# Objective
- Provide a reliable and performant mechanism to allows users to keep
components synchronized with external sources: closing/opening sockets,
updating indexes, debugging etc.
- Implement a generic mechanism to provide mutable access to the world
without allowing structural changes; this will not only be used here but
is a foundational piece for observers, which are key for a performant
implementation of relations.
## Solution
- Implement a new type `DeferredWorld` (naming is not important,
`StaticWorld` is also suitable) that wraps a world pointer and prevents
user code from making any structural changes to the ECS; spawning
entities, creating components, initializing resources etc.
- Add component lifecycle hooks `on_add`, `on_insert` and `on_remove`
that can be assigned callbacks in user code.
---
## Changelog
- Add new `DeferredWorld` type.
- Add new world methods: `register_component::<T>` and
`register_component_with_descriptor`. These differ from `init_component`
in that they provide mutable access to the created `ComponentInfo` but
will panic if the component is already in any archetypes. These
restrictions serve two purposes:
1. Prevent users from defining hooks for components that may already
have associated hooks provided in another plugin. (a use case better
served by observers)
2. Ensure that when an `Archetype` is created it gets the appropriate
flags to early-out when triggering hooks.
- Add methods to `ComponentInfo`: `on_add`, `on_insert` and `on_remove`
to be used to register hooks of the form `fn(DeferredWorld, Entity,
ComponentId)`
- Modify `BundleInserter`, `BundleSpawner` and `EntityWorldMut` to
trigger component hooks when appropriate.
- Add bit flags to `Archetype` indicating whether or not any contained
components have each type of hook, this can be expanded for other flags
as needed.
- Add `component_hooks` example to illustrate usage. Try it out! It's
fun to mash keys.
## Safety
The changes to component insertion, removal and deletion involve a large
amount of unsafe code and it's fair for that to raise some concern. I
have attempted to document it as clearly as possible and have confirmed
that all the hooks examples are accepted by `cargo miri` as not causing
any undefined behavior. The largest issue is in ensuring there are no
outstanding references when passing a `DeferredWorld` to the hooks which
requires some use of raw pointers (as was already happening to some
degree in those places) and I have taken some time to ensure that is the
case but feel free to let me know if I've missed anything.
## Performance
These changes come with a small but measurable performance cost of
between 1-5% on `add_remove` benchmarks and between 1-3% on `insert`
benchmarks. One consideration to be made is the existence of the current
`RemovedComponents` which is on average more costly than the addition of
`on_remove` hooks due to the early-out, however hooks doesn't completely
remove the need for `RemovedComponents` as there is a chance you want to
respond to the removal of a component that already has an `on_remove`
hook defined in another plugin, so I have not removed it here. I do
intend to deprecate it with the introduction of observers in a follow up
PR.
## Discussion Questions
- Currently `DeferredWorld` implements `Deref` to `&World` which makes
sense conceptually, however it does cause some issues with rust-analyzer
providing autocomplete for `&mut World` references which is annoying.
There are alternative implementations that may address this but involve
more code churn so I have attempted them here. The other alternative is
to not implement `Deref` at all but that leads to a large amount of API
duplication.
- `DeferredWorld`, `StaticWorld`, something else?
- In adding support for hooks to `EntityWorldMut` I encountered some
unfortunate difficulties with my desired API. If commands are flushed
after each call i.e. `world.spawn() // flush commands .insert(A) //
flush commands` the entity may be despawned while `EntityWorldMut` still
exists which is invalid. An alternative was then to add
`self.world.flush_commands()` to the drop implementation for
`EntityWorldMut` but that runs into other problems for implementing
functions like `into_unsafe_entity_cell`. For now I have implemented a
`.flush()` which will flush the commands and consume `EntityWorldMut` or
users can manually run `world.flush_commands()` after using
`EntityWorldMut`.
- In order to allowing querying on a deferred world we need
implementations of `WorldQuery` to not break our guarantees of no
structural changes through their `UnsafeWorldCell`. All our
implementations do this, but there isn't currently any safety
documentation specifying what is or isn't allowed for an implementation,
just for the caller, (they also shouldn't be aliasing components they
didn't specify access for etc.) is that something we should start doing?
(see 10752)
Please check out the example `component_hooks` or the tests in
`bundle.rs` for usage examples. I will continue to expand this
description as I go.
See #10839 for a more ergonomic API built on top of this one that isn't
subject to the same restrictions and supports `SystemParam` dependency
injection.
# Objective
- Part of #11590
- Fix `unsafe_op_in_unsafe_fn` for trivial cases in bevy_ecs
## Solution
Fix `unsafe_op_in_unsafe_fn` in bevy_ecs for trivial cases, i.e., add an
`unsafe` block when the safety comment already exists or add a comment
like "The invariants are uphold by the caller".
---------
Co-authored-by: James Liu <contact@jamessliu.com>
# Objective
- There are multiple instances of `let Some(x) = ... else { None };`
throughout the project.
- Because `Option<T>` implements
[`Try`](https://doc.rust-lang.org/stable/std/ops/trait.Try.html), it can
use the question mark `?` operator.
## Solution
- Use question mark operator instead of `let Some(x) = ... else { None
}`.
---
There was another PR that did a similar thing a few weeks ago, but I
couldn't find it.
# Objective
Expand the existing `Query` API to support more dynamic use cases i.e.
scripting.
## Prior Art
- #6390
- #8308
- #10037
## Solution
- Create a `QueryBuilder` with runtime methods to define the set of
component accesses for a built query.
- Create new `WorldQueryData` implementations `FilteredEntityMut` and
`FilteredEntityRef` as variants of `EntityMut` and `EntityRef` that
provide run time checked access to the components included in a given
query.
- Add new methods to `Query` to create "query lens" with a subset of the
access of the initial query.
