mirror of
https://github.com/bevyengine/bevy
synced 2024-11-22 20:53:53 +00:00
559 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Patrick Walton
|
fcda67e894
|
Start a built-in postprocessing stack, and implement chromatic aberration in it. (#13695)
This commit creates a new built-in postprocessing shader that's designed to hold miscellaneous postprocessing effects, and starts it off with chromatic aberration. Possible future effects include vignette, film grain, and lens distortion. [Chromatic aberration] is a common postprocessing effect that simulates lenses that fail to focus all colors of light to a single point. It's often used for impact effects and/or horror games. This patch uses the technique from *Inside* ([Gjøl & Svendsen 2016]), which allows the developer to customize the particular color pattern to achieve different effects. Unity HDRP uses the same technique, while Unreal has a hard-wired fixed color pattern. A new example, `post_processing`, has been added, in order to demonstrate the technique. The existing `post_processing` shader has been renamed to `custom_post_processing`, for clarity. [Chromatic aberration]: https://en.wikipedia.org/wiki/Chromatic_aberration [Gjøl & Svendsen 2016]: https://github.com/playdeadgames/publications/blob/master/INSIDE/rendering_inside_gdc2016.pdf ![Screenshot 2024-06-04 180304](https://github.com/bevyengine/bevy/assets/157897/3631c64f-a615-44fe-91ca-7f04df0a54b2) ![Screenshot 2024-06-04 180743](https://github.com/bevyengine/bevy/assets/157897/ee055cbf-4314-49c5-8bfa-8d8a17bd52bb) ## Changelog ### Added * Chromatic aberration is now available as a built-in postprocessing effect. To use it, add `ChromaticAberration` to your camera. |
||
Miles Silberling-Cook
|
ed2b8e0f35
|
Minimal Bubbling Observers (#13991)
# Objective Add basic bubbling to observers, modeled off `bevy_eventlistener`. ## Solution - Introduce a new `Traversal` trait for components which point to other entities. - Provide a default `TraverseNone: Traversal` component which cannot be constructed. - Implement `Traversal` for `Parent`. - The `Event` trait now has an associated `Traversal` which defaults to `TraverseNone`. - Added a field `bubbling: &mut bool` to `Trigger` which can be used to instruct the runner to bubble the event to the entity specified by the event's traversal type. - Added an associated constant `SHOULD_BUBBLE` to `Event` which configures the default bubbling state. - Added logic to wire this all up correctly. Introducing the new associated information directly on `Event` (instead of a new `BubblingEvent` trait) lets us dispatch both bubbling and non-bubbling events through the same api. ## Testing I have added several unit tests to cover the common bugs I identified during development. Running the unit tests should be enough to validate correctness. The changes effect unsafe portions of the code, but should not change any of the safety assertions. ## Changelog Observers can now bubble up the entity hierarchy! To create a bubbling event, change your `Derive(Event)` to something like the following: ```rust #[derive(Component)] struct MyEvent; impl Event for MyEvent { type Traverse = Parent; // This event will propagate up from child to parent. const AUTO_PROPAGATE: bool = true; // This event will propagate by default. } ``` You can dispatch a bubbling event using the normal `world.trigger_targets(MyEvent, entity)`. Halting an event mid-bubble can be done using `trigger.propagate(false)`. Events with `AUTO_PROPAGATE = false` will not propagate by default, but you can enable it using `trigger.propagate(true)`. If there are multiple observers attached to a target, they will all be triggered by bubbling. They all share a bubbling state, which can be accessed mutably using `trigger.propagation_mut()` (`trigger.propagate` is just sugar for this). You can choose to implement `Traversal` for your own types, if you want to bubble along a different structure than provided by `bevy_hierarchy`. Implementers must be careful never to produce loops, because this will cause bevy to hang. ## Migration Guide + Manual implementations of `Event` should add associated type `Traverse = TraverseNone` and associated constant `AUTO_PROPAGATE = false`; + `Trigger::new` has new field `propagation: &mut Propagation` which provides the bubbling state. + `ObserverRunner` now takes the same `&mut Propagation` as a final parameter. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Gino Valente
|
99c9218b56
|
bevy_reflect: Feature-gate function reflection (#14174)
# Objective Function reflection requires a lot of macro code generation in the form of several `all_tuples!` invocations, as well as impls generated in the `Reflect` derive macro. Seeing as function reflection is currently a bit more niche, it makes sense to gate it all behind a feature. ## Solution Add a `functions` feature to `bevy_reflect`, which can be enabled in Bevy using the `reflect_functions` feature. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect ``` That should ensure that everything still works with the feature disabled. To test with the feature on, you can run: ``` cargo test --package bevy_reflect --features functions ``` --- ## Changelog - Moved function reflection behind a Cargo feature (`bevy/reflect_functions` and `bevy_reflect/functions`) - Add `IntoFunction` export in `bevy_reflect::prelude` ## Internal Migration Guide > [!important] > Function reflection was introduced as part of the 0.15 dev cycle. This migration guide was written for developers relying on `main` during this cycle, and is not a breaking change coming from 0.14. Function reflection is now gated behind a feature. To use function reflection, enable the feature: - If using `bevy_reflect` directly, enable the `functions` feature - If using `bevy`, enable the `reflect_functions` feature |
||
