Commit graph

19 commits

Author SHA1 Message Date
Clar Fon
efda7f3f9c
Simpler lint fixes: makes ci lints work but disables a lint for now (#15376)
Takes the first two commits from #15375 and adds suggestions from this
comment:
https://github.com/bevyengine/bevy/pull/15375#issuecomment-2366968300

See #15375 for more reasoning/motivation.

## Rebasing (rerunning)

```rust
git switch simpler-lint-fixes
git reset --hard main
cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate
cargo fmt --all
git add --update
git commit --message "rustfmt"
cargo clippy --workspace --all-targets --all-features --fix
cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate
cargo fmt --all
git add --update
git commit --message "clippy"
git cherry-pick e6c0b94f6795222310fb812fa5c4512661fc7887
```
2024-09-24 11:42:59 +00:00
Gino Valente
83356b12c9
bevy_reflect: Replace "value" terminology with "opaque" (#15240)
# Objective

Currently, the term "value" in the context of reflection is a bit
overloaded.

For one, it can be used synonymously with "data" or "variable". An
example sentence would be "this function takes a reflected value".

However, it is also used to refer to reflected types which are
`ReflectKind::Value`. These types are usually either primitives, opaque
types, or types that don't fall into any other `ReflectKind` (or perhaps
could, but don't due to some limitation/difficulty). An example sentence
would be "this function takes a reflected value type".

This makes it difficult to write good documentation or other learning
material without causing some amount of confusion to readers. Ideally,
we'd be able to move away from the `ReflectKind::Value` usage and come
up with a better term.

## Solution

This PR replaces the terminology of "value" with "opaque" across
`bevy_reflect`. This includes in documentation, type names, variant
names, and macros.

The term "opaque" was chosen because that's essentially how the type is
treated within the reflection API. In other words, its internal
structure is hidden. All we can do is work with the type itself.

### Primitives

While primitives are not technically opaque types, I think it's still
clearer to refer to them as "opaque" rather than keep the confusing
"value" terminology.

We could consider adding another concept for primitives (e.g.
`ReflectKind::Primitive`), but I'm not sure that provides a lot of
benefit right now. In most circumstances, they'll be treated just like
an opaque type. They would also likely use the same macro (or two copies
of the same macro but with different names).

## Testing

You can test locally by running:

```
cargo test --package bevy_reflect --all-features
```

---

## Migration Guide

The reflection concept of "value type" has been replaced with a clearer
"opaque type". The following renames have been made to account for this:

- `ReflectKind::Value` → `ReflectKind::Opaque`
- `ReflectRef::Value` → `ReflectRef::Opaque`
- `ReflectMut::Value` → `ReflectMut::Opaque`
- `ReflectOwned::Value` → `ReflectOwned::Opaque`
- `TypeInfo::Value` → `TypeInfo::Opaque`
- `ValueInfo` → `OpaqueInfo`
- `impl_reflect_value!` → `impl_reflect_opaque!`
- `impl_from_reflect_value!` → `impl_from_reflect_opaque!`

Additionally, declaring your own opaque types no longer uses
`#[reflect_value]`. This attribute has been replaced by
`#[reflect(opaque)]`:

```rust
// BEFORE
#[derive(Reflect)]
#[reflect_value(Default)]
struct MyOpaqueType(u32);

// AFTER
#[derive(Reflect)]
#[reflect(opaque)]
#[reflect(Default)]
struct MyOpaqueType(u32);
```

Note that the order in which `#[reflect(opaque)]` appears does not
matter.
2024-09-23 18:04:57 +00:00
Patrick Walton
8154164f1b
Allow animation clips to animate arbitrary properties. (#15282)
Currently, Bevy restricts animation clips to animating
`Transform::translation`, `Transform::rotation`, `Transform::scale`, or
`MorphWeights`, which correspond to the properties that glTF can
animate. This is insufficient for many use cases such as animating UI,
as the UI layout systems expect to have exclusive control over UI
elements' `Transform`s and therefore the `Style` properties must be
animated instead.

This commit fixes this, allowing for `AnimationClip`s to animate
arbitrary properties. The `Keyframes` structure has been turned into a
low-level trait that can be implemented to achieve arbitrary animation
behavior. Along with `Keyframes`, this patch adds a higher-level trait,
`AnimatableProperty`, that simplifies the task of animating single
interpolable properties. Built-in `Keyframes` implementations exist for
translation, rotation, scale, and morph weights. For the most part, you
can migrate by simply changing your code from
`Keyframes::Translation(...)` to `TranslationKeyframes(...)`, and
likewise for rotation, scale, and morph weights.

An example `AnimatableProperty` implementation for the font size of a
text section follows:

     #[derive(Reflect)]
     struct FontSizeProperty;

     impl AnimatableProperty for FontSizeProperty {
         type Component = Text;
         type Property = f32;
fn get_mut(component: &mut Self::Component) -> Option<&mut
Self::Property> {
             Some(&mut component.sections.get_mut(0)?.style.font_size)
         }
     }

In order to keep this patch relatively small, this patch doesn't include
an implementation of `AnimatableProperty` on top of the reflection
system. That can be a follow-up.

This patch builds on top of the new `EntityMutExcept<>` type in order to
widen the `AnimationTarget` query to include write access to all
components. Because `EntityMutExcept<>` has some performance overhead
over an explicit query, we continue to explicitly query `Transform` in
order to avoid regressing the performance of skeletal animation, such as
the `many_foxes` benchmark. I've measured the performance of that
benchmark and have found no significant regressions.

A new example, `animated_ui`, has been added. This example shows how to
use Bevy's built-in animation infrastructure to animate font size and
color, which wasn't possible before this patch.

## Showcase


https://github.com/user-attachments/assets/1fa73492-a9ce-405a-a8f2-4aacd7f6dc97

## Migration Guide

* Animation keyframes are now an extensible trait, not an enum. Replace
`Keyframes::Translation(...)`, `Keyframes::Scale(...)`,
`Keyframes::Rotation(...)`, and `Keyframes::Weights(...)` with
`Box::new(TranslationKeyframes(...))`, `Box::new(ScaleKeyframes(...))`,
`Box::new(RotationKeyframes(...))`, and
`Box::new(MorphWeightsKeyframes(...))` respectively.
2024-09-23 17:14:12 +00:00
Benjamin Brienen
67615c5051
split bevy_reflect::derive::utilities into proper modules (#15354)
# Objective

- A utilities module is considered to be a bad practice and poor
organization of code, so this fixes it.

## Solution

- Split each struct into its own module
- Move related lose functions into their own module
- Move the last few bits into good places

## Testing

- CI

---------

Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2024-09-22 14:24:14 +00:00
Rich Churcher
fd329c0426
Allow to expect (adopted) (#15301)
# Objective

> Rust 1.81 released the #[expect(...)] attribute, which works like
#[allow(...)] but throws a warning if the lint isn't raised. This is
preferred to #[allow(...)] because it tells us when it can be removed.

- Adopts the parts of #15118 that are complete, and updates the branch
so it can be merged.
- There were a few conflicts, let me know if I misjudged any of 'em.