### Query Builder
The `QueryBuilder` API allows you to define a query at runtime. At it's
most basic use it will simply create a query with the corresponding type
signature:
```rust
let query = QueryBuilder::<Entity, With<A>>::new(&mut world).build();
// is equivalent to
let query = QueryState::<Entity, With<A>>::new(&mut world);
```
Before calling `.build()` you also have the opportunity to add
additional accesses and filters. Here is a simple example where we add
additional filter terms:
```rust
let entity_a = world.spawn((A(0), B(0))).id();
let entity_b = world.spawn((A(0), C(0))).id();
let mut query_a = QueryBuilder::<Entity>::new(&mut world)
.with::<A>()
.without::<C>()
.build();
assert_eq!(entity_a, query_a.single(&world));
```
This alone is useful in that allows you to decide which archetypes your
query will match at runtime. However it is also very limited, consider a
case like the following:
```rust
let query_a = QueryBuilder::<&A>::new(&mut world)
// Add an additional access
.data::<&B>()
.build();
```
This will grant the query an additional read access to component B
however we have no way of accessing the data while iterating as the type
signature still only includes &A. For an even more concrete example of
this consider dynamic components:
```rust
let query_a = QueryBuilder::<Entity>::new(&mut world)
// Adding a filter is easy since it doesn't need be read later
.with_id(component_id_a)
// How do I access the data of this component?
.ref_id(component_id_b)
.build();
```
With this in mind the `QueryBuilder` API seems somewhat incomplete by
itself, we need some way method of accessing the components dynamically.
So here's one:
### Query Transmutation
If the problem is not having the component in the type signature why not
just add it? This PR also adds transmute methods to `QueryBuilder` and
`QueryState`. Here's a simple example:
```rust
world.spawn(A(0));
world.spawn((A(1), B(0)));
let mut query = QueryBuilder::<()>::new(&mut world)
.with::<B>()
.transmute::<&A>()
.build();
query.iter(&world).for_each(|a| assert_eq!(a.0, 1));
```
The `QueryState` and `QueryBuilder` transmute methods look quite similar
but are different in one respect. Transmuting a builder will always
succeed as it will just add the additional accesses needed for the new
terms if they weren't already included. Transmuting a `QueryState` will
panic in the case that the new type signature would give it access it
didn't already have, for example:
```rust
let query = QueryState::<&A, Option<&B>>::new(&mut world);
/// This is fine, the access for Option<&A> is less restrictive than &A
query.transmute::<Option<&A>>(&world);
/// Oh no, this would allow access to &B on entities that might not have it, so it panics
query.transmute::<&B>(&world);
/// This is right out
query.transmute::<&C>(&world);
```
This is quite an appealing API to also have available on `Query` however
it does pose one additional wrinkle: In order to to change the iterator
we need to create a new `QueryState` to back it. `Query` doesn't own
it's own state though, it just borrows it, so we need a place to borrow
it from. This is why `QueryLens` exists, it is a place to store the new
state so it can be borrowed when you call `.query()` leaving you with an
API like this:
```rust
fn function_that_takes_a_query(query: &Query<&A>) {
// ...
}
fn system(query: Query<(&A, &B)>) {
let lens = query.transmute_lens::<&A>();
let q = lens.query();
function_that_takes_a_query(&q);
}
```
Now you may be thinking: Hey, wait a second, you introduced the problem
with dynamic components and then described a solution that only works
for static components! Ok, you got me, I guess we need a bit more:
### Filtered Entity References
Currently the only way you can access dynamic components on entities
through a query is with either `EntityMut` or `EntityRef`, however these
can access all components and so conflict with all other accesses. This
PR introduces `FilteredEntityMut` and `FilteredEntityRef` as
alternatives that have additional runtime checking to prevent accessing
components that you shouldn't. This way you can build a query with a
`QueryBuilder` and actually access the components you asked for:
```rust
let mut query = QueryBuilder::<FilteredEntityRef>::new(&mut world)
.ref_id(component_id_a)
.with(component_id_b)
.build();
let entity_ref = query.single(&world);
// Returns Some(Ptr) as we have that component and are allowed to read it
let a = entity_ref.get_by_id(component_id_a);
// Will return None even though the entity does have the component, as we are not allowed to read it
let b = entity_ref.get_by_id(component_id_b);
```
For the most part these new structs have the exact same methods as their
non-filtered equivalents.
Putting all of this together we can do some truly dynamic ECS queries,
check out the `dynamic` example to see it in action:
```
Commands:
comp, c Create new components
spawn, s Spawn entities
query, q Query for entities
Enter a command with no parameters for usage.
> c A, B, C, Data 4
Component A created with id: 0
Component B created with id: 1
Component C created with id: 2
Component Data created with id: 3
> s A, B, Data 1
Entity spawned with id: 0v0
> s A, C, Data 0
Entity spawned with id: 1v0
> q &Data
0v0: Data: [1, 0, 0, 0]
1v0: Data: [0, 0, 0, 0]
> q B, &mut Data
0v0: Data: [2, 1, 1, 1]
> q B || C, &Data
0v0: Data: [2, 1, 1, 1]
1v0: Data: [0, 0, 0, 0]
```
## Changelog
- Add new `transmute_lens` methods to `Query`.
- Add new types `QueryBuilder`, `FilteredEntityMut`, `FilteredEntityRef`
and `QueryLens`
- `update_archetype_component_access` has been removed, archetype
component accesses are now determined by the accesses set in
`update_component_access`
- Added method `set_access` to `WorldQuery`, this is called before
`update_component_access` for queries that have a restricted set of
accesses, such as those built by `QueryBuilder` or `QueryLens`. This is
primarily used by the `FilteredEntity*` variants and has an empty trait
implementation.
- Added method `get_state` to `WorldQuery` as a fallible version of
`init_state` when you don't have `&mut World` access.