Sunil Thunga
|
5ffdc0c93f
|
Moves smooth_follow to movement dir (#14249)
# Objective - Moves the smooth_follow.rs into movement directory in examples - Fixes #14241 ## Solution - Move the smooth_follow.rs to movement dir in examples. |
||
Jan Hohenheim
|
d0e606b87c
|
Add an example for doing movement in fixed timesteps (#14223)
_copy-pasted from my doc comment in the code_ # Objective This example shows how to properly handle player input, advance a physics simulation in a fixed timestep, and display the results. The classic source for how and why this is done is Glenn Fiedler's article [Fix Your Timestep!](https://gafferongames.com/post/fix_your_timestep/). ## Motivation The naive way of moving a player is to just update their position like so: ```rust transform.translation += velocity; ``` The issue here is that the player's movement speed will be tied to the frame rate. Faster machines will move the player faster, and slower machines will move the player slower. In fact, you can observe this today when running some old games that did it this way on modern hardware! The player will move at a breakneck pace. The more sophisticated way is to update the player's position based on the time that has passed: ```rust transform.translation += velocity * time.delta_seconds(); ``` This way, velocity represents a speed in units per second, and the player will move at the same speed regardless of the frame rate. However, this can still be problematic if the frame rate is very low or very high. If the frame rate is very low, the player will move in large jumps. This may lead to a player moving in such large jumps that they pass through walls or other obstacles. In general, you cannot expect a physics simulation to behave nicely with *any* delta time. Ideally, we want to have some stability in what kinds of delta times we feed into our physics simulation. The solution is using a fixed timestep. This means that we advance the physics simulation by a fixed amount at a time. If the real time that passed between two frames is less than the fixed timestep, we simply don't advance the physics simulation at all. If it is more, we advance the physics simulation multiple times until we catch up. You can read more about how Bevy implements this in the documentation for [`bevy::time::Fixed`](https://docs.rs/bevy/latest/bevy/time/struct.Fixed.html). This leaves us with a last problem, however. If our physics simulation may advance zero or multiple times per frame, there may be frames in which the player's position did not need to be updated at all, and some where it is updated by a large amount that resulted from running the physics simulation multiple times. This is physically correct, but visually jarring. Imagine a player moving in a straight line, but depending on the frame rate, they may sometimes advance by a large amount and sometimes not at all. Visually, we want the player to move smoothly. This is why we need to separate the player's position in the physics simulation from the player's position in the visual representation. The visual representation can then be interpolated smoothly based on the last and current actual player position in the physics simulation. This is a tradeoff: every visual frame is now slightly lagging behind the actual physical frame, but in return, the player's movement will appear smooth. There are other ways to compute the visual representation of the player, such as extrapolation. See the [documentation of the lightyear crate](https://cbournhonesque.github.io/lightyear/book/concepts/advanced_replication/visual_interpolation.html) for a nice overview of the different methods and their tradeoffs. ## Implementation - The player's velocity is stored in a `Velocity` component. This is the speed in units per second. - The player's current position in the physics simulation is stored in a `PhysicalTranslation` component. - The player's previous position in the physics simulation is stored in a `PreviousPhysicalTranslation` component. - The player's visual representation is stored in Bevy's regular `Transform` component. - Every frame, we go through the following steps: - Advance the physics simulation by one fixed timestep in the `advance_physics` system. This is run in the `FixedUpdate` schedule, which runs before the `Update` schedule. - Update the player's visual representation in the `update_displayed_transform` system. This interpolates between the player's previous and current position in the physics simulation. - Update the player's velocity based on the player's input in the `handle_input` system. ## Relevant Issues Related to #1259. I'm also fairly sure I've seen an issue somewhere made by @alice-i-cecile about showing how to move a character correctly in a fixed timestep, but I cannot find it. |
||
github-actions[bot]
|
8df10d2713
|
Bump Version after Release (#14219)
Bump version after release This PR has been auto-generated Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: François Mockers <mockersf@gmail.com> |
||
TotalKrill
|
5986d5d309
|
Cosmic text (#10193)