Alice's
[recommendation](https://github.com/bevyengine/bevy/issues/15059#issuecomment-2349263900)
seems well-taken, let's do this crate by crate now that @BD103 has done
the lion's share of this!

(Relates to, but doesn't yet completely finish #15059.)

Crates this _doesn't_ cover:

- bevy_input
- bevy_gilrs
- bevy_window
- bevy_winit
- bevy_state
- bevy_render
- bevy_picking
- bevy_core_pipeline
- bevy_sprite
- bevy_text
- bevy_pbr
- bevy_ui
- bevy_gltf
- bevy_gizmos
- bevy_dev_tools
- bevy_internal
- bevy_dylib

---------

Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
Co-authored-by: Ben Frankel <ben.frankel7@gmail.com>
Co-authored-by: Antony <antony.m.3012@gmail.com>
2024-09-20 19:16:42 +00:00
EdJoPaTo
938d810766
Apply unused_qualifications lint (#14828)
# Objective

Fixes #14782

## Solution

Enable the lint and fix all upcoming hints (`--fix`). Also tried to
figure out the false-positive (see review comment). Maybe split this PR
up into multiple parts where only the last one enables the lint, so some
can already be merged resulting in less many files touched / less
potential for merge conflicts?

Currently, there are some cases where it might be easier to read the
code with the qualifier, so perhaps remove the import of it and adapt
its cases? In the current stage it's just a plain adoption of the
suggestions in order to have a base to discuss.

## Testing

`cargo clippy` and `cargo run -p ci` are happy.
2024-08-21 12:29:33 +00:00
Gino Valente
6183b56b5d
bevy_reflect: Reflect remote types (#6042)
# Objective

The goal with this PR is to allow the use of types that don't implement
`Reflect` within the reflection API.

Rust's [orphan
rule](https://doc.rust-lang.org/book/ch10-02-traits.html#implementing-a-trait-on-a-type)
prevents implementing a trait on an external type when neither type nor
trait are owned by the implementor. This means that if a crate,
`cool_rust_lib`, defines a type, `Foo`, then a user cannot use it with
reflection. What this means is that we have to ignore it most of the
time:

```rust
#[derive(Reflect)]
struct SomeStruct {
  #[reflect(ignore)]
  data: cool_rust_lib::Foo
}
```

Obviously, it's impossible to implement `Reflect` on `Foo`. But does it
*have* to be?

Most of reflection doesn't deal with concrete types— it's almost all
using `dyn Reflect`. And being very metadata-driven, it should
theoretically be possible. I mean,
[`serde`](https://serde.rs/remote-derive.html) does it.

## Solution

> Special thanks to @danielhenrymantilla for their help reviewing this
PR and offering wisdom wrt safety.

Taking a page out of `serde`'s book, this PR adds the ability to easily
use "remote types" with reflection. In this context, a "remote type" is
the external type for which we have no ability to implement `Reflect`.

This adds the `#[reflect_remote(...)]` attribute macro, which is used to
generate "remote type wrappers". All you have to do is define the
wrapper exactly the same as the remote type's definition:

```rust
// Pretend this is our external crate
mod cool_rust_lib {
  #[derive(Default)]
  struct Foo {
    pub value: String
  }
}

#[reflect_remote(cool_rust_lib::Foo)]
struct FooWrapper {
  pub value: String
}
```

> **Note:** All fields in the external type *must* be public. This could
be addressed with a separate getter/setter attribute either in this PR
or in another one.

The macro takes this user-defined item and transforms it into a newtype
wrapper around the external type, marking it as `#[repr(transparent)]`.
The fields/variants defined by the user are simply used to build out the
reflection impls.

Additionally, it generates an implementation of the new trait,
`ReflectRemote`, which helps prevent accidental misuses of this API.

Therefore, the output generated by the macro would look something like:

```rust
#[repr(transparent)]
struct FooWrapper(pub cool_rust_lib::Foo);

impl ReflectRemote for FooWrapper {
  type Remote = cool_rust_lib::Foo;

  // transmutation methods...
}

// reflection impls...
// these will acknowledge and make use of the `value` field
```

Internally, the reflection API will pass around the `FooWrapper` and
[transmute](https://doc.rust-lang.org/std/mem/fn.transmute.html) it
where necessary. All we have to do is then tell `Reflect` to do that. So
rather than ignoring the field, we tell `Reflect` to use our wrapper
using the `#[reflect(remote = ...)]` field attribute:

```rust
#[derive(Reflect)]
struct SomeStruct {
  #[reflect(remote = FooWrapper)]
  data: cool_rust_lib::Foo
}
```

#### Other Macros & Type Data

Because this macro consumes the defined item and generates a new one, we
can't just put our macros anywhere. All macros that should be passed to
the generated struct need to come *below* this macro. For example, to
derive `Default` and register its associated type data:

```rust
//  GOOD
#[reflect_remote(cool_rust_lib::Foo)]
#[derive(Default)]
#[reflect(Default)]
struct FooWrapper {
  pub value: String
}

//  BAD
#[derive(Default)]
#[reflect_remote(cool_rust_lib::Foo)]
#[reflect(Default)]
struct FooWrapper {
  pub value: String
}
```

#### Generics

Generics are forwarded to the generated struct as well. They should also
be defined in the same order:

```rust
#[reflect_remote(RemoteGeneric<'a, T1, T2>)]
struct GenericWrapper<'a, T1, T2> {
  pub foo: &'a T1,
  pub bar: &'a T2,
}
```

> Naming does *not* need to match the original definition's. Only order
matters here.

> Also note that the code above is just a demonstration and doesn't
actually compile since we'd need to enforce certain bounds (e.g. `T1:
Reflect`, `'a: 'static`, etc.)

#### Nesting

And, yes, you can nest remote types:

```rust
#[reflect_remote(RemoteOuter)]
struct OuterWrapper {
  #[reflect(remote = InnerWrapper)]
  pub inner: RemoteInner
}

#[reflect_remote(RemoteInner)]
struct InnerWrapper(usize);
```

#### Assertions

This macro will also generate some compile-time assertions to ensure
that the correct types are used. It's important we catch this early so
users don't have to wait for something to panic. And it also helps keep
our `unsafe` a little safer.

For example, a wrapper definition that does not match its corresponding
remote type will result in an error:

```rust
mod external_crate {
  pub struct TheirStruct(pub u32);
}

#[reflect_remote(external_crate::TheirStruct)]
struct MyStruct(pub String); // ERROR: expected type `u32` but found `String`
```

<details>
<summary>Generated Assertion</summary>

```rust
const _: () = {
  #[allow(non_snake_case)]
  #[allow(unused_variables)]
  #[allow(unused_assignments)]
  #[allow(unreachable_patterns)]
  #[allow(clippy::multiple_bound_locations)]
  fn assert_wrapper_definition_matches_remote_type(
    mut __remote__: external_crate::TheirStruct,
  ) {
    __remote__.0 = (|| -> ::core::option::Option<String> { None })().unwrap();
  }
};
```

</details>

Additionally, using the incorrect type in a `#[reflect(remote = ...)]`
attribute should result in an error:

```rust
mod external_crate {
  pub struct TheirFoo(pub u32);
  pub struct TheirBar(pub i32);
}

#[reflect_remote(external_crate::TheirFoo)]
struct MyFoo(pub u32);

#[reflect_remote(external_crate::TheirBar)]
struct MyBar(pub i32);

#[derive(Reflect)]
struct MyStruct {
  #[reflect(remote = MyBar)] // ERROR: expected type `TheirFoo` but found struct `TheirBar`
  foo: external_crate::TheirFoo
}
```

<details>
<summary>Generated Assertion</summary>

```rust
const _: () = {
    struct RemoteFieldAssertions;
    impl RemoteFieldAssertions {
        #[allow(non_snake_case)]
        #[allow(clippy::multiple_bound_locations)]
        fn assert__foo__is_valid_remote() {
            let _: <MyBar as bevy_reflect::ReflectRemote>::Remote = (|| -> ::core::option::Option<external_crate::TheirFoo> {
              None
            })().unwrap();
        }
    }
};
```

</details>

### Discussion

There are a couple points that I think still need discussion or
validation.