## Future Work
Improve performance of `FilteredEntityMut` and `FilteredEntityRef`,
currently they have to determine the accesses a query has in a given
archetype during iteration which is far from ideal, especially since we
already did the work when matching the archetype in the first place. To
avoid making more internal API changes I have left it out of this PR.
---------
Co-authored-by: Mike Hsu <mike.hsu@gmail.com>
## Solution
`Commands.remove` and `.retain` (because I copied `remove`s doc)
referenced `EntityWorldMut.remove` and `retain` for more detail but the
`Commands` docs are much more detailed (which makes sense because it is
the most common api), so I have instead inverted this so that
`EntityWorldMut` docs link to `Commands`.
I also made `EntityWorldMut.despawn` reference `World.despawn` for more
details, like `Commands.despawn` does.
# Objective
Adds `EntityCommands.retain` and `EntityWorldMut.retain` to remove all
components except the given bundle from the entity.
Fixes#10865.
## Solution
I added a private unsafe function in `EntityWorldMut` called
`remove_bundle_info` which performs the shared behaviour of `remove` and
`retain`, namely taking a `BundleInfo` of components to remove, and
removing them from the given entity. Then `retain` simply gets all the
components on the entity and filters them by whether they are in the
bundle it was passed, before passing this `BundleInfo` into
`remove_bundle_info`.
`EntityCommands.retain` just creates a new type `Retain` which runs
`EntityWorldMut.retain` when run.
---
## Changelog
Added `EntityCommands.retain` and `EntityWorldMut.retain`, which remove
all components except the given bundle from the entity, they can also be
used to remove all components by passing `()` as the bundle.
# Objective
Adds `.entry` to `EntityWorldMut` with `Entry`, `OccupiedEntry` and
`VacantEntry` for easier in-situ modification, based on `HashMap.entry`.
Fixes#10635
## Solution
This adds the `entry` method to `EntityWorldMut` which returns an
`Entry`. This is an enum of `OccupiedEntry` and `VacantEntry` and has
the methods `and_modify`, `insert_entry`, `or_insert`, `or_insert_with`
and `or_default`. The only difference between `OccupiedEntry` and
`VacantEntry` is the type, they are both a mutable reference to the
`EntityWorldMut` and a marker for the component type, `HashMap` also
stores things to make it quicker to access the data in `OccupiedEntry`
but I wasn't sure if we had anything it would be logical to store to
make accessing/modifying the component faster? As such, the differences
are that `OccupiedEntry` assumes the entity has the component (because
nothing else can have an `EntityWorldMut` so it can't be changed outside
the entry api) and has different methods.
All the methods are based very closely off `hashbrown::HashMap` (because
its easier to read the source of) with a couple of quirks like
`OccupiedEntry.insert` doesn't return the old value because we don't
appear to have an api for mem::replacing components.
---
## Changelog
- Added a new function `EntityWorldMut.entry` which returns an `Entry`,
allowing easier in-situ modification of a component.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Pascal Hertleif <killercup@gmail.com>
# Objective
- There were a few typos in the project.
- This PR fixes these typos.
## Solution
- Fixing the typos.
Signed-off-by: SADIK KUZU <sadikkuzu@hotmail.com>
# Objective
Fix#4278Fix#5504Fix#9422
Provide safe ways to borrow an entire entity, while allowing disjoint
mutable access. `EntityRef` and `EntityMut` are not suitable for this,
since they provide access to the entire world -- they are just helper
types for working with `&World`/`&mut World`.
This has potential uses for reflection and serialization
## Solution
Remove `EntityRef::world`, which allows it to soundly be used within
queries.
`EntityMut` no longer supports structural world mutations, which allows
multiple instances of it to exist for different entities at once.
Structural world mutations are performed using the new type
`EntityWorldMut`.
```rust
fn disjoint_system(
q2: Query<&mut A>,
q1: Query<EntityMut, Without<A>>,
) { ... }
let [entity1, entity2] = world.many_entities_mut([id1, id2]);
*entity1.get_mut::<T>().unwrap() = *entity2.get().unwrap();
for entity in world.iter_entities_mut() {
...
}
```
---
## Changelog
- Removed `EntityRef::world`, to fix a soundness issue with queries.
+ Removed the ability to structurally mutate the world using
`EntityMut`, which allows it to be used in queries.
+ Added `EntityWorldMut`, which is used to perform structural mutations
that are no longer allowed using `EntityMut`.
## Migration Guide
**Note for maintainers: ensure that the guide for #9604 is updated
accordingly.**
Removed the method `EntityRef::world`, to fix a soundness issue with
queries. If you need access to `&World` while using an `EntityRef`,
consider passing the world as a separate parameter.
`EntityMut` can no longer perform 'structural' world mutations, such as
adding or removing components, or despawning the entity. Additionally,
`EntityMut::world`, `EntityMut::world_mut` , and
`EntityMut::world_scope` have been removed.
Instead, use the newly-added type `EntityWorldMut`, which is a helper
type for working with `&mut World`.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
To mirror the `Ref` added as `WorldQuery`, and the `Mut` in
`EntityMut::get_mut`, we add `EntityRef::get_ref`, which retrieves `T`
with tick information, but *immutably*.
## Solution
- Add the method in question, also add it to`UnsafeEntityCell` since
this seems to be the best way of getting that information.
Also update/add safety comments to neighboring code.
---
## Changelog
- Add `EntityRef::get_ref` to get an `Option<Ref<T>>` from `EntityRef`
---------
Co-authored-by: James Liu <contact@jamessliu.com>
# Objective
Title.