# Replace ab_glyph with the more capable cosmic-text Fixes #7616. Cosmic-text is a more mature text-rendering library that handles scripts and ligatures better than ab_glyph, it can also handle system fonts which can be implemented in bevy in the future Rebase of https://github.com/bevyengine/bevy/pull/8808 ## Changelog Replaces text renderer ab_glyph with cosmic-text The definition of the font size has changed with the migration to cosmic text. The behavior is now consistent with other platforms (e.g. the web), where the font size in pixels measures the height of the font (the distance between the top of the highest ascender and the bottom of the lowest descender). Font sizes in your app need to be rescaled to approximately 1.2x smaller; for example, if you were using a font size of 60.0, you should now use a font size of 50.0. ## Migration guide - `Text2dBounds` has been replaced with `TextBounds`, and it now accepts `Option`s to the bounds, instead of using `f32::INFINITY` to inidicate lack of bounds - Textsizes should be changed, dividing the current size with 1.2 will result in the same size as before. - `TextSettings` struct is removed - Feature `subpixel_alignment` has been removed since cosmic-text already does this automatically - TextBundles and things rendering texts requires the `CosmicBuffer` Component on them as well ## Suggested followups: - TextPipeline: reconstruct byte indices for keeping track of eventual cursors in text input - TextPipeline: (future work) split text entities into section entities - TextPipeline: (future work) text editing - Support line height as an option. Unitless `1.2` is the default used in browsers (1.2x font size). - Support System Fonts and font families - Example showing of animated text styles. Eg. throbbing hyperlinks --------- Co-authored-by: tigregalis <anak.harimau@gmail.com> Co-authored-by: Nico Burns <nico@nicoburns.com> Co-authored-by: sam edelsten <samedelsten1@gmail.com> Co-authored-by: Dimchikkk <velo.app1@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> |
||
Gagnus
|
a47b91cccc
|
Added feature switch to default Standard Material's new anisotropy texture to off (#14048)
# Objective - Standard Material is starting to run out of samplers (currently uses 13 with no additional features off, I think in 0.13 it was 12). - This change adds a new feature switch, modelled on the other ones which add features to Standard Material, to turn off the new anisotropy feature by default. ## Solution - feature + texture define ## Testing - Anisotropy example still works fine - Other samples work fine - Standard Material now takes 12 samplers by default on my Mac instead of 13 ## Migration Guide - Add feature pbr_anisotropy_texture if you are using that texture in any standard materials. --------- Co-authored-by: John Payne <20407779+johngpayne@users.noreply.github.com> |
||
Lura
|
856b39d821
|
Apply Clippy lints regarding lazy evaluation and closures (#14015)
# Objective - Lazily evaluate [default](https://rust-lang.github.io/rust-clippy/master/index.html#/unwrap_or_default)~~/[or](https://rust-lang.github.io/rust-clippy/master/index.html#/or_fun_call)~~ values where it makes sense - ~~`unwrap_or(foo())` -> `unwrap_or_else(|| foo())`~~ - `unwrap_or(Default::default())` -> `unwrap_or_default()` - etc. - Avoid creating [redundant closures](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure), even for [method calls](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure_for_method_calls) - `map(|something| something.into())` -> `map(Into:into)` ## Solution - Apply Clippy lints: - ~~[or_fun_call](https://rust-lang.github.io/rust-clippy/master/index.html#/or_fun_call)~~ - [unwrap_or_default](https://rust-lang.github.io/rust-clippy/master/index.html#/unwrap_or_default) - [redundant_closure_for_method_calls](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure_for_method_calls) ([redundant closures](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure) is already enabled) ## Testing - Tested on Windows 11 (`stable-x86_64-pc-windows-gnu`, 1.79.0) - Bevy compiles without errors or warnings and examples seem to work as intended - `cargo clippy` ✅ - `cargo run -p ci -- compile` ✅ --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
Joseph
|
9055fc1d68
|
Clarify the difference between default render layers and none render layers (#14075)
# Objective It's not always obvious what the default value for `RenderLayers` represents. It is documented, but since it's an implementation of a trait method the documentation may or may not be shown depending on the IDE. ## Solution Add documentation to the `none` method that explicitly calls out the difference. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
Gino Valente
|
276dd04001
|
bevy_reflect: Function reflection (#13152)
# Objective
We're able to reflect types sooooooo... why not functions?
The goal of this PR is to make functions callable within a dynamic
context, where type information is not readily available at compile
time.
For example, if we have a function:
```rust
fn add(left: i32, right: i32) -> i32 {
left + right
}
```
And two `Reflect` values we've already validated are `i32` types:
```rust
let left: Box<dyn Reflect> = Box::new(2_i32);
let right: Box<dyn Reflect> = Box::new(2_i32);
```
We should be able to call `add` with these values:
```rust
// ?????
let result: Box<dyn Reflect> = add.call_dynamic(left, right);
```
And ideally this wouldn't just work for functions, but methods and
closures too!
Right now, users have two options:
1. Manually parse the reflected data and call the function themselves
2. Rely on registered type data to handle the conversions for them
For a small function like `add`, this isn't too bad. But what about for
more complex functions? What about for many functions?
At worst, this process is error-prone. At best, it's simply tedious.
And this is assuming we know the function at compile time. What if we
want to accept a function dynamically and call it with our own
arguments?
It would be much nicer if `bevy_reflect` could alleviate some of the
problems here.
## Solution
Added function reflection!
This adds a `DynamicFunction` type to wrap a function dynamically. This
can be called with an `ArgList`, which is a dynamic list of
`Reflect`-containing `Arg` arguments. It returns a `FunctionResult`
which indicates whether or not the function call succeeded, returning a
`Reflect`-containing `Return` type if it did succeed.
Many functions can be converted into this `DynamicFunction` type thanks
to the `IntoFunction` trait.
