Commit graph

1982 commits

Author SHA1 Message Date
Zachary Harrold
a35811d088
Add Immutable Component Support (#16372)
# Objective

- Fixes #16208

## Solution

- Added an associated type to `Component`, `Mutability`, which flags
whether a component is mutable, or immutable. If `Mutability= Mutable`,
the component is mutable. If `Mutability= Immutable`, the component is
immutable.
- Updated `derive_component` to default to mutable unless an
`#[component(immutable)]` attribute is added.
- Updated `ReflectComponent` to check if a component is mutable and, if
not, panic when attempting to mutate.

## Testing

- CI
- `immutable_components` example.

---

## Showcase

Users can now mark a component as `#[component(immutable)]` to prevent
safe mutation of a component while it is attached to an entity:

```rust
#[derive(Component)]
#[component(immutable)]
struct Foo {
    // ...
}
```

This prevents creating an exclusive reference to the component while it
is attached to an entity. This is particularly powerful when combined
with component hooks, as you can now fully track a component's value,
ensuring whatever invariants you desire are upheld. Before this would be
done my making a component private, and manually creating a `QueryData`
implementation which only permitted read access.

<details>
  <summary>Using immutable components as an index</summary>
  
```rust
/// This is an example of a component like [`Name`](bevy::prelude::Name), but immutable.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Component)]
#[component(
    immutable,
    on_insert = on_insert_name,
    on_replace = on_replace_name,
)]
pub struct Name(pub &'static str);

/// This index allows for O(1) lookups of an [`Entity`] by its [`Name`].
#[derive(Resource, Default)]
struct NameIndex {
    name_to_entity: HashMap<Name, Entity>,
}

impl NameIndex {
    fn get_entity(&self, name: &'static str) -> Option<Entity> {
        self.name_to_entity.get(&Name(name)).copied()
    }
}

fn on_insert_name(mut world: DeferredWorld<'_>, entity: Entity, _component: ComponentId) {
    let Some(&name) = world.entity(entity).get::<Name>() else {
        unreachable!()
    };
    let Some(mut index) = world.get_resource_mut::<NameIndex>() else {
        return;
    };

    index.name_to_entity.insert(name, entity);
}

fn on_replace_name(mut world: DeferredWorld<'_>, entity: Entity, _component: ComponentId) {
    let Some(&name) = world.entity(entity).get::<Name>() else {
        unreachable!()
    };
    let Some(mut index) = world.get_resource_mut::<NameIndex>() else {
        return;
    };

    index.name_to_entity.remove(&name);
}

// Setup our name index
world.init_resource::<NameIndex>();

// Spawn some entities!
let alyssa = world.spawn(Name("Alyssa")).id();
let javier = world.spawn(Name("Javier")).id();

// Check our index
let index = world.resource::<NameIndex>();

assert_eq!(index.get_entity("Alyssa"), Some(alyssa));
assert_eq!(index.get_entity("Javier"), Some(javier));

// Changing the name of an entity is also fully capture by our index
world.entity_mut(javier).insert(Name("Steven"));

// Javier changed their name to Steven
let steven = javier;

// Check our index
let index = world.resource::<NameIndex>();

assert_eq!(index.get_entity("Javier"), None);
assert_eq!(index.get_entity("Steven"), Some(steven));
```
  
</details>

Additionally, users can use `Component<Mutability = ...>` in trait
bounds to enforce that a component _is_ mutable or _is_ immutable. When
using `Component` as a trait bound without specifying `Mutability`, any
component is applicable. However, methods which only work on mutable or
immutable components are unavailable, since the compiler must be
pessimistic about the type.

## Migration Guide

- When implementing `Component` manually, you must now provide a type
for `Mutability`. The type `Mutable` provides equivalent behaviour to
earlier versions of `Component`:
```rust
impl Component for Foo {
    type Mutability = Mutable;
    // ...
}
```
- When working with generic components, you may need to specify that
your generic parameter implements `Component<Mutability = Mutable>`
rather than `Component` if you require mutable access to said component.
- The entity entry API has had to have some changes made to minimise
friction when working with immutable components. Methods which
previously returned a `Mut<T>` will now typically return an
`OccupiedEntry<T>` instead, requiring you to add an `into_mut()` to get
the `Mut<T>` item again.

## Draft Release Notes

Components can now be made immutable while stored within the ECS.

Components are the fundamental unit of data within an ECS, and Bevy
provides a number of ways to work with them that align with Rust's rules
around ownership and borrowing. One part of this is hooks, which allow
for defining custom behavior at key points in a component's lifecycle,
such as addition and removal. However, there is currently no way to
respond to _mutation_ of a component using hooks. The reasons for this
are quite technical, but to summarize, their addition poses a
significant challenge to Bevy's core promises around performance.
Without mutation hooks, it's relatively trivial to modify a component in
such a way that breaks invariants it intends to uphold. For example, you
can use `core::mem::swap` to swap the components of two entities,
bypassing the insertion and removal hooks.

This means the only way to react to this modification is via change
detection in a system, which then begs the question of what happens
_between_ that alteration and the next run of that system?
Alternatively, you could make your component private to prevent
mutation, but now you need to provide commands and a custom `QueryData`
implementation to allow users to interact with your component at all.

Immutable components solve this problem by preventing the creation of an
exclusive reference to the component entirely. Without an exclusive
reference, the only way to modify an immutable component is via removal
or replacement, which is fully captured by component hooks. To make a
component immutable, simply add `#[component(immutable)]`:

```rust
#[derive(Component)]
#[component(immutable)]
struct Foo {
    // ...
}
```

When implementing `Component` manually, there is an associated type
`Mutability` which controls this behavior:

```rust
impl Component for Foo {
    type Mutability = Mutable;
    // ...
}
```

Note that this means when working with generic components, you may need
to specify that a component is mutable to gain access to certain
methods:

```rust
// Before
fn bar<C: Component>() {
    // ...
}

// After
fn bar<C: Component<Mutability = Mutable>>() {
    // ...
}
```

With this new tool, creating index components, or caching data on an
entity should be more user friendly, allowing libraries to provide APIs
relying on components and hooks to uphold their invariants.

## Notes

- ~~I've done my best to implement this feature, but I'm not happy with
how reflection has turned out. If any reflection SMEs know a way to
improve this situation I'd greatly appreciate it.~~ There is an
outstanding issue around the fallibility of mutable methods on
`ReflectComponent`, but the DX is largely unchanged from `main` now.
- I've attempted to prevent all safe mutable access to a component that
does not implement `Component<Mutability = Mutable>`, but there may
still be some methods I have missed. Please indicate so and I will
address them, as they are bugs.
- Unsafe is an escape hatch I am _not_ attempting to prevent. Whatever
you do with unsafe is between you and your compiler.
- I am marking this PR as ready, but I suspect it will undergo fairly
major revisions based on SME feedback.
- I've marked this PR as _Uncontroversial_ based on the feature, not the
implementation.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Benjamin Brienen <benjamin.brienen@outlook.com>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
Co-authored-by: Nuutti Kotivuori <naked@iki.fi>
2024-12-05 14:27:48 +00:00
Tim
d2a07f9f72
Retained Gizmos (#15473)
# Objective
Add a way to use the gizmo API in a retained manner, for increased
performance.