---------
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: James Liu <contact@jamessliu.com>
This MR is a rebased and alternative proposal to
https://github.com/bevyengine/bevy/pull/5602
# Objective
- https://github.com/bevyengine/bevy/pull/4447 implemented untyped
(using component ids instead of generics and TypeId) APIs for
inserting/accessing resources and accessing components, but left
inserting components for another PR (this one)
## Solution
- add `EntityMut::insert_by_id`
- split `Bundle` into `DynamicBundle` with `get_components` and `Bundle:
DynamicBundle`. This allows the `BundleInserter` machinery to be reused
for bundles that can only be written, not read, and have no statically
available `ComponentIds`
- Compared to the original MR this approach exposes unsafe endpoints and
requires the user to manage instantiated `BundleIds`. This is quite easy
for the end user to do and does not incur the performance penalty of
checking whether component input is correctly provided for the
`BundleId`.
- This MR does ensure that constructing `BundleId` itself is safe
---
## Changelog
- add methods for inserting bundles and components to:
`world.entity_mut(entity).insert_by_id`
`EntityMut::move_entity_from_remove` had two soundness bugs:
- When removing the entity from the archetype, the swapped entity had its table row updated to the same as the removed entity's
- When removing the entity from the table, the swapped entity did not have its table row updated
`BundleInsert::insert` had two/three soundness bugs
- When moving an entity to a new archetype from an `insert`, the swapped entity had its table row set to a different entities
- When moving an entity to a new table from an `insert`, the swapped entity did not have its table row updated
See added tests for examples that trigger those bugs
`EntityMut::despawn` had two soundness bugs
- When despawning an entity, the swapped entity had its table row set to a different entities even if the table didnt change
- When despawning an entity, the swapped entity did not have its table row updated
# Objective
- A more intuitive distinction between the two. `remove_intersection` is verbose and unclear.
- `EntityMut::remove` and `Commands::remove` should match.
## Solution
- What the title says.
---
## Migration Guide
Before
```rust
fn clear_children(parent: Entity, world: &mut World) {
if let Some(children) = world.entity_mut(parent).remove::<Children>() {
for &child in &children.0 {
world.entity_mut(child).remove_intersection::<Parent>();
}
}
}
```
After
```rust
fn clear_children(parent: Entity, world: &mut World) {
if let Some(children) = world.entity_mut(parent).take::<Children>() {
for &child in &children.0 {
world.entity_mut(child).remove::<Parent>();
}
}
}
```
# Objective
Make the name less verbose without sacrificing clarity.
---
## Migration Guide
*Note for maintainers:* This PR has no breaking changes relative to bevy 0.9. Instead of this PR having its own migration guide, we should just edit the changelog for #6404.
The type `UnsafeWorldCellEntityRef` has been renamed to `UnsafeEntityCell`.
# Objective
- Implementing logic used by system params and `UnsafeWorldCell` on `&World` is sus since `&World` generally denotes shared read only access to world but this is a lie in the above situations. Move most/all logic that uses `&World` to mean `UnsafeWorldCell` onto `UnsafeWorldCell`
- Add a way to take a `&mut World` out of `UnsafeWorldCell` and use this in `WorldCell`'s `Drop` impl instead of a `UnsafeCell` field
---
## Changelog
- changed some `UnsafeWorldCell` methods to take `self` instead of `&self`/`&mut self` since there is literally no point to them doing that
- `UnsafeWorldCell::world` is now used to get immutable access to the whole world instead of just the metadata which can now be done via `UnsafeWorldCell::world_metadata`
- `UnsafeWorldCell::world_mut` now exists and can be used to get a `&mut World` out of `UnsafeWorldCell`
- removed `UnsafeWorldCell::storages` since that is probably unsound since storages contains the actual component/resource data not just metadata
## Migration guide
N/A none of the breaking changes here make any difference for a 0.9->0.10 transition since `UnsafeWorldCell` did not exist in 0.9
# Objective
Removal events are unwieldy and require some knowledge of when to put systems that need to catch events for them, it is very easy to end up missing one and end up with memory leak-ish issues where you don't clean up after yourself.
## Solution
Consolidate removals with the benefits of `Events<...>` (such as double buffering and per system ticks for reading the events) and reduce the special casing of it, ideally I was hoping to move the removals to a `Resource` in the world, but that seems a bit more rough to implement/maintain because of double mutable borrowing issues.
This doesn't go the full length of change detection esque removal detection a la https://github.com/bevyengine/rfcs/pull/44.
Just tries to make the current workflow a bit more user friendly so detecting removals isn't such a scheduling nightmare.
---
## Changelog
- RemovedComponents<T> is now backed by an `Events<Entity>` for the benefits of double buffering.
## Migration Guide
- Add a `mut` for `removed: RemovedComponents<T>` since we are now modifying an event reader internally.
- Iterating over removed components now requires `&mut removed_components` or `removed_components.iter()` instead of `&removed_components`.
# Objective
Found while working on #7385.
The struct `EntityMut` has the safety invariant that it's cached `EntityLocation` must always accurately specify where the entity is stored. Thus, any time its location might be invalidated (such as by calling `EntityMut::world_mut` and moving archetypes), the cached location *must* be updated by calling `EntityMut::update_location`.
The method `world_scope` encapsulates this pattern in safe API by requiring world mutations to be done in a closure, after which `update_location` will automatically be called. However, this method has a soundness hole: if a panic occurs within the closure, then `update_location` will never get called. If the panic is caught in an outer scope, then the `EntityMut` will be left with an outdated location, which is undefined behavior.
An example of this can be seen in the unit test `entity_mut_world_scope_panic`, which has been added to this PR as a regression test. Without the other changes in this PR, that test will invoke undefined behavior in safe code.
## Solution
Call `EntityMut::update_location()` from within a `Drop` impl, which ensures that it will get executed even if `EntityMut::world_scope` unwinds.
# Objective
The function `EntityMut::world_scope` is a safe abstraction that allows you to temporarily get mutable access to the underlying `World` of an `EntityMut`. This function is purely stateful, meaning it is not easily possible to return a value from it.
## Solution
Allow returning a computed value from the closure. This is similar to how `World::resource_scope` works.