Taking our previous `add` example, this might look something like
(explicit types added for readability):
```rust
fn add(left: i32, right: i32) -> i32 {
left + right
}
let mut function: DynamicFunction = add.into_function();
let args: ArgList = ArgList::new().push_owned(2_i32).push_owned(2_i32);
let result: Return = function.call(args).unwrap();
let value: Box<dyn Reflect> = result.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
```
And it also works on closures:
```rust
let add = |left: i32, right: i32| left + right;
let mut function: DynamicFunction = add.into_function();
let args: ArgList = ArgList::new().push_owned(2_i32).push_owned(2_i32);
let result: Return = function.call(args).unwrap();
let value: Box<dyn Reflect> = result.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
```
As well as methods:
```rust
#[derive(Reflect)]
struct Foo(i32);
impl Foo {
fn add(&mut self, value: i32) {
self.0 += value;
}
}
let mut foo = Foo(2);
let mut function: DynamicFunction = Foo::add.into_function();
let args: ArgList = ArgList::new().push_mut(&mut foo).push_owned(2_i32);
function.call(args).unwrap();
assert_eq!(foo.0, 4);
```
### Limitations
While this does cover many functions, it is far from a perfect system
and has quite a few limitations. Here are a few of the limitations when
using `IntoFunction`:
1. The lifetime of the return value is only tied to the lifetime of the
first argument (useful for methods). This means you can't have a
function like `(a: i32, b: &i32) -> &i32` without creating the
`DynamicFunction` manually.
2. Only 15 arguments are currently supported. If the first argument is a
(mutable) reference, this number increases to 16.
3. Manual implementations of `Reflect` will need to implement the new
`FromArg`, `GetOwnership`, and `IntoReturn` traits in order to be used
as arguments/return types.
And some limitations of `DynamicFunction` itself:
1. All arguments share the same lifetime, or rather, they will shrink to
the shortest lifetime.
2. Closures that capture their environment may need to have their
`DynamicFunction` dropped before accessing those variables again (there
is a `DynamicFunction::call_once` to make this a bit easier)
3. All arguments and return types must implement `Reflect`. While not a
big surprise coming from `bevy_reflect`, this implementation could
actually still work by swapping `Reflect` out with `Any`. Of course,
that makes working with the arguments and return values a bit harder.
4. Generic functions are not supported (unless they have been manually
monomorphized)
And general, reflection gotchas:
1. `&str` does not implement `Reflect`. Rather, `&'static str`
implements `Reflect` (the same is true for `&Path` and similar types).
This means that `&'static str` is considered an "owned" value for the
sake of generating arguments. Additionally, arguments and return types
containing `&str` will assume it's `&'static str`, which is almost never
the desired behavior. In these cases, the only solution (I believe) is
to use `&String` instead.
### Followup Work
This PR is the first of two PRs I intend to work on. The second PR will
aim to integrate this new function reflection system into the existing
reflection traits and `TypeInfo`. The goal would be to register and call
a reflected type's methods dynamically.
I chose not to do that in this PR since the diff is already quite large.
I also want the discussion for both PRs to be focused on their own
implementation.
Another followup I'd like to do is investigate allowing common container
types as a return type, such as `Option<&[mut] T>` and `Result<&[mut] T,
E>`. This would allow even more functions to opt into this system. I
chose to not include it in this one, though, for the same reasoning as
previously mentioned.
### Alternatives
One alternative I had considered was adding a macro to convert any
function into a reflection-based counterpart. The idea would be that a
struct that wraps the function would be created and users could specify
which arguments and return values should be `Reflect`. It could then be
called via a new `Function` trait.
I think that could still work, but it will be a fair bit more involved,
requiring some slightly more complex parsing. And it of course is a bit
more work for the user, since they need to create the type via macro
invocation.
It also makes registering these functions onto a type a bit more
complicated (depending on how it's implemented).
For now, I think this is a fairly simple, yet powerful solution that
provides the least amount of friction for users.
---
## Showcase
Bevy now adds support for storing and calling functions dynamically
using reflection!