## Solution
- Move gizmo API from `Gizmos` to `GizmoBuffer`, ~ab~using `Deref` to
keep usage the same as before.
- Merge non-strip and strip variant of `LineGizmo` into one, storing the
data in a `GizmoBuffer` to have the same API for retained `LineGizmo`s.

### Review guide
- The meat of the changes are in `lib.rs`, `retained.rs`, `gizmos.rs`,
`pipeline_3d.rs` and `pipeline_2d.rs`
- The other files contain almost exclusively the churn from moving the
gizmo API from `Gizmos` to `GizmoBuffer`

## Testing
### Performance

Performance compared to the immediate mode API is from 65 to 80 times
better for static lines.

```
7900 XTX, 3700X
1707.9k lines/ms: gizmos_retained (21.3ms)
3488.5k lines/ms: gizmos_retained_continuous_polyline (31.3ms)
   0.5k lines/ms: gizmos_retained_separate (97.7ms)

3054.9k lines/ms: bevy_polyline_retained_nan (16.8ms)
3596.3k lines/ms: bevy_polyline_retained_continuous_polyline (14.2ms)
   0.6k lines/ms: bevy_polyline_retained_separate (78.9ms)

  26.9k lines/ms: gizmos_immediate (14.9ms)
  43.8k lines/ms: gizmos_immediate_continuous_polyline (18.3ms)
```
Looks like performance is good enough, being close to par with
`bevy_polyline`.

Benchmarks can be found here: 
This branch:
https://github.com/tim-blackbird/line_racing/tree/retained-gizmos
Bevy 0.14: https://github.com/DGriffin91/line_racing

## Showcase
```rust 
fn setup(
    mut commands: Commands,
    mut gizmo_assets: ResMut<Assets<GizmoAsset>>
) {
    let mut gizmo = GizmoAsset::default();

    // A sphere made out of one million lines!
    gizmo
        .sphere(default(), 1., CRIMSON)
        .resolution(1_000_000 / 3);

    commands.spawn(Gizmo {
        handle: gizmo_assets.add(gizmo),
        ..default()
    });
}
```

## Follow-up work
- Port over to the retained rendering world proper
- Calculate visibility and cull `Gizmo`s
2024-12-04 21:21:06 +00:00
Patrick Walton
56c70f8463
Make visibility range (HLOD) dithering work when prepasses are enabled. (#16286)
Currently, the prepass has no support for visibility ranges, so
artifacts appear when using dithering visibility ranges in conjunction
with a prepass. This patch fixes that problem.

Note that this patch changes the prepass to use sparse bind group
indices instead of sequential ones. I figured this is cleaner, because
it allows for greater sharing of WGSL code between the forward pipeline
and the prepass pipeline.

The `visibility_range` example has been updated to allow the prepass to
be toggled on and off.
2024-12-04 17:34:36 +00:00
ickshonpe
dd49dc71d2
Rename UiBoxShadowSamples to BoxShadowSamples. (#16505)
# Objective

The `UiBoxShadowSamples` resource should be renamed to
`BoxShadowSamples` so it matches the `BoxShadow` component.

## Migration Guide

`UiBoxShadowSamples` has been renamed to `BoxShadowSamples`
2024-12-03 19:43:26 +00:00
Patrick Walton
5adf831b42
Add a bindless mode to AsBindGroup. (#16368)
This patch adds the infrastructure necessary for Bevy to support
*bindless resources*, by adding a new `#[bindless]` attribute to
`AsBindGroup`.

Classically, only a single texture (or sampler, or buffer) can be
attached to each shader binding. This means that switching materials
requires breaking a batch and issuing a new drawcall, even if the mesh
is otherwise identical. This adds significant overhead not only in the
driver but also in `wgpu`, as switching bind groups increases the amount
of validation work that `wgpu` must do.

*Bindless resources* are the typical solution to this problem. Instead
of switching bindings between each texture, the renderer instead
supplies a large *array* of all textures in the scene up front, and the
material contains an index into that array. This pattern is repeated for
buffers and samplers as well. The renderer now no longer needs to switch
binding descriptor sets while drawing the scene.

Unfortunately, as things currently stand, this approach won't quite work
for Bevy. Two aspects of `wgpu` conspire to make this ideal approach
unacceptably slow:

1. In the DX12 backend, all binding arrays (bindless resources) must
have a constant size declared in the shader, and all textures in an
array must be bound to actual textures. Changing the size requires a
recompile.

2. Changing even one texture incurs revalidation of all textures, a
process that takes time that's linear in the total size of the binding
array.

This means that declaring a large array of textures big enough to
encompass the entire scene is presently unacceptably slow. For example,
if you declare 4096 textures, then `wgpu` will have to revalidate all
4096 textures if even a single one changes. This process can take
multiple frames.

To work around this problem, this PR groups bindless resources into
small *slabs* and maintains a free list for each. The size of each slab
for the bindless arrays associated with a material is specified via the
`#[bindless(N)]` attribute. For instance, consider the following
declaration:

```rust
#[derive(AsBindGroup)]
#[bindless(16)]
struct MyMaterial {
    #[buffer(0)]
    color: Vec4,
    #[texture(1)]
    #[sampler(2)]
    diffuse: Handle<Image>,
}
```

The `#[bindless(N)]` attribute specifies that, if bindless arrays are
supported on the current platform, each resource becomes a binding array
of N instances of that resource. So, for `MyMaterial` above, the `color`
attribute is exposed to the shader as `binding_array<vec4<f32>, 16>`,
the `diffuse` texture is exposed to the shader as
`binding_array<texture_2d<f32>, 16>`, and the `diffuse` sampler is
exposed to the shader as `binding_array<sampler, 16>`. Inside the
material's vertex and fragment shaders, the applicable index is
available via the `material_bind_group_slot` field of the `Mesh`
structure. So, for instance, you can access the current color like so:

```wgsl
// `uniform` binding arrays are a non-sequitur, so `uniform` is automatically promoted
// to `storage` in bindless mode.
@group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>;
...
@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
    let color = material_color[mesh[in.instance_index].material_bind_group_slot];
    ...
}
```

Note that portable shader code can't guarantee that the current platform
supports bindless textures. Indeed, bindless mode is only available in
Vulkan and DX12. The `BINDLESS` shader definition is available for your
use to determine whether you're on a bindless platform or not. Thus a
portable version of the shader above would look like:

```wgsl
#ifdef BINDLESS
@group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>;
#else // BINDLESS
@group(2) @binding(0) var<uniform> material_color: Color;
#endif // BINDLESS
...
@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
#ifdef BINDLESS
    let color = material_color[mesh[in.instance_index].material_bind_group_slot];
#else // BINDLESS
    let color = material_color;
#endif // BINDLESS
    ...
}
```

Importantly, this PR *doesn't* update `StandardMaterial` to be bindless.
So, for example, `scene_viewer` will currently not run any faster. I
intend to update `StandardMaterial` to use bindless mode in a follow-up
patch.