---
## Changelog
- The function `EntityMut::world_scope` now allows returning a value from the immediately-computed closure.
alternative to #5922, implements #5956
builds on top of https://github.com/bevyengine/bevy/pull/6402
# Objective
https://github.com/bevyengine/bevy/issues/5956 goes into more detail, but the TLDR is:
- bevy systems ensure disjoint accesses to resources and components, and for that to work there are methods `World::get_resource_unchecked_mut(&self)`, ..., `EntityRef::get_mut_unchecked(&self)` etc.
- we don't have these unchecked methods for `by_id` variants, so third-party crate authors cannot build their own safe disjoint-access abstractions with these
- having `_unchecked_mut` methods is not great, because in their presence safe code can accidentally violate subtle invariants. Having to go through `world.as_unsafe_world_cell().unsafe_method()` forces you to stop and think about what you want to write in your `// SAFETY` comment.
The alternative is to keep exposing `_unchecked_mut` variants for every operation that we want third-party crates to build upon, but we'd prefer to avoid using these methods alltogether: https://github.com/bevyengine/bevy/pull/5922#issuecomment-1241954543
Also, this is something that **cannot be implemented outside of bevy**, so having either this PR or #5922 as an escape hatch with lots of discouraging comments would be great.
## Solution
- add `UnsafeWorldCell` with `unsafe fn get_resource(&self)`, `unsafe fn get_resource_mut(&self)`
- add `fn World::as_unsafe_world_cell(&mut self) -> UnsafeWorldCell<'_>` (and `as_unsafe_world_cell_readonly(&self)`)
- add `UnsafeWorldCellEntityRef` with `unsafe fn get`, `unsafe fn get_mut` and the other utilities on `EntityRef` (no methods for spawning, despawning, insertion)
- use the `UnsafeWorldCell` abstraction in `ReflectComponent`, `ReflectResource` and `ReflectAsset`, so these APIs are easier to reason about
- remove `World::get_resource_mut_unchecked`, `EntityRef::get_mut_unchecked` and use `unsafe { world.as_unsafe_world_cell().get_mut() }` and `unsafe { world.as_unsafe_world_cell().get_entity(entity)?.get_mut() }` instead
This PR does **not** make use of `UnsafeWorldCell` for anywhere else in `bevy_ecs` such as `SystemParam` or `Query`. That is a much larger change, and I am convinced that having `UnsafeWorldCell` is already useful for third-party crates.
Implemented API:
```rust
struct World { .. }
impl World {
fn as_unsafe_world_cell(&self) -> UnsafeWorldCell<'_>;
}
struct UnsafeWorldCell<'w>(&'w World);
impl<'w> UnsafeWorldCell {
unsafe fn world(&self) -> &World;
fn get_entity(&self) -> UnsafeWorldCellEntityRef<'w>; // returns 'w which is `'self` of the `World::as_unsafe_world_cell(&'w self)`
unsafe fn get_resource<T>(&self) -> Option<&'w T>;
unsafe fn get_resource_by_id(&self, ComponentId) -> Option<&'w T>;
unsafe fn get_resource_mut<T>(&self) -> Option<Mut<'w, T>>;
unsafe fn get_resource_mut_by_id(&self) -> Option<MutUntyped<'w>>;
unsafe fn get_non_send_resource<T>(&self) -> Option<&'w T>;
unsafe fn get_non_send_resource_mut<T>(&self) -> Option<Mut<'w, T>>>;
// not included: remove, remove_resource, despawn, anything that might change archetypes
}
struct UnsafeWorldCellEntityRef<'w> { .. }
impl UnsafeWorldCellEntityRef<'w> {
unsafe fn get<T>(&self, Entity) -> Option<&'w T>;
unsafe fn get_by_id(&self, Entity, ComponentId) -> Option<Ptr<'w>>;
unsafe fn get_mut<T>(&self, Entity) -> Option<Mut<'w, T>>;
unsafe fn get_mut_by_id(&self, Entity, ComponentId) -> Option<MutUntyped<'w>>;
unsafe fn get_change_ticks<T>(&self, Entity) -> Option<Mut<'w, T>>;
// fn id, archetype, contains, contains_id, containts_type_id
}
```
<details>
<summary>UnsafeWorldCell docs</summary>
Variant of the [`World`] where resource and component accesses takes a `&World`, and the responsibility to avoid
aliasing violations are given to the caller instead of being checked at compile-time by rust's unique XOR shared rule.
### Rationale
In rust, having a `&mut World` means that there are absolutely no other references to the safe world alive at the same time,
without exceptions. Not even unsafe code can change this.
But there are situations where careful shared mutable access through a type is possible and safe. For this, rust provides the [`UnsafeCell`](std::cell::UnsafeCell)
escape hatch, which allows you to get a `*mut T` from a `&UnsafeCell<T>` and around which safe abstractions can be built.
Access to resources and components can be done uniquely using [`World::resource_mut`] and [`World::entity_mut`], and shared using [`World::resource`] and [`World::entity`].
These methods use lifetimes to check at compile time that no aliasing rules are being broken.
This alone is not enough to implement bevy systems where multiple systems can access *disjoint* parts of the world concurrently. For this, bevy stores all values of
resources and components (and [`ComponentTicks`](crate::component::ComponentTicks)) in [`UnsafeCell`](std::cell::UnsafeCell)s, and carefully validates disjoint access patterns using
APIs like [`System::component_access`](crate::system::System::component_access).
A system then can be executed using [`System::run_unsafe`](crate::system::System::run_unsafe) with a `&World` and use methods with interior mutability to access resource values.
access resource values.
### Example Usage
[`UnsafeWorldCell`] can be used as a building block for writing APIs that safely allow disjoint access into the world.
In the following example, the world is split into a resource access half and a component access half, where each one can
safely hand out mutable references.