```rust
// 1. Take a standard Rust function
fn add(left: i32, right: i32) -> i32 {
left + right
}
// 2. Convert it into a type-erased `DynamicFunction` using the `IntoFunction` trait
let mut function: DynamicFunction = add.into_function();
// 3. Define your arguments from reflected values
let args: ArgList = ArgList::new().push_owned(2_i32).push_owned(2_i32);
// 4. Call the function with your arguments
let result: Return = function.call(args).unwrap();
// 5. Extract the return value
let value: Box<dyn Reflect> = result.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
```
## Changelog
#### TL;DR
- Added support for function reflection
- Added a new `Function Reflection` example:
|
||
Patrick Walton
|
44db8b7fac
|
Allow phase items not associated with meshes to be binned. (#14029)
As reported in #14004, many third-party plugins, such as Hanabi, enqueue entities that don't have meshes into render phases. However, the introduction of indirect mode added a dependency on mesh-specific data, breaking this workflow. This is because GPU preprocessing requires that the render phases manage indirect draw parameters, which don't apply to objects that aren't meshes. The existing code skips over binned entities that don't have indirect draw parameters, which causes the rendering to be skipped for such objects. To support this workflow, this commit adds a new field, `non_mesh_items`, to `BinnedRenderPhase`. This field contains a simple list of (bin key, entity) pairs. After drawing batchable and unbatchable objects, the non-mesh items are drawn one after another. Bevy itself doesn't enqueue any items into this list; it exists solely for the application and/or plugins to use. Additionally, this commit switches the asset ID in the standard bin keys to be an untyped asset ID rather than that of a mesh. This allows more flexibility, allowing bins to be keyed off any type of asset. This patch adds a new example, `custom_phase_item`, which simultaneously serves to demonstrate how to use this new feature and to act as a regression test so this doesn't break again. Fixes #14004. ## Changelog ### Added * `BinnedRenderPhase` now contains a `non_mesh_items` field for plugins to add custom items to. |
||
François Mockers
|
19d078c609
|
don't crash without features bevy_pbr , ktx2 , zstd (#14020)
# Objective - Fixes #13728 ## Solution - add a new feature `smaa_luts`. if enables, it also enables `ktx2` and `zstd`. if not, it doesn't load the files but use placeholders instead - adds all the resources needed in the same places that system that uses them are added. |
||
Jan Hohenheim
|
48f70789f5
|
Add first person view model example (#13828)
# Objective A very common way to organize a first-person view is to split it into two kinds of models: - The *view model* is the model that represents the player's body. - The *world model* is everything else. The reason for this distinction is that these two models should be rendered with different FOVs. The view model is typically designed and animated with a very specific FOV in mind, so it is generally *fixed* and cannot be changed by a player. The world model, on the other hand, should be able to change its FOV to accommodate the player's preferences for the following reasons: - *Accessibility*: How prone is the player to motion sickness? A wider FOV can help. - *Tactical preference*: Does the player want to see more of the battlefield? Or have a more zoomed-in view for precision aiming? - *Physical considerations*: How well does the in-game FOV match the player's real-world FOV? Are they sitting in front of a monitor or playing on a TV in the living room? How big is the screen? ## Solution I've added an example implementing the described setup as follows. The `Player` is an entity holding two cameras, one for each model. The view model camera has a fixed FOV of 70 degrees, while the world model camera has a variable FOV that can be changed by the player. I use different `RenderLayers` to select what to render. - The world model camera has no explicit `RenderLayers` component, so it uses the layer 0. All static objects in the scene are also on layer 0 for the same reason. - The view model camera has a `RenderLayers` component with layer 1, so it only renders objects explicitly assigned to layer 1. The arm of the player is one such object. The order of the view model camera is additionally bumped to 1 to ensure it renders on top of the world model. - The light source in the scene must illuminate both the view model and the world model, so it is assigned to both layers 0 and 1. To better see the effect, the player can move the camera by dragging their mouse and change the world model's FOV with the arrow keys. The arrow up key maps to "decrease FOV" and the arrow down key maps to "increase FOV". This sounds backwards on paper, but is more intuitive when actually changing the FOV in-game since a decrease in FOV looks like a zoom-in. I intentionally do not allow changing the view model's FOV even though it would be illustrative because that would be an anti-pattern and bloat the code a bit. The example is called `first_person_view_model` and not just `first_person` because I want to highlight that this is not a simple flycam, but actually renders the player. ## Testing Default FOV: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/9047632/8c2e804f-fac2-48c7-8a22-d85af999dfb2"> Decreased FOV: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/9047632/1733b3e5-f583-4214-a454-3554e3cbd066"> Increased FOV: <img width="1392" alt="image" src="https://github.com/bevyengine/bevy/assets/9047632/0b0640e6-5743-46f6-a79a-7181ba9678e8"> Note that the white bar on the right represents the player's arm, which is more obvious in-game because you can move the camera around. The box on top is there to make sure that the view model is receiving shadows. I tested only on macOS. --- ## Changelog I don't think new examples go in here, do they? ## Caveat