- [x] 1. `Any` shenanigans

~~If we wanted to downcast our remote type from a `dyn Reflect`, we'd
have to first downcast to the wrapper then extract the inner type. This
PR has a [commit](b840db9f74cb6d357f951cb11b150d46bac89ee2) that
addresses this by making all the `Reflect::*any` methods return the
inner type rather than the wrapper type. This allows us to downcast
directly to our remote type.~~

~~However, I'm not sure if this is something we want to do. For
unknowing users, it could be confusing and seemingly inconsistent. Is it
worth keeping? Or should this behavior be removed?~~

I think this should be fine. The remote wrapper is an implementation
detail and users should not need to downcast to the wrapper type. Feel
free to let me know if there are other opinions on this though!

- [x] 2. Implementing `Deref/DerefMut` and `From`

~~We don't currently do this, but should we implement other traits on
the generated transparent struct? We could implement `Deref`/`DerefMut`
to easily access the inner type. And we could implement `From` for
easier conversion between the two types (e.g. `T: Into<Foo>`).~~ As
mentioned in the comments, we probably don't need to do this. Again, the
remote wrapper is an implementation detail, and should generally not be
used directly.
     
- [x] 3. ~~Should we define a getter/setter field attribute in this PR
as well or leave it for a future one?~~ I think this should be saved for
a future PR

- [ ] 4. Any foreseeable issues with this implementation?

#### Alternatives

One alternative to defining our own `ReflectRemote` would be to use
[bytemuck's
`TransparentWrapper`](https://docs.rs/bytemuck/1.13.1/bytemuck/trait.TransparentWrapper.html)
(as suggested by @danielhenrymantilla).

This is definitely a viable option, as `ReflectRemote` is pretty much
the same thing as `TransparentWrapper`. However, the cost would be
bringing in a new crate— though, it is already in use in a few other
sub-crates like bevy_render.

I think we're okay just defining `ReflectRemote` ourselves, but we can
go the bytemuck route if we'd prefer offloading that work to another
crate.

---

## Changelog

* Added the `#[reflect_remote(...)]` attribute macro to allow `Reflect`
to be used on remote types
* Added `ReflectRemote` trait for ensuring proper remote wrapper usage
2024-08-12 19:12:53 +00:00
radiish
6ab8767d3b
reflect: implement the unique reflect rfc (#7207)
# Objective

- Implements the [Unique Reflect
RFC](https://github.com/nicopap/rfcs/blob/bevy-reflect-api/rfcs/56-better-reflect.md).

## Solution

- Implements the RFC.
- This implementation differs in some ways from the RFC:
- In the RFC, it was suggested `Reflect: Any` but `PartialReflect:
?Any`. During initial implementation I tried this, but we assume the
`PartialReflect: 'static` in a lot of places and the changes required
crept out of the scope of this PR.
- `PartialReflect::try_into_reflect` originally returned `Option<Box<dyn
Reflect>>` but i changed this to `Result<Box<dyn Reflect>, Box<dyn
PartialReflect>>` since the method takes by value and otherwise there
would be no way to recover the type. `as_full` and `as_full_mut` both
still return `Option<&(mut) dyn Reflect>`.

---

## Changelog

- Added `PartialReflect`.
- `Reflect` is now a subtrait of `PartialReflect`.
- Moved most methods on `Reflect` to the new `PartialReflect`.
- Added `PartialReflect::{as_partial_reflect, as_partial_reflect_mut,
into_partial_reflect}`.
- Added `PartialReflect::{try_as_reflect, try_as_reflect_mut,
try_into_reflect}`.
- Added `<dyn PartialReflect>::{try_downcast_ref, try_downcast_mut,
try_downcast, try_take}` supplementing the methods on `dyn Reflect`.

## Migration Guide

- Most instances of `dyn Reflect` should be changed to `dyn
PartialReflect` which is less restrictive, however trait bounds should
generally stay as `T: Reflect`.
- The new `PartialReflect::{as_partial_reflect, as_partial_reflect_mut,
into_partial_reflect, try_as_reflect, try_as_reflect_mut,
try_into_reflect}` methods as well as `Reflect::{as_reflect,
as_reflect_mut, into_reflect}` will need to be implemented for manual
implementors of `Reflect`.

## Future Work

- This PR is designed to be followed up by another "Unique Reflect Phase
2" that addresses the following points:
- Investigate making serialization revolve around `Reflect` instead of
`PartialReflect`.
- [Remove the `try_*` methods on `dyn PartialReflect` since they are
stop
gaps](https://github.com/bevyengine/bevy/pull/7207#discussion_r1083476050).
- Investigate usages like `ReflectComponent`. In the places they
currently use `PartialReflect`, should they be changed to use `Reflect`?
- Merging this opens the door to lots of reflection features we haven't
been able to implement.
- We could re-add [the `Reflectable`
trait](8e3488c880/crates/bevy_reflect/src/reflect.rs (L337-L342))
and make `FromReflect` a requirement to improve [`FromReflect`
ergonomics](https://github.com/bevyengine/rfcs/pull/59). This is
currently not possible because dynamic types cannot sensibly be
`FromReflect`.
  - Since this is an alternative to #5772, #5781 would be made cleaner.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2024-08-12 17:01:41 +00:00
Gino Valente
af865e76a3
bevy_reflect: Improve DynamicFunction ergonomics (#14201)
# Objective

Many functions can be converted to `DynamicFunction` using
`IntoFunction`. Unfortunately, we are limited by Rust itself and the
implementations are far from exhaustive. For example, we can't convert
functions with more than 16 arguments. Additionally, we can't handle
returns with lifetimes not tied to the lifetime of the first argument.

In such cases, users will have to create their `DynamicFunction`
manually.