A new example, `shaders/shader_material_bindless`, has been added to
demonstrate how to use this new feature.

Here's a Tracy profile of `submit_graph_commands` of this patch and an
additional patch (not submitted yet) that makes `StandardMaterial` use
bindless. Red is those patches; yellow is `main`. The scene was Bistro
Exterior with a hack that forces all textures to opaque. You can see a
1.47x mean speedup.
![Screenshot 2024-11-12
161713](https://github.com/user-attachments/assets/4334b362-42c8-4d64-9cfb-6835f019b95c)

## Migration Guide

* `RenderAssets::prepare_asset` now takes an `AssetId` parameter.
* Bin keys now have Bevy-specific material bind group indices instead of
`wgpu` material bind group IDs, as part of the bindless change. Use the
new `MaterialBindGroupAllocator` to map from bind group index to bind
group ID.
2024-12-03 18:00:34 +00:00
ickshonpe
56d5591028
Multiple box shadow support (#16502)
# Objective

Add support for multiple box shadows on a single `Node`.

## Solution

* Rename `BoxShadow` to `ShadowStyle` and remove its `Component` derive.
* Create a new `BoxShadow` component that newtypes a `Vec<ShadowStyle>`.
* Add a `new` constructor method to `BoxShadow` for single shadows.
* Change `extract_shadows` to iterate through a list of shadows per
node.

Render order is determined implicitly from the order of the shadows
stored in the `BoxShadow` component, back-to-front.
Might be more efficient to use a `SmallVec<[ShadowStyle; 1]>` for the
list of shadows but not sure if the extra friction is worth it.

## Testing

Added a node with four differently coloured shadows to the `box_shadow`
example.

---

## Showcase

```
cargo run --example box_shadow
```

<img width="460" alt="four-shadow"
src="https://github.com/user-attachments/assets/2f728c47-33b4-42e1-96ba-28a774b94b24">

## Migration Guide

Bevy UI now supports multiple shadows per node. A new struct
`ShadowStyle` is used to set the style for each shadow. And the
`BoxShadow` component is changed to a tuple struct wrapping a vector
containing a list of `ShadowStyle`s. To spawn a node with a single
shadow you can use the `new` constructor function:
```rust
commands.spawn((
    Node::default(),
    BoxShadow::new(
        Color::BLACK.with_alpha(0.8),
        Val::Percent(offset.x),
        Val::Percent(offset.y),
        Val::Percent(spread),
        Val::Px(blur),
    )
));
```

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-12-01 21:30:08 +00:00
François Mockers
fcfb685821
enable_state_scoped_entities() as a derive attribute (#16180)
# Objective

- I got tired of calling `enable_state_scoped_entities`, and though it
would make more sense to define that at the place where the state is
defined

## Solution

- add a derive attribute `#[states(scoped_entities)]` when derive
`States` or `SubStates` that enables it automatically when adding the
state

## Testing

- Ran the examples using it, they still work
2024-12-01 20:09:36 +00:00
François Mockers
4282c3fe40
make example external_source_external_thread deterministic (#16574)
# Objective

- make example external_source_external_thread deterministic

## Solution

- Don't depend on real time
2024-12-01 20:09:13 +00:00
Armin Schäfer M.Sc.
2309c07e8e
Updated comment: ZIndex::Local(0) -> ZIndex(0). (#16585)
# Objective

In c5742ff43e ZIndex::Local() and
ZIndex::Global() were replaced with ZIndex() and GlobalZIndex().

A comment was likely forgotten.

## Solution

- Remove the deprecated "::Local" in the comment.
2024-12-01 20:09:09 +00:00
François Mockers
2745aa102d
Fix example build for wasm (#16557)
# Objective

- Some examples failed to build for wasm on the website

## Solution

- Fix them
  - `Msaa` is now a component instead of a resource
2024-11-30 00:02:04 +00:00
François Mockers
c1d392a5c6
Reduce iOS cpu usage (#16548)
# Objective

- Avoid recreating the monitor every loop (temp fix until it's done
properly on winit side)
- Add a new `WinitSettings` preset for mobile that makes the winit loop
wait more and recommend its usage
2024-11-29 00:34:40 +00:00
Lomírus
740e8f74dd
fix: scroll list is non-scrollable (#16540)
# Objective

Run `testbed_ui` example:

```
cargo run --example testbed_ui
```

The scroll list is non-scrollable because it's blocked by the front
four-icon node.

## Solution

Add `PickingBehavior::IGNORE` for the front node

## Testing

- Did you test these changes? If so, how?

Yes.

- Are there any parts that need more testing?

No, I guess.

- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
```
cargo run --example testbed_ui
```
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?

macOS.
2024-11-28 17:27:58 +00:00
Carter Anderson
af10aa38aa
AnimatedField and Rework Evaluators (#16484)
# Objective

Animating component fields requires too much boilerplate at the moment:

```rust
#[derive(Reflect)]
struct FontSizeProperty;

impl AnimatableProperty for FontSizeProperty {
    type Component = TextFont;

    type Property = f32;

    fn get_mut(component: &mut Self::Component) -> Option<&mut Self::Property> {
        Some(&mut component.font_size)
    }
}

animation_clip.add_curve_to_target(
    animation_target_id,
    AnimatableKeyframeCurve::new(
        [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]
            .into_iter()
            .zip([24.0, 80.0, 24.0, 80.0, 24.0, 80.0, 24.0]),
    )
    .map(AnimatableCurve::<FontSizeProperty, _>::from_curve)
    .expect("should be able to build translation curve because we pass in valid samples"),
);
```

## Solution

This adds `AnimatedField` and an `animated_field!` macro, enabling the
following:

```rust
animation_clip.add_curve_to_target(
    animation_target_id,
    AnimatableCurve::new(
        animated_field!(TextFont::font_size),
        AnimatableKeyframeCurve::new(
            [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]
                .into_iter()
                .zip([24.0, 80.0, 24.0, 80.0, 24.0, 80.0, 24.0]),
        )
        .expect(
            "should be able to build translation curve because we pass in valid samples",
        ),
    ),
);
```

This required reworking the internals a bit, namely stripping out a lot
of the `Reflect` usage, as that implementation was fundamentally
incompatible with the `AnimatedField` pattern. `Reflect` was being used
in this context just to downcast traits. But we can get downcasting
behavior without the `Reflect` requirement by implementing `Downcast`
for `AnimationCurveEvaluator`.

This also reworks "evaluator identity" to support either a (Component /
Field) pair, or a TypeId. This allows properties to reuse evaluators,
even if they have different accessor methods. The "contract" here is
that for a given (Component / Field) pair, the accessor will return the
same value. Fields are identified by their Reflect-ed field index. The
(TypeId, usize) is prehashed and cached to optimize for lookup speed.