The solution used here was implemented with help by @robtfm on [Discord](https://discord.com/channels/691052431525675048/866787577687310356/1241019224491561000): > shadow maps are specific to lights, not to layers > if you want shadows from some meshes that are not visible, you could have light on layer 1+2, meshes on layer 2, camera on layer 1 (for example) > but this might change in future, it's not exactly an intended feature In other words, the example code as-is is not guaranteed to work in the future. I want to bring this up because the use-case presented here is extremely common in first-person games and important for accessibility. It would be good to have a blessed and easy way of how to achieve it. I'm also not happy about how I get the `perspective` variable in `change_fov`. Very open to suggestions :) ## Related issues - Addresses parts of #12658 - Addresses parts of #12588 --------- Co-authored-by: Pascal Hertleif <killercup@gmail.com> |
||
Miles Silberling-Cook
|
aaccbe88aa
|
Upstream CorePlugin from bevy_mod_picking (#13677)
# Objective This is the first of a series of PRs intended to begin the upstreaming process for `bevy_mod_picking`. The purpose of this PR is to: + Create the new `bevy_picking` crate + Upstream `CorePlugin` as `PickingPlugin` + Upstream the core pointer and backend abstractions. This code has been ported verbatim from the corresponding files in [bevy_picking_core](https://github.com/aevyrie/bevy_mod_picking/tree/main/crates/bevy_picking_core/src) with a few tiny naming and docs tweaks. The work here is only an initial foothold to get the up-streaming process started in earnest. We can do refactoring and improvements once this is in-tree. --------- Co-authored-by: Aevyrie <aevyrie@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
James O'Brien
|
eb3c81374a
|
Generalised ECS reactivity with Observers (#10839)
# Objective - Provide an expressive way to register dynamic behavior in response to ECS changes that is consistent with existing bevy types and traits as to provide a smooth user experience. - Provide a mechanism for immediate changes in response to events during command application in order to facilitate improved query caching on the path to relations. ## Solution - A new fundamental ECS construct, the `Observer`; inspired by flec's observers but adapted to better fit bevy's access patterns and rust's type system. --- ## Examples There are 3 main ways to register observers. The first is a "component observer" that looks like this: ```rust world.observe(|trigger: Trigger<OnAdd, Transform>, query: Query<&Transform>| { let transform = query.get(trigger.entity()).unwrap(); }); ``` The above code will spawn a new entity representing the observer that will run it's callback whenever the `Transform` component is added to an entity. This is a system-like function that supports dependency injection for all the standard bevy types: `Query`, `Res`, `Commands` etc. It also has a `Trigger` parameter that provides information about the trigger such as the target entity, and the event being triggered. Importantly these systems run during command application which is key for their future use to keep ECS internals up to date. There are similar events for `OnInsert` and `OnRemove`, and this will be expanded with things such as `ArchetypeCreated`, `TableEmpty` etc. in follow up PRs. Another way to register an observer is an "entity observer" that looks like this: ```rust world.entity_mut(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Entity observers run whenever an event of their type is triggered targeting that specific entity. This type of observer will de-spawn itself if the entity (or entities) it is observing is ever de-spawned so as to not leave dangling observers. Entity observers can also be spawned from deferred contexts such as other observers, systems, or hooks using commands: ```rust commands.entity(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Observers are not limited to in built event types, they can be used with any type that implements `Event` (which has been extended to implement Component). This means events can also carry data: ```rust #[derive(Event)] struct Resize { x: u32, y: u32 } commands.entity(entity).observe(|trigger: Trigger<Resize>, query: Query<&mut Size>| { let event = trigger.event(); // ... }); // Will trigger the observer when commands are applied. commands.trigger_targets(Resize { x: 10, y: 10 }, entity); ``` You can also trigger events that target more than one entity at a time: ```rust commands.trigger_targets(Resize { x: 10, y: 10 }, [e1, e2]); ``` Additionally, Observers don't _need_ entity targets: ```rust app.observe(|trigger: Trigger<Quit>| { }) commands.trigger(Quit); ``` In these cases, `trigger.entity()` will be a placeholder. Observers are actually just normal entities with an `ObserverState` and `Observer` component! The `observe()` functions above are just shorthand for: ```rust world.spawn(Observer::new(|trigger: Trigger<Resize>| {}); ``` This will spawn the `Observer` system and use an `on_add` hook to add the `ObserverState` component. Dynamic components and trigger types are also fully supported allowing for runtime defined trigger types. ## Possible Follow-ups 1. Deprecate `RemovedComponents`, observers should fulfill all use cases while being more flexible and performant. 2. Queries as entities: Swap queries to entities and begin using observers listening to archetype creation triggers to keep their caches in sync, this allows unification of `ObserverState` and `QueryState` as well as unlocking several API improvements for `Query` and the management of `QueryState`. 3. Trigger bubbling: For some UI use cases in particular users are likely to want some form of bubbling for entity observers, this is trivial to implement naively but ideally this includes an acceleration structure to cache hierarchy traversals. 4. All kinds of other in-built trigger types. 5. Optimization; in order to not bloat the complexity of the PR I have kept the implementation straightforward, there are several areas where performance can be improved. The focus for this PR is to get the behavior implemented and not incur a performance cost for users who don't use observers. I am leaving each of these to follow up PR's in order to keep each of them reviewable as this already includes significant changes. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: MiniaczQ <xnetroidpl@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Lynn
|