```rust
use bevy_ecs::world::World;
use bevy_ecs::change_detection::Mut;
use bevy_ecs::system::Resource;
use bevy_ecs::world::unsafe_world_cell_world::UnsafeWorldCell;
// INVARIANT: existance of this struct means that users of it are the only ones being able to access resources in the world
struct OnlyResourceAccessWorld<'w>(UnsafeWorldCell<'w>);
// INVARIANT: existance of this struct means that users of it are the only ones being able to access components in the world
struct OnlyComponentAccessWorld<'w>(UnsafeWorldCell<'w>);
impl<'w> OnlyResourceAccessWorld<'w> {
fn get_resource_mut<T: Resource>(&mut self) -> Option<Mut<'w, T>> {
// SAFETY: resource access is allowed through this UnsafeWorldCell
unsafe { self.0.get_resource_mut::<T>() }
}
}
// impl<'w> OnlyComponentAccessWorld<'w> {
// ...
// }
// the two interior mutable worlds borrow from the `&mut World`, so it cannot be accessed while they are live
fn split_world_access(world: &mut World) -> (OnlyResourceAccessWorld<'_>, OnlyComponentAccessWorld<'_>) {
let resource_access = OnlyResourceAccessWorld(unsafe { world.as_unsafe_world_cell() });
let component_access = OnlyComponentAccessWorld(unsafe { world.as_unsafe_world_cell() });
(resource_access, component_access)
}
```
</details>
# Objective
- We rely on the construction of `EntityRef` to be valid elsewhere in unsafe code. This construction is not checked (for performance reasons), and thus this private method must be unsafe.
- Fixes#7218.
## Solution
- Make the method unsafe.
- Add safety docs.
- Improve safety docs slightly for the sibling `EntityMut::new`.
- Add debug asserts to start to verify these assumptions in debug mode.
## Context for reviewers
I attempted to verify the `EntityLocation` more thoroughly, but this turned out to be more work than expected. I've spun that off into #7221 as a result.
# Objective
There are some utility functions for actually working with `Storages` inside `entity_ref.rs` that are used both for `EntityRef/EntityMut` and `World`, with a `// TODO: move to Storages`.
This PR moves them to private methods on `World`, because that's the safest API boundary. On `Storages` you would need to ensure that you pass `Components` from the same world.
## Solution
- move get_component[_with_type], get_ticks[_with_type], get_component_and_ticks[_with_type] to `World` (still pub(crate))
- replace `pub use entity_ref::*;` with `pub use entity_ref::{EntityRef, EntityMut}` and qualified `entity_ref::get_mut[_by_id]` in `world.rs`
- add safety comments to a bunch of methods
# Objective
- Fixes#7066
## Solution
- Split the ChangeDetection trait into ChangeDetection and ChangeDetectionMut
- Added Ref as equivalent to &T with change detection
---
## Changelog
- Support for Ref which allow inspecting change detection flags in an immutable way
## Migration Guide
- While bevy prelude includes both ChangeDetection and ChangeDetectionMut any code explicitly referencing ChangeDetection might need to be updated to ChangeDetectionMut or both. Specifically any reading logic requires ChangeDetection while writes requires ChangeDetectionMut.
use bevy_ecs::change_detection::DetectChanges -> use bevy_ecs::change_detection::{DetectChanges, DetectChangesMut}
- Previously Res had methods to access change detection `is_changed` and `is_added` those methods have been moved to the `DetectChanges` trait. If you are including bevy prelude you will have access to these types otherwise you will need to `use bevy_ecs::change_detection::DetectChanges` to continue using them.
# Objective
`Query::get` and other random access methods require looking up `EntityLocation` for every provided entity, then always looking up the `Archetype` to get the table ID and table row. This requires 4 total random fetches from memory: the `Entities` lookup, the `Archetype` lookup, the table row lookup, and the final fetch from table/sparse sets. If `EntityLocation` contains the table ID and table row, only the `Entities` lookup and the final storage fetch are required.
## Solution
Add `TableId` and table row to `EntityLocation`. Ensure it's updated whenever entities are moved around. To ensure `EntityMeta` does not grow bigger, both `TableId` and `ArchetypeId` have been shrunk to u32, and the archetype index and table row are stored as u32s instead of as usizes. This should shrink `EntityMeta` by 4 bytes, from 24 to 20 bytes, as there is no padding anymore due to the change in alignment.
This idea was partially concocted by @BoxyUwU.
## Performance
This should restore the `Query::get` "gains" lost to #6625 that were introduced in #4800 without being unsound, and also incorporates some of the memory usage reductions seen in #3678.
This also removes the same lookups during add/remove/spawn commands, so there may be a bit of a speedup in commands and `Entity{Ref,Mut}`.
---
## Changelog
Added: `EntityLocation::table_id`
Added: `EntityLocation::table_row`.
Changed: `World`s can now only hold a maximum of 2<sup>32</sup>- 1 archetypes.
Changed: `World`s can now only hold a maximum of 2<sup>32</sup> - 1 tables.
## Migration Guide
A `World` can only hold a maximum of 2<sup>32</sup> - 1 archetypes and tables now. If your use case requires more than this, please file an issue explaining your use case.
# Objective
Prevent future unsoundness that was seen in #6623.
## Solution
Newtype both indexes in `Archetype` and `Table` as `ArchetypeRow` and `TableRow`. This avoids weird numerical manipulation on the indices, and can be stored and treated opaquely. Also enforces the source and destination of where these indices at a type level.
---
## Changelog
Changed: `Archetype` indices and `Table` rows have been newtyped as `ArchetypeRow` and `TableRow`.
# Objective
`EntityRef::get` and friends all type erase calls to fetch the target components by using passing in the `TypeId` instead of using generics. This is forcing a lookup to `Components` to fetch the storage type. This adds an extra memory lookup and forces a runtime branch instead of allowing the compiler to optimize out the unused branch.
## Solution
Leverage `Component::Storage::STORAGE_TYPE` as a constant instead of fetching the metadata from `Components`.