Let's take the following function:

```rust
fn get(index: usize, list: &Vec<String>) -> &String {
    &list[index]
}
```

This function cannot be converted to a `DynamicFunction` via
`IntoFunction` due to the lifetime of the return value being tied to the
second argument. Therefore, we need to construct the `DynamicFunction`
manually:

```rust
DynamicFunction::new(
    |mut args, info| {
        let list = args
            .pop()
            .unwrap()
            .take_ref::<Vec<String>>(&info.args()[1])?;
        let index = args.pop().unwrap().take_owned::<usize>(&info.args()[0])?;
        Ok(Return::Ref(get(index, list)))
    },
    FunctionInfo::new()
        .with_name("get")
        .with_args(vec![
            ArgInfo:🆕:<usize>(0).with_name("index"),
            ArgInfo:🆕:<&Vec<String>>(1).with_name("list"),
        ])
        .with_return_info(ReturnInfo:🆕:<&String>()),
);
```

While still a small and straightforward snippet, there's a decent amount
going on here. There's a lot of room for improvements when it comes to
ergonomics and readability.

The goal of this PR is to address those issues.

## Solution

Improve the ergonomics and readability of manually created
`DynamicFunction`s.

Some of the major changes:
1. Removed the need for `&ArgInfo` when reifying arguments (i.e. the
`&info.args()[1]` calls)
2. Added additional `pop` methods on `ArgList` to handle both popping
and casting
3. Added `take` methods on `ArgList` for taking the arguments out in
order
4. Removed the need for `&FunctionInfo` in the internal closure (Change
1 made it no longer necessary)
5. Added methods to automatically handle generating `ArgInfo` and
`ReturnInfo`

With all these changes in place, we get something a lot nicer to both
write and look at:

```rust
DynamicFunction::new(
    |mut args| {
        let index = args.take::<usize>()?;
        let list = args.take::<&Vec<String>>()?;
        Ok(Return::Ref(get(index, list)))
    },
    FunctionInfo::new()
        .with_name("get")
        .with_arg::<usize>("index")
        .with_arg::<&Vec<String>>("list")
        .with_return::<&String>(),
);
```

Alternatively, to rely on type inference for taking arguments, you could
do:

```rust
DynamicFunction::new(
    |mut args| {
        let index = args.take_owned()?;
        let list = args.take_ref()?;
        Ok(Return::Ref(get(index, list)))
    },
    FunctionInfo::new()
        .with_name("get")
        .with_arg::<usize>("index")
        .with_arg::<&Vec<String>>("list")
        .with_return::<&String>(),
);
```

## Testing

You can test locally by running:

```
cargo test --package bevy_reflect
```

---

## Changelog

- Removed `&ArgInfo` argument from `FromArg::from_arg` trait method
- Removed `&ArgInfo` argument from `Arg::take_***` methods
- Added `ArgValue`
- `Arg` is now a struct containing an `ArgValue` and an argument `index`
- `Arg::take_***` methods now require `T` is also `TypePath`
- Added `Arg::new`, `Arg::index`, `Arg::value`, `Arg::take_value`, and
`Arg::take` methods
- Replaced `ArgId` in `ArgError` with just the argument `index`
- Added `ArgError::EmptyArgList`
- Renamed `ArgList::push` to `ArgList::push_arg`
- Added `ArgList::pop_arg`, `ArgList::pop_owned`, `ArgList::pop_ref`,
and `ArgList::pop_mut`
- Added `ArgList::take_arg`, `ArgList::take_owned`, `ArgList::take_ref`,
`ArgList::take_mut`, and `ArgList::take`
- `ArgList::pop` is now generic
- Renamed `FunctionError::InvalidArgCount` to
`FunctionError::ArgCountMismatch`
- The closure given to `DynamicFunction::new` no longer has a
`&FunctionInfo` argument
- Added `FunctionInfo::with_arg`
- Added `FunctionInfo::with_return`

## Internal Migration Guide

> [!important]
> Function reflection was introduced as part of the 0.15 dev cycle. This
migration guide was written for developers relying on `main` during this
cycle, and is not a breaking change coming from 0.14.

* The `FromArg::from_arg` trait method and the `Arg::take_***` methods
no longer take a `&ArgInfo` argument.
* What used to be `Arg` is now `ArgValue`. `Arg` is now a struct which
contains an `ArgValue`.
* `Arg::take_***` methods now require `T` is also `TypePath`
* Instances of `id: ArgId` in `ArgError` have been replaced with `index:
usize`
* `ArgList::push` is now `ArgList::push_arg`. It also takes the new
`ArgValue` type.
* `ArgList::pop` has become `ArgList::pop_arg` and now returns
`ArgValue`. `Arg::pop` now takes a generic type and downcasts to that
type. It's recommended to use `ArgList::take` and friends instead since
they allow removing the arguments from the list in the order they were
pushed (rather than reverse order).
* `FunctionError::InvalidArgCount` is now
`FunctionError::ArgCountMismatch`
* The closure given to `DynamicFunction::new` no longer has a
`&FunctionInfo` argument. This argument can be removed.
2024-07-16 13:01:52 +00:00
Gino Valente
1042f09c2e
bevy_reflect: Add DynamicClosure and DynamicClosureMut (#14141)
# Objective

As mentioned in
[this](https://github.com/bevyengine/bevy/pull/13152#issuecomment-2198387297)
comment, creating a function registry (see #14098) is a bit difficult
due to the requirements of `DynamicFunction`. Internally, a
`DynamicFunction` contains a `Box<dyn FnMut>` (the function that reifies
reflected arguments and calls the actual function), which requires `&mut
self` in order to be called.

This means that users would require a mutable reference to the function
registry for it to be useful— which isn't great. And they can't clone
the `DynamicFunction` either because cloning an `FnMut` isn't really
feasible (wrapping it in an `Arc` would allow it to be cloned but we
wouldn't be able to call the clone since we need a mutable reference to
the `FnMut`, which we can't get with multiple `Arc`s still alive,
requiring us to also slap in a `Mutex`, which adds additional overhead).

And we don't want to just replace the `dyn FnMut` with `dyn Fn` as that
would prevent reflecting closures that mutate their environment.

Instead, we need to introduce a new type to split the requirements of
`DynamicFunction`.

## Solution

Introduce new types for representing closures.

Specifically, this PR introduces `DynamicClosure` and
`DynamicClosureMut`. Similar to how `IntoFunction` exists for
`DynamicFunction`, two new traits were introduced: `IntoClosure` and
`IntoClosureMut`.

Now `DynamicFunction` stores a `dyn Fn` with a `'static` lifetime.
`DynamicClosure` also uses a `dyn Fn` but has a lifetime, `'env`, tied
to its environment. `DynamicClosureMut` is most like the old
`DynamicFunction`, keeping the `dyn FnMut` and also typing its lifetime,
`'env`, to the environment

Here are some comparison tables:

|   | `DynamicFunction` | `DynamicClosure` | `DynamicClosureMut` |
| - | ----------------- | ---------------- | ------------------- |
| Callable with `&self` |  |  |  |
| Callable with `&mut self` |  |  |  |
| Allows for non-`'static` lifetimes |  |  |  |

|   | `IntoFunction` | `IntoClosure` | `IntoClosureMut` |
| - | -------------- | ------------- | ---------------- |
| Convert `fn` functions |  |  |  |
| Convert `fn` methods |  |  |  |
| Convert anonymous functions |  |  |  |
| Convert closures that capture immutable references |  |  |  |
| Convert closures that capture mutable references |  |  |  |
| Convert closures that capture owned values | [^1] |  |  |