This removes the built-in hard-coded TranslationCurve / RotationCurve /
ScaleCurve in favor of AnimatableField.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-11-27 22:19:55 +00:00
Rich Churcher
bb81a2cdb3
Simple integration testing (adopted) (#16489)
# Objective

This older PR from `Wcubed` seemed well worth saving, adopted from
#7314. See also tracking issue #2896 for ongoing discussion of Bevy
testability. Thanks `Wcubed`!

## Solution

- Updated for 0.15
- Added the `expected`/`actual` pattern
- Switched to function plugin
- Tweaked a bit of description

## Testing

Green.

---------

Co-authored-by: Wybe Westra <dev@wwestra.nl>
Co-authored-by: Wybe Westra <wybe.westra@protonmail.com>
2024-11-24 20:54:59 +00:00
François Mockers
689c21d315
Add screenshot check on UI (#16486)
# Objective

- Progress towards #15918 
- Add test on UI

## Solution

- Get a single screenshot from the UI testbed example
- Remove older examples from runs in CI as they're covered by the
testbed to reduce CI duration
2024-11-23 18:38:24 +00:00
François Mockers
a9a4b069b6
Make some examples deterministic (#16488)
# Objective

- Improve reproducibility of examples

## Solution

- Use seeded rng when needed
- Use fixed z-ordering when needed

## Testing

```sh
steps=5;
echo "cpu_draw\nparallel_query\nanimated_fox\ntransparency_2d" > test
cargo run -p example-showcase -- run --stop-frame 250 --screenshot-frame 100 --fixed-frame-time 0.05 --example-list test --in-ci;
mv screenshots base;
for prefix in `seq 0 $steps`;
do
  echo step $prefix;
  cargo run -p example-showcase -- run --stop-frame 250 --screenshot-frame 100 --fixed-frame-time 0.05 --example-list test;
  mv screenshots $prefix-screenshots;
done;
mv base screenshots
for prefix in `seq 0 $steps`;
do
  echo check $prefix
  for file in screenshots/*/*;
  do
    echo $file;
    diff $file $prefix-$file;
  done;
done;
```
2024-11-23 18:28:47 +00:00
Patrick Walton
d80b809ea1
Only use the AABB center for mesh visibility range testing if specified. (#16468)
PR #15164 made Bevy consider the center of the mesh to be the center of
the axis-aligned bounding box (AABB). Unfortunately, this breaks
crossfading in many cases. LODs may have different AABBs and so the
center of the AABB may differ for different LODs of the same mesh. The
crossfading, however, relies on all LODs having *precisely* the same
position.

To address this problem, this PR adds a new field, `use_aabb`, to
`VisibilityRange`, which makes the AABB center point behavior opt-in.

@BenjaminBrienen first noticed this issue when reviewing PR #16286. That
PR contains a video showing the effects of this regression on the
`visibility_range` example. This commit fixes that example.

## Migration Guide

* The `VisibilityRange` component now has an extra field, `use_aabb`.
Generally, you can safely set it to false.
2024-11-22 18:18:20 +00:00
ickshonpe
8a3a8b5cfb
Only use physical coords internally in bevy_ui (#16375)
# Objective

We switch back and forwards between logical and physical coordinates all
over the place. Systems have to query for cameras and the UiScale when
they shouldn't need to. It's confusing and fragile and new scale factor
bugs get found constantly.

## Solution

* Use physical coordinates whereever possible in `bevy_ui`. 
* Store physical coords in `ComputedNode` and tear out all the unneeded
scale factor calculations and queries.
* Add an `inverse_scale_factor` field to `ComputedNode` and set nodes
changed when their scale factor changes.

## Migration Guide

`ComputedNode`'s fields and methods now use physical coordinates.
`ComputedNode` has a new field `inverse_scale_factor`. Multiplying the
physical coordinates by the `inverse_scale_factor` will give the logical
values.

---------

Co-authored-by: atlv <email@atlasdostal.com>
2024-11-22 00:45:07 +00:00
Carter Anderson
513be52505
AnimationEvent -> Event and other improvements (#16440)
# Objective

Needing to derive `AnimationEvent` for `Event` is unnecessary, and the
trigger logic coupled to it feels like we're coupling "event producer"
logic with the event itself, which feels wrong. It also comes with a
bunch of complexity, which is again unnecessary. We can have the
flexibility of "custom animation event trigger logic" without this
coupling and complexity.

The current `animation_events` example is also needlessly complicated,
due to it needing to work around system ordering issues. The docs
describing it are also slightly wrong. We can make this all a non-issue
by solving the underlying ordering problem.

Related to this, we use the `bevy_animation::Animation` system set to
solve PostUpdate animation order-of-operations issues. If we move this
to bevy_app as part of our "core schedule", we can cut out needless
`bevy_animation` crate dependencies in these instances.

## Solution

- Remove `AnimationEvent`, the derive, and all other infrastructure
associated with it (such as the `bevy_animation/derive` crate)
- Replace all instances of `AnimationEvent` traits with `Event + Clone`
- Store and use functions for custom animation trigger logic (ex:
`clip.add_event_fn()`). For "normal" cases users dont need to think
about this and should use the simpler `clip.add_event()`
- Run the `Animation` system set _before_ updating text
- Move `bevy_animation::Animation` to `bevy_app::Animation`. Remove
unnecessary `bevy_animation` dependency from `bevy_ui`
- Adjust `animation_events` example to use the simpler `clip.add_event`
API, as the workarounds are no longer necessary

This is polishing work that will land in 0.15, and I think it is simple
enough and valuable enough to land in 0.15 with it, in the interest of
making the feature as compelling as possible.
2024-11-22 00:16:04 +00:00
Carter Anderson
00c2edf7b2
Revert most of #16222 and add gamepad accessors (#16425)
# Objective

#16222 regressed the user experience of actually using gamepads:

```rust
// Before 16222
gamepad.just_pressed(GamepadButton::South)

// After 16222
gamepad.digital.just_pressed(GamepadButton::South)

// Before 16222
gamepad.get(GamepadButton::RightTrigger2)

// After 16222
gamepad.analog.get(GamepadButton::RighTrigger2)
```

Users shouldn't need to think about "digital vs analog" when checking if
a button is pressed. This abstraction was intentional and I strongly
believe it is in our users' best interest. Buttons and Axes are _both_
digital and analog, and this is largely an implementation detail. I
don't think reverting this will be controversial.

## Solution

- Revert most of #16222
- Add the `Into<T>` from #16222 to the internals
- Expose read/write `digital` and `analog` accessors on gamepad, in the
interest of enabling the mocking scenarios covered in #16222 (and
allowing the minority of users that care about the "digital" vs "analog"
distinction in this context to make that distinction)

---------

Co-authored-by: Hennadii Chernyshchyk <genaloner@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
2024-11-19 00:00:16 +00:00
François Mockers
6e81a05c93
Headless by features (#16401)
# Objective

- Fixes #16152 

## Solution

- Put `bevy_window` and `bevy_a11y` behind the `bevy_window` feature.
they were the only difference
- Add `ScheduleRunnerPlugin` to the `DefaultPlugins` when `bevy_window`
is disabled
- Remove `HeadlessPlugins`
- Update the `headless` example
2024-11-16 21:33:37 +00:00
ickshonpe
2d91a6fc39
many_buttons --respawn arg (#16390)
# Objective

To capture the performance impact of removing and adding UI nodes add a
`respawn` commandline argument to the `many_buttons` stress test example
that despawns the existing UI layout and then spawns a new layout to
replace it every frame.