## Performance
This has a near 2x speedup for all calls to `World::get`. Microbenchmark results from my local machine. `Query::get_component`, which uses `EntityRef::get` internally also show a slight speed up. This has closed the gap between `World::get` and `Query::get` for the same use case.
```
group entity-ref-generics main
----- ------------------- ----
query_get_component/50000_entities_sparse 1.00 890.6±40.42µs ? ?/sec 1.10 980.6±28.22µs ? ?/sec
query_get_component/50000_entities_table 1.00 968.5±73.73µs ? ?/sec 1.08 1048.8±31.76µs ? ?/sec
query_get_component_simple/system 1.00 703.2±4.37µs ? ?/sec 1.00 702.1±6.13µs ? ?/sec
query_get_component_simple/unchecked 1.02 855.8±8.98µs ? ?/sec 1.00 843.1±8.19µs ? ?/sec
world_get/50000_entities_sparse 1.00 202.3±3.15µs ? ?/sec 1.85 374.0±20.96µs ? ?/sec
world_get/50000_entities_table 1.00 193.0±1.78µs ? ?/sec 2.02 389.2±26.55µs ? ?/sec
world_query_get/50000_entities_sparse 1.01 162.4±2.23µs ? ?/sec 1.00 161.3±0.95µs ? ?/sec
world_query_get/50000_entities_table 1.00 199.9±0.63µs ? ?/sec 1.00 200.2±0.74µs ? ?/sec
```
This should also, by proxy, speed up the `ReflectComponent` APIs as most of those use `World::get` variants internally.
# Objective
- Fixes#6812.
## Solution
- Replaced `World::read_change_ticks` with `World::change_ticks` within `bevy_ecs` crate in places where `World` references were mutable.
---
# Objective
The soundness of the ECS `World` partially relies on the correctness of the state of `Entities` stored within it. We're currently allowing users to (unsafely) mutate it, as well as readily construct it without using a `World`. While this is not strictly unsound so long as users (including `bevy_render`) safely use the APIs, it's a fairly easy path to unsoundness without much of a guard rail.
Addresses #3362 for `bevy_ecs::entity`. Incorporates the changes from #3985.
## Solution
Remove `Entities`'s `Default` implementation and force access to the type to only be through a properly constructed `World`.
Additional cleanup for other parts of `bevy_ecs::entity`:
- `Entity::index` and `Entity::generation` are no longer `pub(crate)`, opting to force the rest of bevy_ecs to use the public interface to access these values.
- `EntityMeta` is no longer `pub` and also not `pub(crate)` to attempt to cut down on updating `generation` without going through an `Entities` API. It's currently inaccessible except via the `pub(crate)` Vec on `Entities`, there was no way for an outside user to use it.
- Added `Entities::set`, an unsafe `pub(crate)` API for setting the location of an Entity (parallel to `Entities::get`) that replaces the internal case where we need to set the location of an entity when it's been spawned, moved, or despawned.
- `Entities::alloc_at_without_replacement` is only used in `World::get_or_spawn` within the first party crates, and I cannot find a public use of this API in any ecosystem crate that I've checked (via GitHub search).
- Attempted to document the few remaining undocumented public APIs in the module.
---
## Changelog
Removed: `Entities`'s `Default` implementation.
Removed: `EntityMeta`
Removed: `Entities::alloc_at_without_replacement` and `AllocAtWithoutReplacement`.
Co-authored-by: james7132 <contact@jamessliu.com>
Co-authored-by: James Liu <contact@jamessliu.com>
# Objective
Fixes#4884. `ComponentTicks` stores both added and changed ticks contiguously in the same 8 bytes. This is convenient when passing around both together, but causes half the bytes fetched from memory for the purposes of change detection to effectively go unused. This is inefficient when most queries (no filter, mutating *something*) only write out to the changed ticks.
## Solution
Split the storage for change detection ticks into two separate `Vec`s inside `Column`. Fetch only what is needed during iteration.
This also potentially also removes one blocker from autovectorization of dense queries.
EDIT: This is confirmed to enable autovectorization of dense queries in `for_each` and `par_for_each` where possible. Unfortunately `iter` has other blockers that prevent it.
### TODO
- [x] Microbenchmark
- [x] Check if this allows query iteration to autovectorize simple loops.
- [x] Clean up all of the spurious tuples now littered throughout the API
### Open Questions
- ~~Is `Mut::is_added` absolutely necessary? Can we not just use `Added` or `ChangeTrackers`?~~ It's optimized out if unused.
- ~~Does the fetch of the added ticks get optimized out if not used?~~ Yes it is.
---
## Changelog
Added: `Tick`, a wrapper around a single change detection tick.
Added: `Column::get_added_ticks`
Added: `Column::get_column_ticks`
Added: `SparseSet::get_added_ticks`
Added: `SparseSet::get_column_ticks`
Changed: `Column` now stores added and changed ticks separately internally.
Changed: Most APIs returning `&UnsafeCell<ComponentTicks>` now returns `TickCells` instead, which contains two separate `&UnsafeCell<Tick>` for either component ticks.
Changed: `Query::for_each(_mut)`, `Query::par_for_each(_mut)` will now leverage autovectorization to speed up query iteration where possible.
## Migration Guide
TODO
# Objective
Archetype is a deceptively large type in memory. It stores metadata about which components are in which storage in multiple locations, which is only used when creating new Archetypes while moving entities.
## Solution
Remove the redundant `Box<[ComponentId]>`s and iterate over the sparse set of component metadata instead. Reduces Archetype's size by 4 usizes (32 bytes on 64-bit systems), as well as the additional allocations for holding these slices.
It'd seem like there's a downside that the origin archetype has it's component metadata iterated over twice when creating a new archetype, but this change also removes the extra `Vec<ArchetypeComponentId>` allocations when creating a new archetype which may amortize out to a net gain here. This change likely negatively impacts creating new archetypes with a large number of components, but that's a cost mitigated by the fact that these archetypal relationships are cached in Edges and is incurred only once for each edge created.