[^1]: Due to limitations in Rust, `IntoFunction` can't be implemented
for just functions (unless we forced users to manually coerce them to
function pointers first). So closures that meet the trait requirements
_can technically_ be converted into a `DynamicFunction` as well. To both
future-proof and reduce confusion, though, we'll just pretend like this
isn't a thing.

```rust
let mut list: Vec<i32> = vec![1, 2, 3];

// `replace` is a closure that captures a mutable reference to `list`
let mut replace = |index: usize, value: i32| -> i32 {
  let old_value = list[index];
  list[index] = value;
  old_value
};

// Convert the closure into a dynamic closure using `IntoClosureMut::into_closure_mut`
let mut func: DynamicClosureMut = replace.into_closure_mut();

// Dynamically call the closure:
let args = ArgList::default().push_owned(1_usize).push_owned(-2_i32);
let value = func.call_once(args).unwrap().unwrap_owned();

// Check the result:
assert_eq!(value.take::<i32>().unwrap(), 2);
assert_eq!(list, vec![1, -2, 3]);
```

### `ReflectFn`/`ReflectFnMut`

To make extending the function reflection system easier (the blanket
impls for `IntoFunction`, `IntoClosure`, and `IntoClosureMut` are all
incredibly short), this PR generalizes callables with two new traits:
`ReflectFn` and `ReflectFnMut`.

These traits mimic `Fn` and `FnMut` but allow for being called via
reflection. In fact, their blanket implementations are identical save
for `ReflectFn` being implemented over `Fn` types and `ReflectFnMut`
being implemented over `FnMut` types.

And just as `Fn` is a subtrait of `FnMut`, `ReflectFn` is a subtrait of
`ReflectFnMut`. So anywhere that expects a `ReflectFnMut` can also be
given a `ReflectFn`.

To reiterate, these traits aren't 100% necessary. They were added in
purely for extensibility. If we decide to split things up differently or
add new traits/types in the future, then those changes should be much
simpler to implement.

### `TypedFunction`

Because of the split into `ReflectFn` and `ReflectFnMut`, we needed a
new way to access the function type information. This PR moves that
concept over into `TypedFunction`.

Much like `Typed`, this provides a way to access a function's
`FunctionInfo`.

By splitting this trait out, it helps to ensure the other traits are
focused on a single responsibility.

### Internal Macros

The original function PR (#13152) implemented `IntoFunction` using a
macro which was passed into an `all_tuples!` macro invocation. Because
we needed the same functionality for these new traits, this PR has
copy+pasted that code for `ReflectFn`, `ReflectFnMut`, and
`TypedFunction`— albeit with some differences between them.

Originally, I was going to try and macro-ify the impls and where clauses
such that we wouldn't have to straight up duplicate a lot of this logic.
However, aside from being more complex in general, autocomplete just
does not play nice with such heavily nested macros (tried in both
RustRover and VSCode). And both of those problems told me that it just
wasn't worth it: we need to ensure the crate is easily maintainable,
even at the cost of duplicating code.

So instead, I made sure to simplify the macro code by removing all
fully-qualified syntax and cutting the where clauses down to the bare
essentials, which helps to clean up a lot of the visual noise. I also
tried my best to document the macro logic in certain areas (I may even
add a bit more) to help with maintainability for future devs.

### Documentation

Documentation for this module was a bit difficult for me. So many of
these traits and types are very interconnected. And each trait/type has
subtle differences that make documenting it in a single place, like at
the module level, difficult to do cleanly. Describing the valid
signatures is also challenging to do well.

Hopefully what I have here is okay. I think I did an okay job, but let
me know if there any thoughts on ways to improve it. We can also move
such a task to a followup PR for more focused discussion.

## Testing

You can test locally by running:

```
cargo test --package bevy_reflect
```

---

## Changelog

- Added `DynamicClosure` struct
- Added `DynamicClosureMut` struct
- Added `IntoClosure` trait
- Added `IntoClosureMut` trait
- Added `ReflectFn` trait
- Added `ReflectFnMut` trait
- Added `TypedFunction` trait
- `IntoFunction` now only works for standard Rust functions
- `IntoFunction` no longer takes a lifetime parameter
- `DynamicFunction::call` now only requires `&self`
- Removed `DynamicFunction::call_once`
- Changed the `IntoReturn::into_return` signature to include a where
clause

## Internal Migration Guide

> [!important]
> Function reflection was introduced as part of the 0.15 dev cycle. This
migration guide was written for developers relying on `main` during this
cycle, and is not a breaking change coming from 0.14.

### `IntoClosure`

`IntoFunction` now only works for standard Rust functions. Calling
`IntoFunction::into_function` on a closure that captures references to
its environment (either mutable or immutable), will no longer compile.

Instead, you will need to use either `IntoClosure::into_closure` to
create a `DynamicClosure` or `IntoClosureMut::into_closure_mut` to
create a `DynamicClosureMut`, depending on your needs:

```rust
let punct = String::from("!");
let print = |value: String| {
    println!("{value}{punct}");
};

// BEFORE
let func: DynamicFunction = print.into_function();

// AFTER
let func: DynamicClosure = print.into_closure();
```

### `IntoFunction` lifetime

Additionally, `IntoFunction` no longer takes a lifetime parameter as it
always expects a `'static` lifetime. Usages will need to remove any
lifetime parameters:

```rust
// BEFORE
fn execute<'env, F: IntoFunction<'env, Marker>, Marker>(f: F) {/* ... */}

// AFTER
fn execute<F: IntoFunction<Marker>, Marker>(f: F) {/* ... */}
```

### `IntoReturn`

`IntoReturn::into_return` now has a where clause. Any manual
implementors will need to add this where clause to their implementation.
2024-07-16 03:22:43 +00:00
Gino Valente
aa241672e1
bevy_reflect: Nested TypeInfo getters (#13321)
# Objective

Right now, `TypeInfo` can be accessed directly from a type using either
`Typed::type_info` or `Reflect::get_represented_type_info`.

However, once that `TypeInfo` is accessed, any nested types must be
accessed via the `TypeRegistry`.

```rust
#[derive(Reflect)]
struct Foo {
  bar: usize
}

let registry = TypeRegistry::default();

let TypeInfo::Struct(type_info) = Foo::type_info() else {
  panic!("expected struct info");
};

let field = type_info.field("bar").unwrap();

let field_info = registry.get_type_info(field.type_id()).unwrap();
assert!(field_info.is::<usize>());;
```

## Solution

Enable nested types within a `TypeInfo` to be retrieved directly.

```rust
#[derive(Reflect)]
struct Foo {
  bar: usize
}

let TypeInfo::Struct(type_info) = Foo::type_info() else {
  panic!("expected struct info");
};

let field = type_info.field("bar").unwrap();

let field_info = field.type_info().unwrap();
assert!(field_info.is::<usize>());;
```

The particular implementation was chosen for two reasons.

Firstly, we can't just store `TypeInfo` inside another `TypeInfo`
directly. This is because some types are recursive and would result in a
deadlock when trying to create the `TypeInfo` (i.e. it has to create the
`TypeInfo` before it can use it, but it also needs the `TypeInfo` before
it can create it). Therefore, we must instead store the function so it
can be retrieved lazily.