c172c3c4b5
|
Custom primitives example (#13795)
# Objective - Add a new example showcasing how to add custom primitives and what you can do with them. ## Solution - Added a new example `custom_primitives` with a 2D heart shape primitive highlighting - `Bounded2d` by implementing and visualising bounding shapes, - `Measured2d` by implementing it, - `Meshable` to show the shape on the screen - The example also includes an `Extrusion<Heart>` implementing - `Measured3d`, - `Bounded3d` using the `BoundedExtrusion` trait and - meshing using the `Extrudable` trait. ## Additional information Here are two images of the heart and its extrusion: ![image_2024-06-10_194631194](https://github.com/bevyengine/bevy/assets/62256001/53f1836c-df74-4ba6-85e9-fabdafa94c66) ![Screenshot 2024-06-10 194609](https://github.com/bevyengine/bevy/assets/62256001/b1630e71-6e94-4293-b7b5-da8d9cc98faf) --------- Co-authored-by: Jakub Marcowski <37378746+Chubercik@users.noreply.github.com> |
||
Matty
|
a569b35c18
|
Stable interpolation and smooth following (#13741)
# Objective Partially address #13408 Rework of #13613 Unify the very nice forms of interpolation specifically present in `bevy_math` under a shared trait upon which further behavior can be based. The ideas in this PR were prompted by [Lerp smoothing is broken by Freya Holmer](https://www.youtube.com/watch?v=LSNQuFEDOyQ). ## Solution There is a new trait `StableInterpolate` in `bevy_math::common_traits` which enshrines a quite-specific notion of interpolation with a lot of guarantees: ```rust /// A type with a natural interpolation that provides strong subdivision guarantees. /// /// Although the only required method is `interpolate_stable`, many things are expected of it: /// /// 1. The notion of interpolation should follow naturally from the semantics of the type, so /// that inferring the interpolation mode from the type alone is sensible. /// /// 2. The interpolation recovers something equivalent to the starting value at `t = 0.0` /// and likewise with the ending value at `t = 1.0`. /// /// 3. Importantly, the interpolation must be *subdivision-stable*: for any interpolation curve /// between two (unnamed) values and any parameter-value pairs `(t0, p)` and `(t1, q)`, the /// interpolation curve between `p` and `q` must be the *linear* reparametrization of the original /// interpolation curve restricted to the interval `[t0, t1]`. /// /// The last of these conditions is very strong and indicates something like constant speed. It /// is called "subdivision stability" because it guarantees that breaking up the interpolation /// into segments and joining them back together has no effect. /// /// Here is a diagram depicting it: /// ```text /// top curve = u.interpolate_stable(v, t) /// /// t0 => p t1 => q /// |-------------|---------|-------------| /// 0 => u / \ 1 => v /// / \ /// / \ /// / linear \ /// / reparametrization \ /// / t = t0 * (1 - s) + t1 * s \ /// / \ /// |-------------------------------------| /// 0 => p 1 => q /// /// bottom curve = p.interpolate_stable(q, s) /// ``` /// /// Note that some common forms of interpolation do not satisfy this criterion. For example, /// [`Quat::lerp`] and [`Rot2::nlerp`] are not subdivision-stable. /// /// Furthermore, this is not to be used as a general trait for abstract interpolation. /// Consumers rely on the strong guarantees in order for behavior based on this trait to be /// well-behaved. /// /// [`Quat::lerp`]: crate::Quat::lerp /// [`Rot2::nlerp`]: crate::Rot2::nlerp pub trait StableInterpolate: Clone { /// Interpolate between this value and the `other` given value using the parameter `t`. /// Note that the parameter `t` is not necessarily clamped to lie between `0` and `1`. /// When `t = 0.0`, `self` is recovered, while `other` is recovered at `t = 1.0`, /// with intermediate values lying between the two. fn interpolate_stable(&self, other: &Self, t: f32) -> Self; } ``` This trait has a blanket implementation over `NormedVectorSpace`, where `lerp` is used, along with implementations for `Rot2`, `Quat`, and the direction types using variants of `slerp`. Other areas may choose to implement this trait in order to hook into its functionality, but the stringent requirements must actually be met. This trait bears no direct relationship with `bevy_animation`'s `Animatable` trait, although they may choose to use `interpolate_stable` in their trait implementations if they wish, as both traits involve type-inferred interpolations of the same kind. `StableInterpolate` is not a supertrait of `Animatable` for a couple reasons: 1. Notions of interpolation in animation are generally going to be much more general than those allowed under these constraints. 