## Additional Context
There are several other in-flight PRs that shrink Archetype:
- #4800 merges the entities and rows Vecs together (shaves off 24 bytes per archetype)
- #4809 removes unique_components and moves it to it's own dedicated storage (shaves off 72 bytes per archetype)
---
## Changelog
Changed: `Archetype::table_components` and `Archetype::sparse_set_components` return iterators instead of slices. `Archetype::new` requires iterators instead of parallel slices/vecs.
## Migration Guide
Do I still need to do this? I really hope people were not relying on the public facing APIs changed here.
* Move the despawn debug log from `World::despawn` to `EntityMut::despawn`.
* Move the despawn non-existent warning log from `Commands::despawn` to `World::despawn`.
This should make logging consistent regardless of which of the three `despawn` methods is used.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
`EntityMut::remove_children` does not call `self.update_location()` which is unsound.
Verified by adding the following assertion, which fails when running the tests.
```rust
let before = self.location();
self.update_location();
assert_eq!(before, self.location());
```
I also removed incorrect messages like "parent entity is not modified" and the unhelpful "Inserting a bundle in the children entities may change the parent entity's location if they were of the same archetype" which might lead people to think that's the *only* thing that can change the entity's location.
# Changelog
Added `EntityMut::world_scope`.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
Fixes#6059, changing all incorrect occurrences of ``id`` in the ``entity`` module to ``index``:
* struct level documentation,
* ``id`` struct field,
* ``id`` method and its documentation.
## Solution
Renaming and verifying using CI.
Co-authored-by: Edvin Kjell <43633999+Edwox@users.noreply.github.com>
# Objective
Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands).
## Solution
All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input:
```rust
// before:
commands
.spawn()
.insert((A, B, C));
world
.spawn()
.insert((A, B, C);
// after
commands.spawn((A, B, C));
world.spawn((A, B, C));
```
All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api.
By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`).
This improves spawn performance by over 10%:
![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png)
To take this measurement, I added a new `world_spawn` benchmark.
Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main.
**Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).**
---
## Changelog
- All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input
- All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api
- World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior.
## Migration Guide
```rust
// Old (0.8):
commands
.spawn()
.insert_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
commands.spawn_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
let entity = commands.spawn().id();
// New (0.9)
let entity = commands.spawn_empty().id();
// Old (0.8)
let entity = world.spawn().id();
// New (0.9)
let entity = world.spawn_empty();
```
# Objective
Take advantage of the "impl Bundle for Component" changes in #2975 / add the follow up changes discussed there.
## Solution
- Change `insert` and `remove` to accept a Bundle instead of a Component (for both Commands and World)
- Deprecate `insert_bundle`, `remove_bundle`, and `remove_bundle_intersection`
- Add `remove_intersection`
---
## Changelog
- Change `insert` and `remove` now accept a Bundle instead of a Component (for both Commands and World)
- `insert_bundle` and `remove_bundle` are deprecated
## Migration Guide
Replace `insert_bundle` with `insert`:
```rust
// Old (0.8)
commands.spawn().insert_bundle(SomeBundle::default());
// New (0.9)
commands.spawn().insert(SomeBundle::default());
```
Replace `remove_bundle` with `remove`:
```rust
// Old (0.8)
commands.entity(some_entity).remove_bundle::<SomeBundle>();
// New (0.9)
commands.entity(some_entity).remove::<SomeBundle>();
```
Replace `remove_bundle_intersection` with `remove_intersection`:
```rust
// Old (0.8)
world.entity_mut(some_entity).remove_bundle_intersection::<SomeBundle>();
// New (0.9)
world.entity_mut(some_entity).remove_intersection::<SomeBundle>();
```
Consider consolidating as many operations as possible to improve ergonomics and cut down on archetype moves:
```rust
// Old (0.8)
commands.spawn()
.insert_bundle(SomeBundle::default())
.insert(SomeComponent);
// New (0.9) - Option 1
commands.spawn().insert((
SomeBundle::default(),
SomeComponent,
))
// New (0.9) - Option 2
commands.spawn_bundle((
SomeBundle::default(),
SomeComponent,
))
```
## Next Steps
Consider changing `spawn` to accept a bundle and deprecate `spawn_bundle`.
@BoxyUwU this is your fault.
Also cart didn't arrive in time to tell us not to do this.
# Objective
- Fix#2974
## Solution
- The first commit just does the actual change
- Follow up commits do steps to prove that this method works to unify as required, but this does not remove `insert_bundle`.
## Changelog
### Changed
Nested bundles now collapse automatically, and every `Component` now implements `Bundle`.
This means that you can combine bundles and components arbitrarily, for example:
```rust
// before:
.insert(A).insert_bundle(MyBBundle{..})
// after:
.insert_bundle((A, MyBBundle {..}))
```
Note that there will be a follow up PR that removes the current `insert` impl and renames `insert_bundle` to `insert`.
### Removed
The `bundle` attribute in `derive(Bundle)`.
## Migration guide
In `derive(Bundle)`, the `bundle` attribute has been removed. Nested bundles are not collapsed automatically. You should remove `#[bundle]` attributes.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
EntityMut::world takes &mut self instead of &self I don't see any reason for this.
EntityRef is overly restrictive with fn world and could return &'w World
---
## Changelog
- EntityRef now implements Copy and Clone
- EntityRef::world is now fn(&self) -> &'w World instead of fn(&mut self) -> &World
- EntityMut::world is now fn(&self) -> &World instead of fn(&mut self) -> &World
# Objective
Provide a safe API to access an `EntityMut`'s `World`.
## Solution
* Add `EntityMut::into_world_mut` for safe access to the entity's world.
---
## Changelog
* Add `EntityMut::into_world_mut` for safe access to the entity's world.