entity with A
world.get::<A>(entity);
world.insert(entity, (B, C));
world.insert_one(entity, D);
```
This means that each operation needs to look up the entity location / verify its validity. The initial spawn operation also requires a Bundle as input. This can be awkward when no components are required (or one component is required).
These operations have been replaced by `EntityRef` and `EntityMut`, which are "builder-style" wrappers around world that provide read and read/write operations on a single, pre-validated entity:
```rust
// spawn now takes no inputs and returns an EntityMut
let entity = world.spawn()
.insert(A) // insert a single component into the entity
.insert_bundle((B, C)) // insert a bundle of components into the entity
.id() // id returns the Entity id
// Returns EntityMut (or panics if the entity does not exist)
world.entity_mut(entity)
.insert(D)
.insert_bundle(SomeBundle::default());
{
// returns EntityRef (or panics if the entity does not exist)
let d = world.entity(entity)
.get::<D>() // gets the D component
.unwrap();
// world.get still exists for ergonomics
let d = world.get::<D>(entity).unwrap();
}
// These variants return Options if you want to check existence instead of panicing
world.get_entity_mut(entity)
.unwrap()
.insert(E);
if let Some(entity_ref) = world.get_entity(entity) {
let d = entity_ref.get::<D>().unwrap();
}
```
This _does not_ affect the current Commands api or terminology. I think that should be a separate conversation as that is a much larger breaking change.
## Safety Improvements
* Entity reservation in Commands uses a normal world borrow instead of an unsafe transmute
* QuerySets no longer transmutes lifetimes
* Made traits "unsafe" when implementing a trait incorrectly could cause unsafety
* More thorough safety docs
## RemovedComponents SystemParam
The old approach to querying removed components: `query.removed:<T>()` was confusing because it had no connection to the query itself. I replaced it with the following, which is both clearer and allows us to cache the ComponentId mapping in the SystemParamState:
```rust
fn system(removed: RemovedComponents<T>) {
for entity in removed.iter() {
}
}
```
## Simpler Bundle implementation
Bundles are no longer responsible for sorting (or deduping) TypeInfo. They are just a simple ordered list of component types / data. This makes the implementation smaller and opens the door to an easy "nested bundle" implementation in the future (which i might even add in this pr). Duplicate detection is now done once per bundle type by World the first time a bundle is used.
## Unified WorldQuery and QueryFilter types
(don't worry they are still separate type _parameters_ in Queries .. this is a non-breaking change)
WorldQuery and QueryFilter were already basically identical apis. With the addition of `FetchState` and more storage-specific fetch methods, the overlap was even clearer (and the redundancy more painful).
QueryFilters are now just `F: WorldQuery where F::Fetch: FilterFetch`. FilterFetch requires `Fetch<Item = bool>` and adds new "short circuit" variants of fetch methods. This enables a filter tuple like `(With<A>, Without<B>, Changed<C>)` to stop evaluating the filter after the first mismatch is encountered. FilterFetch is automatically implemented for `Fetch` implementations that return bool.
This forces fetch implementations that return things like `(bool, bool, bool)` (such as the filter above) to manually implement FilterFetch and decide whether or not to short-circuit.
## More Granular Modules
World no longer globs all of the internal modules together. It now exports `core`, `system`, and `schedule` separately. I'm also considering exporting `core` submodules directly as that is still pretty "glob-ey" and unorganized (feedback welcome here).
## Remaining Draft Work (to be done in this pr)
* ~~panic on conflicting WorldQuery fetches (&A, &mut A)~~
* ~~bevy `main` and hecs both currently allow this, but we should protect against it if possible~~
* ~~batch_iter / par_iter (currently stubbed out)~~
* ~~ChangedRes~~
* ~~I skipped this while we sort out #1313. This pr should be adapted to account for whatever we land on there~~.
* ~~The `Archetypes` and `Tables` collections use hashes of sorted lists of component ids to uniquely identify each archetype/table. This hash is then used as the key in a HashMap to look up the relevant ArchetypeId or TableId. (which doesn't handle hash collisions properly)~~
* ~~It is currently unsafe to generate a Query from "World A", then use it on "World B" (despite the api claiming it is safe). We should probably close this gap. This could be done by adding a randomly generated WorldId to each world, then storing that id in each Query. They could then be compared to each other on each `query.do_thing(&world)` operation. This _does_ add an extra branch to each query operation, so I'm open to other suggestions if people have them.~~
* ~~Nested Bundles (if i find time)~~
## Potential Future Work
* Expand WorldCell to support queries.