## Testing

To run the example with the new changes use:
```cargo run --example many_buttons --release -- --respawn```
2024-11-14 19:50:33 +00:00
ickshonpe
aab36f3951
UI anti-aliasing fix (#16181)
# Objective

UI Anti-aliasing is incorrectly implemented. It always uses an edge
radius of 0.25 logical pixels, and ignores the physical resolution. For
low dpi screens 0.25 is is too low and on higher dpi screens the
physical edge radius is much too large, resulting in visual artifacts.

## Solution

Multiply the distance by the scale factor in the `antialias` function so
that the edge radius stays constant in physical pixels.

## Testing

To see the problem really clearly run the button example with `UiScale`
set really high. With `UiScale(25.)` on main if you examine the button's
border you can see a thick gradient fading away from the edges:

<img width="127" alt="edgg"
src="https://github.com/user-attachments/assets/7c852030-c0e8-4aef-8d3e-768cb2464cab">

With this PR the edges are sharp and smooth at all scale factors: 

<img width="127" alt="edge"
src="https://github.com/user-attachments/assets/b3231140-1bbc-4a4f-a1d3-dde21f287988">
2024-11-13 21:41:02 +00:00
Carter Anderson
7477928f13
Use normal constructors for EasingCurve, FunctionCurve, ConstantCurve (#16367)
# Objective

We currently use special "floating" constructors for `EasingCurve`,
`FunctionCurve`, and `ConstantCurve` (ex: `easing_curve`). This erases
the type being created (and in general "what is happening"
structurally), for very minimal ergonomics improvements. With rare
exceptions, we prefer normal `X::new()` constructors over floating `x()`
constructors in Bevy. I don't think this use case merits special casing
here.

## Solution

Add `EasingCurve::new()`, use normal constructors everywhere, and remove
the floating constructors.

I think this should land in 0.15 in the interest of not breaking people
later.
2024-11-13 15:30:05 +00:00
Marco Buono
ef23f465ce
Do not re-check visibility or re-render shadow maps for point and spot lights for each view (#15156)
# Objective

_If I understand it correctly_, we were checking mesh visibility, as
well as re-rendering point and spot light shadow maps for each view.
This makes it so that M views and N lights produce M x N complexity.
This PR aims to fix that, as well as introduce a stress test for this
specific scenario.

## Solution

- Keep track of what lights have already had mesh visibility calculated
and do not calculate it again;
- Reuse shadow depth textures and attachments across all views, and only
render shadow maps for the _first_ time a light is encountered on a
view;
- Directional lights remain unaltered, since their shadow map cascades
are view-dependent;
- Add a new `many_cameras_lights` stress test example to verify the
solution

## Showcase

110% speed up on the stress test
83% reduction of memory usage in stress test

### Before (5.35 FPS on stress test)
<img width="1392" alt="Screenshot 2024-09-11 at 12 25 57"
src="https://github.com/user-attachments/assets/136b0785-e9a4-44df-9a22-f99cc465e126">

### After (11.34 FPS on stress test)
<img width="1392" alt="Screenshot 2024-09-11 at 12 24 35"
src="https://github.com/user-attachments/assets/b8dd858f-5e19-467f-8344-2b46ca039630">


## Testing

- Did you test these changes? If so, how? 
- On my game project where I have two cameras, and many shadow casting
lights I managed to get pretty much double the FPS.
  - Also included a stress test, see the comparison above
- Are there any parts that need more testing?
- Yes, I would like help verifying that this fix is indeed correct, and
that we were really re-rendering the shadow maps by mistake and it's
indeed okay to not do that
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
  - Run the `many_cameras_lights` example
- On the `main` branch, cherry pick the commit with the example (`git
cherry-pick --no-commit 1ed4ace01`) and run it
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
  - macOS

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-11-11 18:49:09 +00:00
Joona Aalto
3ada15ee1c
Add more Glam types and constructors to prelude (#16261)
# Objective

Glam has some common and useful types and helpers that are not in the
prelude of `bevy_math`. This includes shorthand constructors like
`vec3`, or even `Vec3A`, the aligned version of `Vec3`.

```rust
// The "normal" way to create a 3D vector
let vec = Vec3::new(2.0, 1.0, -3.0);

// Shorthand version
let vec = vec3(2.0, 1.0, -3.0);
```

## Solution

Add the following types and methods to the prelude:

- `vec2`, `vec3`, `vec3a`, `vec4`
- `uvec2`, `uvec3`, `uvec4`
- `ivec2`, `ivec3`, `ivec4`
- `bvec2`, `bvec3`, `bvec3a`, `bvec4`, `bvec4a`
- `mat2`, `mat3`, `mat3a`, `mat4`
- `quat` (not sure if anyone uses this, but for consistency)
- `Vec3A`
- `BVec3A`, `BVec4A`
- `Mat3A`

I did not add the u16, i16, or f64 variants like `dvec2`, since there
are currently no existing types like those in the prelude.

The shorthand constructors are currently used a lot in some places in
Bevy, and not at all in others. In a follow-up, we might want to
consider if we have a preference for the shorthand, and make a PR to
change the codebase to use it more consistently.
2024-11-11 18:47:16 +00:00
Benjamin Brienen
40640fdf42
Don't reëxport bevy_image from bevy_render (#16163)
# Objective

Fixes #15940

## Solution

Remove the `pub use` and fix the compile errors.
Make `bevy_image` available as `bevy::image`.

## Testing

Feature Frenzy would be good here! Maybe I'll learn how to use it if I
have some time this weekend, or maybe a reviewer can use it.

## Migration Guide

Use `bevy_image` instead of `bevy_render::texture` items.

---------

Co-authored-by: chompaa <antony.m.3012@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-11-10 06:54:38 +00:00
Derick M
fb607b1bd1
UI/text Example - Clarity Improvements (#16302)
# Objective

- Fixes #16292 

## Solution

- Renames the `ColorText` marker to `AnimatedText`, which is more
distinct from the `TextColor` Bevy component.
- Changes the comment language from `A unit struct` to `Marker struct`
for better consistency with other Bevy docs.

## Testing

- Locally, example still runs just fine
2024-11-09 23:50:14 +00:00
atlv
c29e67153b
Expose Pipeline Compilation Zero Initialize Workgroup Memory Option (#16301)
# Objective

- wgpu 0.20 made workgroup vars stop being zero-init by default. this
broke some applications (cough foresight cough) and now we workaround
it. wgpu exposes a compilation option that zero initializes workgroup
memory by default, but bevy does not expose it.

## Solution

- expose the compilation option wgpu gives us

## Testing

- ran examples: 3d_scene, compute_shader_game_of_life, gpu_readback,
lines, specialized_mesh_pipeline. they all work
- confirmed fix for our own problems

---

</details>

## Migration Guide

- add `zero_initialize_workgroup_memory: false,` to
`ComputePipelineDescriptor` or `RenderPipelineDescriptor` structs to
preserve 0.14 functionality, add `zero_initialize_workgroup_memory:
true,` to restore bevy 0.13 functionality.
2024-11-08 21:42:37 +00:00
Derick M
0ac495f7f4
Remove accesskit re-export from bevy_a11y (#16257)
# Objective

- Fixes #16235 

## Solution

- Both Bevy and AccessKit export a `Node` struct, to reduce confusion
Bevy will no longer re-export `AccessKit` from `bevy_a11y`

## Testing

- Tested locally

## Migration Guide