I had considered also using a `OnceLock` or something to lazily cache
the info, but I figured we can look into optimizations later. The API
should remain the same with or without the `OnceLock`.

Secondly, a new wrapper trait had to be introduced: `MaybeTyped`. Like
`RegisterForReflection`, this trait is `#[doc(hidden)]` and only exists
so that we can properly handle dynamic type fields without requiring
them to implement `Typed`. We don't want dynamic types to implement
`Typed` due to the fact that it would make the return type
`Option<&'static TypeInfo>` for all types even though only the dynamic
types ever need to return `None` (see #6971 for details).

Users should never have to interact with this trait as it has a blanket
impl for all `Typed` types. And `Typed` is automatically implemented
when deriving `Reflect` (as it is required).

The one downside is we do need to return `Option<&'static TypeInfo>`
from all these new methods so that we can handle the dynamic cases. If
we didn't have to, we'd be able to get rid of the `Option` entirely. But
I think that's an okay tradeoff for this one part of the API, and keeps
the other APIs intact.

## Testing

This PR contains tests to verify everything works as expected. You can
test locally by running:

```
cargo test --package bevy_reflect
```

---

## Changelog

### Public Changes

- Added `ArrayInfo::item_info` method
- Added `NamedField::type_info` method
- Added `UnnamedField::type_info` method
- Added `ListInfo::item_info` method
- Added `MapInfo::key_info` method
- Added `MapInfo::value_info` method
- All active fields now have a `Typed` bound (remember that this is
automatically satisfied for all types that derive `Reflect`)

### Internal Changes

- Added `MaybeTyped` trait

## Migration Guide

All active fields for reflected types (including lists, maps, tuples,
etc.), must implement `Typed`. For the majority of users this won't have
any visible impact.

However, users implementing `Reflect` manually may need to update their
types to implement `Typed` if they weren't already.

Additionally, custom dynamic types will need to implement the new hidden
`MaybeTyped` trait.
2024-07-15 00:40:07 +00:00
Gino Valente
99c9218b56
bevy_reflect: Feature-gate function reflection (#14174)
# Objective

Function reflection requires a lot of macro code generation in the form
of several `all_tuples!` invocations, as well as impls generated in the
`Reflect` derive macro.

Seeing as function reflection is currently a bit more niche, it makes
sense to gate it all behind a feature.

## Solution

Add a `functions` feature to `bevy_reflect`, which can be enabled in
Bevy using the `reflect_functions` feature.

## Testing

You can test locally by running:

```
cargo test --package bevy_reflect
```

That should ensure that everything still works with the feature
disabled.

To test with the feature on, you can run:

```
cargo test --package bevy_reflect --features functions
```

---

## Changelog

- Moved function reflection behind a Cargo feature
(`bevy/reflect_functions` and `bevy_reflect/functions`)
- Add `IntoFunction` export in `bevy_reflect::prelude`

## Internal Migration Guide

> [!important]
> Function reflection was introduced as part of the 0.15 dev cycle. This
migration guide was written for developers relying on `main` during this
cycle, and is not a breaking change coming from 0.14.

Function reflection is now gated behind a feature. To use function
reflection, enable the feature:
- If using `bevy_reflect` directly, enable the `functions` feature
- If using `bevy`, enable the `reflect_functions` feature
2024-07-14 15:55:31 +00:00
Lura
856b39d821
Apply Clippy lints regarding lazy evaluation and closures (#14015)
# Objective

- Lazily evaluate
[default](https://rust-lang.github.io/rust-clippy/master/index.html#/unwrap_or_default)~~/[or](https://rust-lang.github.io/rust-clippy/master/index.html#/or_fun_call)~~
values where it makes sense
  - ~~`unwrap_or(foo())` -> `unwrap_or_else(|| foo())`~~
  - `unwrap_or(Default::default())` -> `unwrap_or_default()`
  - etc.
- Avoid creating [redundant
closures](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure),
even for [method
calls](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure_for_method_calls)
  - `map(|something| something.into())` -> `map(Into:into)`

## Solution

- Apply Clippy lints:
-
~~[or_fun_call](https://rust-lang.github.io/rust-clippy/master/index.html#/or_fun_call)~~
-
[unwrap_or_default](https://rust-lang.github.io/rust-clippy/master/index.html#/unwrap_or_default)
-
[redundant_closure_for_method_calls](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure_for_method_calls)
([redundant
closures](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure)
is already enabled)

## Testing

- Tested on Windows 11 (`stable-x86_64-pc-windows-gnu`, 1.79.0)
- Bevy compiles without errors or warnings and examples seem to work as
intended
  - `cargo clippy` 
  - `cargo run -p ci -- compile` 

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-07-01 15:54:40 +00:00
Gino Valente
276dd04001
bevy_reflect: Function reflection (#13152)
# Objective

We're able to reflect types sooooooo... why not functions?

The goal of this PR is to make functions callable within a dynamic
context, where type information is not readily available at compile
time.

For example, if we have a function:

```rust
fn add(left: i32, right: i32) -> i32 {
  left + right
}
```

And two `Reflect` values we've already validated are `i32` types:

```rust
let left: Box<dyn Reflect> = Box::new(2_i32);
let right: Box<dyn Reflect> = Box::new(2_i32);
```

We should be able to call `add` with these values:

```rust
// ?????
let result: Box<dyn Reflect> = add.call_dynamic(left, right);
```

And ideally this wouldn't just work for functions, but methods and
closures too!

Right now, users have two options:

1. Manually parse the reflected data and call the function themselves
2. Rely on registered type data to handle the conversions for them

For a small function like `add`, this isn't too bad. But what about for
more complex functions? What about for many functions?

At worst, this process is error-prone. At best, it's simply tedious.

And this is assuming we know the function at compile time. What if we
want to accept a function dynamically and call it with our own
arguments?

It would be much nicer if `bevy_reflect` could alleviate some of the
problems here.

## Solution

Added function reflection!

This adds a `DynamicFunction` type to wrap a function dynamically. This
can be called with an `ArgList`, which is a dynamic list of
`Reflect`-containing `Arg` arguments. It returns a `FunctionResult`
which indicates whether or not the function call succeeded, returning a
`Reflect`-containing `Return` type if it did succeed.

Many functions can be converted into this `DynamicFunction` type thanks
to the `IntoFunction` trait.