* Consider not allocating in the empty archetype on `world.spawn()`
* ex: return something like EntityMutUninit, which turns into EntityMut after an `insert` or `insert_bundle` op
* this actually regressed performance last time i tried it, but in theory it should be faster
* Optimize SparseSet::insert (see `PERF` comment on insert)
* Replace SparseArray `Option<T>` with T::MAX to cut down on branching
* would enable cheaper get_unchecked() operations
* upstream fixedbitset optimizations
* fixedbitset could be allocation free for small block counts (store blocks in a SmallVec)
* fixedbitset could have a const constructor
* Consider implementing Tags (archetype-specific by-value data that affects archetype identity)
* ex: ArchetypeA could have `[A, B, C]` table components and `[D(1)]` "tag" component. ArchetypeB could have `[A, B, C]` table components and a `[D(2)]` tag component. The archetypes are different, despite both having D tags because the value inside D is different.
* this could potentially build on top of the `archetype.unique_components` added in this pr for resource storage.
* Consider reverting `all_tuples` proc macro in favor of the old `macro_rules` implementation
* all_tuples is more flexible and produces cleaner documentation (the macro_rules version produces weird type parameter orders due to parser constraints)
* but unfortunately all_tuples also appears to make Rust Analyzer sad/slow when working inside of `bevy_ecs` (does not affect user code)
* Consider "resource queries" and/or "mixed resource and entity component queries" as an alternative to WorldCell
* this is basically just "systems" so maybe it's not worth it
* Add more world ops
* `world.clear()`
* `world.reserve<T: Bundle>(count: usize)`
* Try using the old archetype allocation strategy (allocate new memory on resize and copy everything over). I expect this to improve batch insertion performance at the cost of unbatched performance. But thats just a guess. I'm not an allocation perf pro :)
* Adapt Commands apis for consistency with new World apis
## Benchmarks
key:
* `bevy_old`: bevy `main` branch
* `bevy`: this branch
* `_foreach`: uses an optimized for_each iterator
* ` _sparse`: uses sparse set storage (if unspecified assume table storage)
* `_system`: runs inside a system (if unspecified assume test happens via direct world ops)
### Simple Insert (from ecs_bench_suite)
![image](https://user-images.githubusercontent.com/2694663/109245573-9c3ce100-7795-11eb-9003-bfd41cd5c51f.png)
### Simpler Iter (from ecs_bench_suite)
![image](https://user-images.githubusercontent.com/2694663/109245795-ffc70e80-7795-11eb-92fb-3ffad09aabf7.png)
### Fragment Iter (from ecs_bench_suite)
![image](https://user-images.githubusercontent.com/2694663/109245849-0fdeee00-7796-11eb-8d25-eb6b7a682c48.png)
### Sparse Fragmented Iter
Iterate a query that matches 5 entities from a single matching archetype, but there are 100 unmatching archetypes
![image](https://user-images.githubusercontent.com/2694663/109245916-2b49f900-7796-11eb-9a8f-ed89c203f940.png)
### Schedule (from ecs_bench_suite)
![image](https://user-images.githubusercontent.com/2694663/109246428-1fab0200-7797-11eb-8841-1b2161e90fa4.png)
### Add Remove Component (from ecs_bench_suite)
![image](https://user-images.githubusercontent.com/2694663/109246492-39e4e000-7797-11eb-8985-2706bd0495ab.png)
### Add Remove Component Big
Same as the test above, but each entity has 5 "large" matrix components and 1 "large" matrix component is added and removed
![image](https://user-images.githubusercontent.com/2694663/109246517-449f7500-7797-11eb-835e-28b6790daeaa.png)
### Get Component
Looks up a single component value a large number of times
![image](https://user-images.githubusercontent.com/2694663/109246129-87ad1880-7796-11eb-9fcb-c38012aa7c70.png)
make more information available from loaded GLTF model
* make gltf nodes available as assets
* add list of primitive per mesh, and their associated material
* complete gltf structure
* get names of gltf assets
* only load materials once
* add labels with node names
* move print diagnostics to log
* entity count diagnostic
* asset count diagnostic
* remove useless `pub`s
* use `BTreeMap` instead of `HashMap`
* get entity count from world
* keep ordered list of diagnostics