```diff
# main.rs
--    use bevy_a11y::{
--        accesskit::{Node, Rect, Role},
--        AccessibilityNode,
--    };
++    use bevy_a11y::AccessibilityNode;
++    use accesskit::{Node, Rect, Role};

# Cargo.toml
++    accesskit = "0.17"
```

- Users will need to add `accesskit = "0.17"` to the dependencies
section of their `Cargo.toml` file and update their `accesskit` use
statements to come directly from the external crate instead of
`bevy_a11y`.
- Make sure to keep the versions of `accesskit` aligned with the
versions Bevy uses.
2024-11-08 21:01:16 +00:00
Carter Anderson
013e11a14f
AudioPlayer::new() (#16287)
# Objective

`AudioPlayer::<AudioSource>(assets.load("audio.mp3"))` is awkward and
complicated to type because the `AudioSource` generic type cannot be
elided. This is especially annoying because `AudioSource` is used in the
majority of cases. Most users don't need to think about it.

## Solution

Add an `AudioPlayer::new()` function that is hard-coded to
`AudioSource`, allowing `AudioPlayer::new(assets.load("audio.mp3"))`.
Prefer using that in the relevant places.
2024-11-08 01:51:50 +00:00
Carter Anderson
f754cecb49
UiImage -> ImageNode, UiImageSize -> ImageNodeSize (#16271)
# Objective

Align `UiImage` with the new `XNode` naming convention.

## Solution

- Rename `UiImage` to `ImageNode`
- Rename `UiImageSize` to `ImageNodeSize`

---

## Migration Guide

Before:
```rust
commands.spawn(UiImage::new(image));
````

After:
```rust
commands.spawn(ImageNode::new(image));
```
2024-11-07 21:52:58 +00:00
Rich Churcher
cdc18ee886
Move UI example to testbed (#16241)
# Objective

UI example is quite extensive, probably not the best teaching example
anymore.

Closes #16230.
2024-11-07 20:57:45 +00:00
Benjamin Brienen
94f2fe35f7
Fix alien_cake_addict example (#16281)
# Objective

Fixes #15729

## Solution

Use the state-scoped pattern.

## Testing

Tested manually. See the showcase.

---

## Showcase



https://github.com/user-attachments/assets/14ffefca-40c6-4c7e-b15b-f92466a2b0a5
2024-11-07 20:46:29 +00:00
Matty
9beb1d96e7
Incorporate all node weights in additive blending (#16279)
# Objective

In the existing implementation, additive blending effectively treats the
node with least index specially by basically forcing its weight to be
`1.0` regardless of what its computed weight would be (based on the
weights in the `AnimationGraph` and `AnimationPlayer`).

Arguably this makes some amount of sense, because the "base" animation
is often one which was not authored to be used additively, meaning that
its sampled values are interpreted absolutely rather than as deltas.
However, this also leads to strange behavior with respect to animation
masks: if the "base" animation is masked out on some target, then the
next node is treated as the "base" animation, despite the fact that it
would normally be interpreted additively, and the weight of that
animation is thrown away as a result.

This is all kind of weird and revolves around special treatment (if the
behavior is even really intentional in the first place). From a
mathematical standpoint, there is nothing special about how the "base"
animation must be treated other than having a weight of 1.0 under an
`Add` node, which is something that the user can do without relying on
some bizarre corner-case behavior of the animation system — this is the
only present situation under which weights are discarded.

This PR changes this behavior so that the weight of every node is
incorporated. In other words, for an animation graph that looks like
this:
```text
┌───────────────┐                                 
│Base clip      ┼──┐                              
│      0.5      │  │                              
└───────────────┘  │                              
┌───────────────┐  │  ┌───────────────┐     ┌────┐
│Additive clip 1┼──┼─►┤Additive blend ┼────►│Root│
│      0.1      │  │  │      1.0      │     └────┘
└───────────────┘  │  └───────────────┘           
┌───────────────┐  │                              
│Additive clip 2┼──┘                              
│      0.2      │                                 
└───────────────┘                                 
```

Previously, the result would have been
```text
base_clip + 0.1 * additive_clip_1 + 0.2 * additive_clip_2
```

whereas now it would be
```text
0.5 * base_clip + 0.1 * additive_clip_1 + 0.2 * additive_clip_2
```

and in the scenario where `base_clip` is masked out:
```text
additive_clip_1 + 0.2 * additive_clip_2
```
vs.
```text
0.1 * additive_clip_1 + 0.2 * additive_clip_2
```

## Solution

For background, the way that the additive blending procedure works is
something like this:
- During graph traversal, the node values and weights of the children
are pushed onto the evaluator `stack`. The traversal order guarantees
that the item with least node index will be on top.
- Once we reach the `Add` node itself, we start popping off the `stack`
and into the evaluator's `blend_register`, which is an accumulator
holding up to one weight-value pair:
- If the `blend_register` is empty, it is filled using data from the top
of the `stack`.
- Otherwise, the `blend_register` is combined with data popped from the
`stack` and updated.

In the example above, the additive blending steps would look like this
(with the pre-existing implementation):
1. The `blend_register` is empty, so we pop `(base_clip, 0.5)` from the
top of the `stack` and put it in. Now the value of the `blend_register`
is `(base_clip, 0.5)`.
2. The `blend_register` is non-empty: we pop `(additive_clip_1, 0.1)`
from the top of the `stack` and combine it additively with the value in
the `blend_register`, forming `(base_clip + 0.1 * additive_clip_1, 0.6)`
in the `blend_register` (the carried weight value goes unused).
3. The `blend_register` is non-empty: we pop `(additive_clip_2, 0.2)`
from the top of the `stack` and combine it additively with the value in
the `blend_register`, forming `(base_clip + 0.1 * additive_clip_1 + 0.2
* additive_clip_2, 0.8)` in the `blend_register`.

The solution in this PR changes step 1: the `base_clip` is multiplied by
its weight as it is added to the `blend_register` in the first place,
yielding `0.5 * base_clip + 0.1 * additive_clip_1 + 0.2 *
additive_clip_2` as the final result.