Taking our previous `add` example, this might look something like
(explicit types added for readability):

```rust
fn add(left: i32, right: i32) -> i32 {
  left + right
}

let mut function: DynamicFunction = add.into_function();
let args: ArgList = ArgList::new().push_owned(2_i32).push_owned(2_i32);
let result: Return = function.call(args).unwrap();
let value: Box<dyn Reflect> = result.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
```

And it also works on closures:

```rust
let add = |left: i32, right: i32| left + right;

let mut function: DynamicFunction = add.into_function();
let args: ArgList = ArgList::new().push_owned(2_i32).push_owned(2_i32);
let result: Return = function.call(args).unwrap();
let value: Box<dyn Reflect> = result.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
```

As well as methods:

```rust
#[derive(Reflect)]
struct Foo(i32);

impl Foo {
  fn add(&mut self, value: i32) {
    self.0 += value;
  }
}

let mut foo = Foo(2);

let mut function: DynamicFunction = Foo::add.into_function();
let args: ArgList = ArgList::new().push_mut(&mut foo).push_owned(2_i32);
function.call(args).unwrap();
assert_eq!(foo.0, 4);
```

### Limitations

While this does cover many functions, it is far from a perfect system
and has quite a few limitations. Here are a few of the limitations when
using `IntoFunction`:

1. The lifetime of the return value is only tied to the lifetime of the
first argument (useful for methods). This means you can't have a
function like `(a: i32, b: &i32) -> &i32` without creating the
`DynamicFunction` manually.
2. Only 15 arguments are currently supported. If the first argument is a
(mutable) reference, this number increases to 16.
3. Manual implementations of `Reflect` will need to implement the new
`FromArg`, `GetOwnership`, and `IntoReturn` traits in order to be used
as arguments/return types.

And some limitations of `DynamicFunction` itself:

1. All arguments share the same lifetime, or rather, they will shrink to
the shortest lifetime.
2. Closures that capture their environment may need to have their
`DynamicFunction` dropped before accessing those variables again (there
is a `DynamicFunction::call_once` to make this a bit easier)
3. All arguments and return types must implement `Reflect`. While not a
big surprise coming from `bevy_reflect`, this implementation could
actually still work by swapping `Reflect` out with `Any`. Of course,
that makes working with the arguments and return values a bit harder.
4. Generic functions are not supported (unless they have been manually
monomorphized)

And general, reflection gotchas:

1. `&str` does not implement `Reflect`. Rather, `&'static str`
implements `Reflect` (the same is true for `&Path` and similar types).
This means that `&'static str` is considered an "owned" value for the
sake of generating arguments. Additionally, arguments and return types
containing `&str` will assume it's `&'static str`, which is almost never
the desired behavior. In these cases, the only solution (I believe) is
to use `&String` instead.

### Followup Work

This PR is the first of two PRs I intend to work on. The second PR will
aim to integrate this new function reflection system into the existing
reflection traits and `TypeInfo`. The goal would be to register and call
a reflected type's methods dynamically.

I chose not to do that in this PR since the diff is already quite large.
I also want the discussion for both PRs to be focused on their own
implementation.

Another followup I'd like to do is investigate allowing common container
types as a return type, such as `Option<&[mut] T>` and `Result<&[mut] T,
E>`. This would allow even more functions to opt into this system. I
chose to not include it in this one, though, for the same reasoning as
previously mentioned.

### Alternatives

One alternative I had considered was adding a macro to convert any
function into a reflection-based counterpart. The idea would be that a
struct that wraps the function would be created and users could specify
which arguments and return values should be `Reflect`. It could then be
called via a new `Function` trait.

I think that could still work, but it will be a fair bit more involved,
requiring some slightly more complex parsing. And it of course is a bit
more work for the user, since they need to create the type via macro
invocation.

It also makes registering these functions onto a type a bit more
complicated (depending on how it's implemented).

For now, I think this is a fairly simple, yet powerful solution that
provides the least amount of friction for users.

---

## Showcase

Bevy now adds support for storing and calling functions dynamically
using reflection!

```rust
// 1. Take a standard Rust function
fn add(left: i32, right: i32) -> i32 {
  left + right
}

// 2. Convert it into a type-erased `DynamicFunction` using the `IntoFunction` trait
let mut function: DynamicFunction = add.into_function();
// 3. Define your arguments from reflected values
let args: ArgList = ArgList::new().push_owned(2_i32).push_owned(2_i32);
// 4. Call the function with your arguments
let result: Return = function.call(args).unwrap();
// 5. Extract the return value
let value: Box<dyn Reflect> = result.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
```

## Changelog

#### TL;DR

- Added support for function reflection
- Added a new `Function Reflection` example:
ba727898f2/examples/reflection/function_reflection.rs (L1-L157)

#### Details

Added the following items:

- `ArgError` enum
- `ArgId` enum
- `ArgInfo` struct
- `ArgList` struct
- `Arg` enum
- `DynamicFunction` struct
- `FromArg` trait (derived with `derive(Reflect)`)
- `FunctionError` enum
- `FunctionInfo` struct
- `FunctionResult` alias
- `GetOwnership` trait (derived with `derive(Reflect)`)
- `IntoFunction` trait (with blanket implementation)
- `IntoReturn` trait (derived with `derive(Reflect)`)
- `Ownership` enum
- `ReturnInfo` struct
- `Return` enum

---------

Co-authored-by: Periwink <charlesbour@gmail.com>
2024-07-01 13:49:08 +00:00
Gino Valente
faf003fc9d
bevy_reflect: enum_utility cleanup (#13424)
# Objective

The `enum_utility` module contains the `get_variant_constructors`
function, which is used to generate token streams for constructing
enums. It's used for the `FromReflect::from_reflect` implementation and
the `Reflect::try_apply` implementation.

Due to the complexity of enums, this function is understandably a little
messy and difficult to extend.

## Solution

Clean up the `enum_utility` module.

Now "clean" is a bit subjective. I believe my solution is "cleaner" in
that the logic to generate the tokens are strictly coupled with the
intended usage. Because of this, `try_apply` is also no longer strictly
coupled with `from_reflect`.

This makes it easier to extend with new functionality, which is
something I'm doing in a future unrelated PR that I have based off this
one.

## Testing

There shouldn't be any testing required other than ensuring that the
project still builds and that CI passes.
2024-05-22 21:18:57 +00:00
Gino Valente
5db52663b3
bevy_reflect: Custom attributes (#11659)
# Objective

As work on the editor starts to ramp up, it might be nice to start
allowing types to specify custom attributes. These can be used to
provide certain functionality to fields, such as ranges or controlling
how data is displayed.

A good example of this can be seen in
[`bevy-inspector-egui`](https://github.com/jakobhellermann/bevy-inspector-egui)
with its
[`InspectorOptions`](https://docs.rs/bevy-inspector-egui/0.22.1/bevy_inspector_egui/struct.InspectorOptions.html):

```rust
#[derive(Reflect, Default, InspectorOptions)]
#[reflect(InspectorOptions)]
struct Slider {
    #[inspector(min = 0.0, max = 1.0)]
    value: f32,
}
```

Normally, as demonstrated in the example above, these attributes are
handled by a derive macro and stored in a corresponding `TypeData`
struct (i.e. `ReflectInspectorOptions`).

Ideally, we would have a good way of defining this directly via
reflection so that users don't need to create and manage a whole proc
macro just to allow these sorts of attributes.

And note that this doesn't have to just be for inspectors and editors.
It can be used for things done purely on the code side of things.

## Solution

Create a new method for storing attributes on fields via the `Reflect`
derive.