### Note for reviewers

It might be tempting to look at the code, which contains a segment that
looks like this:
```rust
if additive {
    current_value = A::blend(
        [
            BlendInput {
                weight: 1.0, // <--
                value: current_value,
                additive: true,
            },
            BlendInput {
                weight: weight_to_blend,
                value: value_to_blend,
                additive: true,
            },
        ]
        .into_iter(),
    );
} 
```
and conclude that the explicit value of `1.0` is responsible for
overwriting the weight of the base animation. This is incorrect.

Rather, this additive blend has to be written this way because it is
multiplying the *existing value in the blend register* by 1 (i.e. not
doing anything) before adding the next value to it. Changing this to
another quantity (e.g. the existing weight) would cause the value in the
blend register to be spuriously multiplied down.

## Testing

Tested on `animation_masks` example. Checked `morph_weights` example as
well.

## Migration Guide

I will write a migration guide later if this change is not included in
0.15.
2024-11-07 19:12:08 +00:00
charlotte
4b05d2f4d8
Upgrade to wgpu 23 (#15988)
Fixes https://github.com/bevyengine/bevy/issues/15893

---------

Co-authored-by: François Mockers <mockersf@gmail.com>
2024-11-05 21:18:48 +00:00
Hennadii Chernyshchyk
282ca735ba
Use Name component for gamepad (#16233)
# Objective

Addressing a suggestion I made in Discord: store gamepad name as a
`Name` component.
Advantages: 
- Will be nicely displayed in inspector / editor.
- Easier to spawn in tests, just `world.spawn(Gamepad::default())`.

## Solution

`Gamepad` component now stores only vendor and product IDs and `Name`
stores the gamepad name.
Since `GamepadInfo` is no longer necessary, I removed it and merged its
fields into the connection event.

## Testing

- Run unit tests.

---

## Migration Guide

- `GamepadInfo` no longer exists:
  -  Name now accesible via `Name` component.
  -  Other information available on `Gamepad` component directly.
  - `GamepadConnection::Connected` now stores all info fields directly.
2024-11-05 00:30:48 +00:00
Nolan Darilek
817f160d35
Bump accesskit and accesskit_winit. (#16234)
# Objective

- Bumps accesskit and accesskit_winit dependencies

## Solution

- Fixes several breaking API changes introduced in accesskit 0.23.

## Testing

- Tested with the ui example and seems to work comparably
2024-11-04 20:07:38 +00:00
Hennadii Chernyshchyk
b0058dc54b
Gamepad improvements (#16222)
# Objective

Closes #16221.

## Solution

- Make `Gamepad` fields public and remove delegates / getters.
- Move `impl Into` to `Axis` methods (delegates for `Axis` used `impl
Into` to allow passing both `GamepadAxis` and `GamepadButton`).
- Improve docs.

## Testing

- I run tests.

Not sure if the migration guide is needed, since it's a feature from RC,
but I wrote it just in case.

---

## Migration Guide

- `Gamepad` fields are now public.
- Instead of using `Gamepad` delegates like `Gamepad::just_pressed`,
call these methods directly on the fields.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-11-04 17:05:24 +00:00
ickshonpe
a9b2344992
Expanded ui example (#16151)
# Objective

Expand the `ui` example to show off more of the features and make it
more useful for debugging.

# Solution

Added some extra elements to the `ui` example demonstrating outlines,
border-radius, rotation, image sizing and image flipping.

## Showcase

<img width="961" alt="uiexample"
src="https://github.com/user-attachments/assets/fb0cfb57-9102-4c6c-bc8e-03d3fa6e0bf6">
2024-11-04 15:23:16 +00:00
JMS55
267b57e565
Meshlet normal-aware LOD and meshoptimizer upgrade (#16111)
# Objective

- Choose LOD based on normal simplification error in addition to
position error
- Update meshoptimizer to 0.22, which has a bunch of simplifier
improvements

## Testing

- Did you test these changes? If so, how?
- Visualize normals, and compare LOD changes before and after. Normals
no longer visibly change as the LOD cut changes.
- Are there any parts that need more testing?
  - No
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Run the meshlet example in this PR and on main and move around to
change the LOD cut. Before running each example, in
meshlet_mesh_material.wgsl, replace `let color = vec3(rand_f(&rng),
rand_f(&rng), rand_f(&rng));` with `let color =
(vertex_output.world_normal + 1.0) / 2.0;`. Make sure to download the
appropriate bunny asset for each branch!
2024-11-04 15:20:22 +00:00
ickshonpe
4e02d3cdb9
Improved UiImage and Sprite scaling and slicing APIs (#16088)
# Objective

1. UI texture slicing chops and scales an image to fit the size of a
node and isn't meant to place any constraints on the size of the node
itself, but because the required components changes required `ImageSize`
and `ContentSize` for nodes with `UiImage`, texture sliced nodes are
laid out using an `ImageMeasure`.

2. In 0.14 users could spawn a `(UiImage, NodeBundle)` which would
display an image stretched to fill the UI node's bounds ignoring the
image's instrinsic size. Now that `UiImage` requires `ContentSize`,
there's no option to display an image without its size placing
constrains on the UI layout (unless you force the `Node` to a fixed
size, but that's not a solution).

3. It's desirable that the `Sprite` and `UiImage` share similar APIs.

Fixes #16109

## Solution

* Remove the `Component` impl from `ImageScaleMode`.
* Add a `Stretch` variant to `ImageScaleMode`.
* Add a field `scale_mode: ImageScaleMode` to `Sprite`.
* Add a field `mode: UiImageMode` to `UiImage`. 
* Add an enum `UiImageMode` similar to `ImageScaleMode` but with
additional UI specific variants.
* Remove the queries for `ImageScaleMode` from Sprite and UI extraction,
and refer to the new fields instead.
* Change `ui_layout_system` to update measure funcs on any change to
`ContentSize`s to enable manual clearing without removing the component.
* Don't add a measure unless `UiImageMode::Auto` is set in
`update_image_content_size_system`. Mutably deref the `Mut<ContentSize>`
if the `UiImage` is changed to force removal of any existing measure
func.

## Testing
Remove all the constraints from the ui_texture_slice example:

```rust
//! This example illustrates how to create buttons with their textures sliced
//! and kept in proportion instead of being stretched by the button dimensions

use bevy::{
    color::palettes::css::{GOLD, ORANGE},
    prelude::*,
    winit::WinitSettings,
};

fn main() {
    App::new()
        .add_plugins(DefaultPlugins)
        // Only run the app when there is user input. This will significantly reduce CPU/GPU use.
        .insert_resource(WinitSettings::desktop_app())
        .add_systems(Startup, setup)
        .add_systems(Update, button_system)
        .run();
}

fn button_system(
    mut interaction_query: Query<
        (&Interaction, &Children, &mut UiImage),
        (Changed<Interaction>, With<Button>),
    >,
    mut text_query: Query<&mut Text>,
) {
    for (interaction, children, mut image) in &mut interaction_query {
        let mut text = text_query.get_mut(children[0]).unwrap();
        match *interaction {
            Interaction::Pressed => {
                **text = "Press".to_string();
                image.color = GOLD.into();
            }
            Interaction::Hovered => {
                **text = "Hover".to_string();
                image.color = ORANGE.into();
            }
            Interaction::None => {
                **text = "Button".to_string();
                image.color = Color::WHITE;
            }
        }
    }
}

fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
    let image = asset_server.load("textures/fantasy_ui_borders/panel-border-010.png");

    let slicer = TextureSlicer {
        border: BorderRect::square(22.0),
        center_scale_mode: SliceScaleMode::Stretch,
        sides_scale_mode: SliceScaleMode::Stretch,
        max_corner_scale: 1.0,
    };
    // ui camera
    commands.spawn(Camera2d);
    commands
        .spawn(Node {
            width: Val::Percent(100.0),
            height: Val::Percent(100.0),
            align_items: AlignItems::Center,
            justify_content: JustifyContent::Center,
            ..default()
        })
        .with_children(|parent| {
            for [w, h] in [[150.0, 150.0], [300.0, 150.0], [150.0, 300.0]] {
                parent
                    .spawn((
                        Button,
                        Node {
                            // width: Val::Px(w),
                            // height: Val::Px(h),
                            // horizontally center child text
                            justify_content: JustifyContent::Center,
                            // vertically center child text
                            align_items: AlignItems::Center,
                            margin: UiRect::all(Val::Px(20.0)),
                            ..default()
                        },
                        UiImage::new(image.clone()),
                        ImageScaleMode::Sliced(slicer.clone()),
                    ))
                    .with_children(|parent| {
                        // parent.spawn((
                        //     Text::new("Button"),
                        //     TextFont {
                        //         font: asset_server.load("fonts/FiraSans-Bold.ttf"),
                        //         font_size: 33.0,
                        //         ..default()
                        //     },
                        //     TextColor(Color::srgb(0.9, 0.9, 0.9)),
                        // ));
                    });
            }
        });
}
```

This should result in a blank window, since without any constraints the
texture slice image nodes should be zero-sized. But in main the image
nodes are given the size of the underlying unsliced source image
`textures/fantasy_ui_borders/panel-border-010.png`:

<img width="321" alt="slicing"
src="https://github.com/user-attachments/assets/cbd74c9c-14cd-4b4d-93c6-7c0152bb05ee">

For this PR need to change the lines:
```
                        UiImage::new(image.clone()),
                        ImageScaleMode::Sliced(slicer.clone()),
```
to
```
                        UiImage::new(image.clone()).with_mode(UiImageMode::Sliced(slicer.clone()),
```
and then nothing should be rendered, as desired.

---------

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-11-04 15:14:03 +00:00
Friz64
565616622b
Correctly feature gate custom_cursor (#16093)
# Objective

Currently there's no way to change the window's cursor icon with the
`custom_cursor` feature **disabled**. You should still be able to set
system cursor icons.

Connections:

- https://github.com/bevyengine/bevy/pull/15649

## Solution

Move some `custom_cursor` feature gates around, as to expose the
`CursorIcon` type again.

Note this refactoring was mainly piloted by hunting after the compiler
warnings -- I shouldn't have missed anything, but FYI.

## Testing

Disabled the `custom_cursor` feature, ran the `window_settings` example.
2024-11-02 01:47:32 +00:00
ZoOL
17e504812b
simplify example, replace get_single to Single Query (#16187)
# Objective

clean up example get_single method, make code clean;

## Solution

- replace `Query`  with `Single` Query
- remove `get_single` or `get_single_mut` condition block
2024-11-01 18:25:42 +00:00
Sou1gh0st
db4a74be76
Support prefers_home_indicator_hidden (#16005)
# Objective

- Fixes #15757 

## Solution

- Add the platform specific property `prefers_home_indicator_hidden` to
bevy's Window configuration, and applying it by invoking
`with_prefers_home_indicator_hidden` in `winit`.

## Testing

- I have tested the `bevy_mobile_example` on the iOS platform.

## Showcase
- Currently, the `prefers_home_indicator_hidden` is enabled in the
bevy_mobile_example demo. You can test it with an iOS device. The home
indicator will disappear after several seconds of inactivity in the
bottom areas.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-10-31 16:09:30 +00:00
Aevyrie
03372e590d
Picking example touchups (#16129)
# Objective

- Cleanup pass to make the examples a bit more succinct, focusing on the
topic at hand.
- Added drag rotation to make the picking examples more interesting, and
to demonstrate a simple use case.
2024-10-31 03:04:24 +00:00
Design_Dream
8b636f32cf
Remove the invalid system ordering in the animation example. (#16173)
# Objective

In the animation example, there is the code `.add_systems(Update,
init_animations.before(animate_targets))`, where `animate_targets` is
added to the `PostUpdate` in the `AnimationPlugin`. Therefore, the
`.before(animate_targets)` here is ineffective and should be removed.
2024-10-30 23:44:19 +00:00
Cooper Jax Reiff
67567702f0
fix: removed WinitPlugin from headless_renderer example (#15818)
# Objective

The `headless_renderer` example is meant to showcase running bevy as a
headless renderer, but if run without a display server (for example,
over an SSH connection), a panic occurs in `bevy_winit` despite never
creating a window:

```rust
bevy_winit-0.14.1/src/lib.rs:132:14:
winit-0.30.5/src/platform_impl/linux/mod.rs:
neither WAYLAND_DISPLAY nor WAYLAND_SOCKET nor DISPLAY is set.
```

This example should run successfully in situations without an available
display server, as although the GPU is used for rendering, no window is
ever created.

## Solution

Disabling WinitPlugin, where the above panic occurs, allows the example
to run in a fully headless environment.

## Testing

- I tested this change in normal circumstances with a display server (on
macOS Sequoia and Asahi Linux) and behavior was normal.
- I tested with no display server by connecting via SSH, and running the
example (on Asahi Linux). Previously this panics, but with this change
it runs normally.

## Considerations

- One could argue that ultimately the user should not need to remove
`WinitPlugin`, and instead bevy should only throw the above panic when
the application first attempts to create a window.
2024-10-28 22:08:20 +00:00
mgi388
c4c1c8ffa1
Undeprecate is_playing_animation (#16121)
# Objective

- Fixes #16098

## Solution

- Undeprecate `is_playing_animation` and copy the docs from
`animation_is_playing` to it.

## Testing

- CI

## Migration


68e9a34e30/release-content/0.15/migration-guides/_guides.toml (L13-L17)
needs to be removed.
2024-10-27 22:38:07 +00:00
ickshonpe
3d72f494a2
Layout rounding debug example (#16096)
# Objective

Simple example for debugging layout rounding errors.

<img width="1039" height="752" alt="layout_rounding_debug"
src="https://github.com/user-attachments/assets/12673000-e267-467e-b25b-3f8001c1347c">

Any white lines are gaps in the layout caused by coordinate rounding
errors.
2024-10-27 20:08:51 +00:00