These custom attributes are stored in type info (e.g. `NamedField`,
`StructInfo`, etc.).

```rust
#[derive(Reflect)]
struct Slider {
    #[reflect(@0.0..=1.0)]
    value: f64,
}

let TypeInfo::Struct(info) = Slider::type_info() else {
    panic!("expected struct info");
};

let field = info.field("value").unwrap();

let range = field.get_attribute::<RangeInclusive<f64>>().unwrap();
assert_eq!(*range, 0.0..=1.0);
```

## TODO

- [x] ~~Bikeshed syntax~~ Went with a type-based approach, prefixed by
`@` for ease of parsing and flexibility
- [x] Add support for custom struct/tuple struct field attributes
- [x] Add support for custom enum variant field attributes
- [x] ~~Add support for custom enum variant attributes (maybe?)~~ ~~Will
require a larger refactor. Can be saved for a future PR if we really
want it.~~ Actually, we apparently still have support for variant
attributes despite not using them, so it was pretty easy to add lol.
- [x] Add support for custom container attributes
- [x] Allow custom attributes to store any reflectable value (not just
`Lit`)
- [x] ~~Store attributes in registry~~ This PR used to store these in
attributes in the registry, however, it has since switched over to
storing them in type info
- [x] Add example

## Bikeshedding

> [!note]
> This section was made for the old method of handling custom
attributes, which stored them by name (i.e. `some_attribute = 123`). The
PR has shifted away from that, to a more type-safe approach.
>
> This section has been left for reference.

There are a number of ways we can syntactically handle custom
attributes. Feel free to leave a comment on your preferred one! Ideally
we want one that is clear, readable, and concise since these will
potentially see _a lot_ of use.

Below is a small, non-exhaustive list of them. Note that the
`skip_serializing` reflection attribute is added to demonstrate how each
case plays with existing reflection attributes.

<details>
<summary>List</summary>

##### 1. `@(name = value)`

> The `@` was chosen to make them stand out from other attributes and
because the "at" symbol is a subtle pneumonic for "attribute". Of
course, other symbols could be used (e.g. `$`, `#`, etc.).

```rust
#[derive(Reflect)]
struct Slider {
    #[reflect(@(min = 0.0, max = 1.0), skip_serializing)]
    #[[reflect(@(bevy_editor::hint = "Range: 0.0 to 1.0"))]
    value: f32,
}
```

##### 2. `@name = value`

> This is my personal favorite.

```rust
#[derive(Reflect)]
struct Slider {
    #[reflect(@min = 0.0, @max = 1.0, skip_serializing)]
    #[[reflect(@bevy_editor::hint = "Range: 0.0 to 1.0")]
    value: f32,
}
```

##### 3. `custom_attr(name = value)`

> `custom_attr` can be anything. Other possibilities include `with` or
`tag`.

```rust
#[derive(Reflect)]
struct Slider {
    #[reflect(custom_attr(min = 0.0, max = 1.0), skip_serializing)]
    #[[reflect(custom_attr(bevy_editor::hint = "Range: 0.0 to 1.0"))]
    value: f32,
}
```

##### 4. `reflect_attr(name = value)`

```rust
#[derive(Reflect)]
struct Slider {
    #[reflect(skip_serializing)]
    #[reflect_attr(min = 0.0, max = 1.0)]
    #[[reflect_attr(bevy_editor::hint = "Range: 0.0 to 1.0")]
    value: f32,
}
```

</details>

---

## Changelog

- Added support for custom attributes on reflected types (i.e.
`#[reflect(@Foo::new("bar")]`)
2024-05-20 19:30:21 +00:00
Gino Valente
705c144259
bevy_reflect: Remove ContainerAttributes::merge (#13303)
# Objective

Unblocks #11659.

Currently the `Reflect` derive macro has to go through a merge process
for each `#[reflect]`/`#[reflet_value]` attribute encountered on a
container type.

Not only is this a bit inefficient, but it also has a soft requirement
that we can compare attributes such that an error can be thrown on
duplicates, invalid states, etc.

While working on #11659 this proved to be challenging due to the fact
that `syn` types don't implement `PartialEq` or `Hash` without enabling
the `extra-traits` feature.

Ideally, we wouldn't have to enable another feature just to accommodate
this one use case.

## Solution

Removed `ContainerAttributes::merge`.

This was a fairly simple change as we could just have the parsing
functions take `&mut self` instead of returning `Self`.

## Testing

CI should build as there should be no user-facing change.
2024-05-09 18:17:54 +00:00
Brezak
9c4ac7c297
Finish the work on try_apply (#12646)
# Objective

Finish the `try_apply` implementation started in #6770 by @feyokorenhof.
Supersedes and closes #6770. Closes #6182

## Solution

Add `try_apply` to `Reflect` and implement it in all the places that
implement `Reflect`.

---

## Changelog

Added `try_apply` to `Reflect`.

---------

Co-authored-by: Feyo Korenhof <feyokorenhof@gmail.com>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2024-05-08 14:26:01 +00:00
BD103
22305acf66
Rename bevy_reflect_derive folder to derive (#13269)
# Objective

- Some of the "large" crates have sub-crates, usually for things such as
macros.
- For an example, see [`bevy_ecs_macros` at
`bevy_ecs/macros`](4f9f987099/crates/bevy_ecs/macros).
- The one crate that does not follow this convention is
[`bevy_reflect_derive`](4f9f987099/crates/bevy_reflect/bevy_reflect_derive),
which is in the `bevy_reflect/bevy_reflect_derive` folder and not
`bevy_reflect/derive` or `bevy_reflect/macros`.

## Solution

- Rename folder `bevy_reflect_derive` to `derive`.
- I chose to use `derive` instead of `macros` because the crate name
itself ends in `_derive`. (One of only two crates to actually use this
convention, funnily enough.)

## Testing

- Build and test `bevy_reflect` and `bevy_reflect_derive`.
- Apply the following patch to `publish.sh` to run it in `--dry-run`
mode, to test that the path has been successfully updated:
- If you have any security concerns about applying random diffs, feel
free to skip this step. Worst case scenario it fails and Cart has to
manually publish a few crates.

```bash
# Apply patch to make `publish.sh` *not* actually publish anything.
git apply path/to/foo.patch
# Make `publish.sh` executable.
chmod +x tools/publish.sh
# Execute `publish.sh`.
./tools/publish.sh
```

```patch
diff --git a/tools/publish.sh b/tools/publish.sh
index b020bad28..fbcc09281 100644
--- a/tools/publish.sh
+++ b/tools/publish.sh
@@ -49,7 +49,7 @@ crates=(
 
 if [ -n "$(git status --porcelain)" ]; then
     echo "You have local changes!"
-    exit 1
+    # exit 1
 fi
 
 pushd crates
@@ -61,15 +61,15 @@ do
   cp ../LICENSE-APACHE "$crate"
   pushd "$crate"
   git add LICENSE-MIT LICENSE-APACHE
-  cargo publish --no-verify --allow-dirty
+  cargo publish --no-verify --allow-dirty --dry-run
   popd
-  sleep 20
+  # sleep 20
 done
 
 popd
 
 echo "Publishing root crate"
-cargo publish --allow-dirty
+cargo publish --allow-dirty --dry-run
 
 echo "Cleaning local state"
 git reset HEAD --hard
```

---

## Changelog

- Moved `bevy_reflect_derive` from
`crates/bevy_reflect/bevy_reflect_derive` to
`crates/bevy_reflect/derive`.
2024-05-07 07:55:32 +00:00