2. Laying out these generalized interpolation notions is the domain of `bevy_animation` rather than of `bevy_math`. (Consider also that inferring interpolation from types is not universally desirable.) Similarly, this is not implemented on `bevy_color`'s color types, although their current mixing behavior does meet the conditions of the trait. As an aside, the subdivision-stability condition is of interest specifically for the [Curve RFC](https://github.com/bevyengine/rfcs/pull/80), where it also ensures a kind of stability for subsampling. Importantly, this trait ensures that the "smooth following" behavior defined in this PR behaves predictably: ```rust /// Smoothly nudge this value towards the `target` at a given decay rate. The `decay_rate` /// parameter controls how fast the distance between `self` and `target` decays relative to /// the units of `delta`; the intended usage is for `decay_rate` to generally remain fixed, /// while `delta` is something like `delta_time` from an updating system. This produces a /// smooth following of the target that is independent of framerate. /// /// More specifically, when this is called repeatedly, the result is that the distance between /// `self` and a fixed `target` attenuates exponentially, with the rate of this exponential /// decay given by `decay_rate`. /// /// For example, at `decay_rate = 0.0`, this has no effect. /// At `decay_rate = f32::INFINITY`, `self` immediately snaps to `target`. /// In general, higher rates mean that `self` moves more quickly towards `target`. /// /// # Example /// ``` /// # use bevy_math::{Vec3, StableInterpolate}; /// # let delta_time: f32 = 1.0 / 60.0; /// let mut object_position: Vec3 = Vec3::ZERO; /// let target_position: Vec3 = Vec3::new(2.0, 3.0, 5.0); /// // Decay rate of ln(10) => after 1 second, remaining distance is 1/10th /// let decay_rate = f32::ln(10.0); /// // Calling this repeatedly will move `object_position` towards `target_position`: /// object_position.smooth_nudge(&target_position, decay_rate, delta_time); /// ``` fn smooth_nudge(&mut self, target: &Self, decay_rate: f32, delta: f32) { self.interpolate_stable_assign(target, 1.0 - f32::exp(-decay_rate * delta)); } ``` As the documentation indicates, the intention is for this to be called in game update systems, and `delta` would be something like `Time::delta_seconds` in Bevy, allowing positions, orientations, and so on to smoothly follow a target. A new example, `smooth_follow`, demonstrates a basic implementation of this, with a sphere smoothly following a sharply moving target: https://github.com/bevyengine/bevy/assets/2975848/7124b28b-6361-47e3-acf7-d1578ebd0347 ## Testing Tested by running the example with various parameters. |
||
Julian
|
33dff0d3f7
|
2D top-down camera example (#12720)
# Objective This PR addresses the 2D part of #12658. I plan to separate the examples and make one PR per camera example. ## Solution Added a new top-down example composed of: - [x] Player keyboard movements - [x] UI for keyboard instructions - [x] Colors and bloom effect to see the movement of the player - [x] Camera smooth movement towards the player (lerp) ## Testing ```bash cargo run --features="wayland,bevy/dynamic_linking" --example 2d_top_down_camera ``` https://github.com/bevyengine/bevy/assets/10638479/95db0587-e5e0-4f55-be11-97444b795793 |
||
François Mockers
|
95edd2ea71
|
async_compute example: don't block in the task (#13699)
# Objective - Fixes #13672 ## Solution - Don't use blocking sleep in the tasks, so that it won't block the task pool |
||
MiniaczQ
|
49338245ea
|
Generalize StateTransitionEvent<S> to allow identity transitions (#13579)
# Objective This PR addresses one of the issues from [discord state discussion](https://discord.com/channels/691052431525675048/1237949214017716356). Same-state transitions can be desirable, so there should exist a hook for them. Fixes https://github.com/bevyengine/bevy/issues/9130. ## Solution - Allow `StateTransitionEvent<S>` to contain identity transitions. - Ignore identity transitions at schedule running level (`OnExit`, `OnTransition`, `OnEnter`). - Propagate identity transitions through `SubStates` and `ComputedStates`. - Add example about registering custom transition schedules. ## Changelog - `StateTransitionEvent<S>` can be emitted with same `exited` and `entered` state. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
MiniaczQ
|
58a0c1336c
|
Move utilities from examples to bevy_state and add concept of state-scoped entities (#13649)
# Objective Move `StateScoped` and `log_transitions` to `bevy_state`, since they're useful for end users. Addresses #12852, although not in the way the issue had in mind. ## Solution - Added `bevy_hierarchy` to default features of `bevy_state`. - Move `log_transitions` to `transitions` module. - Move `StateScoped` to `state_scoped` module, gated behind `bevy_hierarchy` feature. - Refreshed implementation. - Added `enable_state_coped_entities<S: States>()` to add required machinery to `App` for clearing state-scoped entities. ## Changelog - Added `log_transitions` for displaying state transitions. - Added `StateScoped` for binding entity lifetime to state and app `enable_state_coped_entities` to register cleaning behavior. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: François Mockers <francois.mockers@vleue.com> |
||
Alice Cecile
|
ec7b3490f6
|
Add on_unimplemented Diagnostics to Most Public Traits (#13347) (#13662)
# Objective - #13414 did not have the intended effect. - #13404 is still blocked ## Solution - Re-adds #13347. Co-authored-by: Zachary Harrold <zac@harrold.com.au> Co-authored-by: Jamie Ridding <Themayu@users.noreply.github.com> Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com> |
||
Patrick Walton
|
df8ccb8735
|
Implement PBR anisotropy per KHR_materials_anisotropy . (#13450)
This commit implements support for physically-based anisotropy in Bevy's `StandardMaterial`, following the specification for the [`KHR_materials_anisotropy`] glTF extension. [*Anisotropy*] (not to be confused with [anisotropic filtering]) is a PBR feature that allows roughness to vary along the tangent and bitangent directions of a mesh. In effect, this causes the specular light to stretch out into lines instead of a round lobe. This is useful for modeling brushed metal, hair, and similar surfaces. Support for anisotropy is a common feature in major game and graphics engines; Unity, Unreal, Godot, three.js, and Blender all support it to varying degrees. Two new parameters have been added to `StandardMaterial`: `anisotropy_strength` and `anisotropy_rotation`. Anisotropy strength, which ranges from 0 to 1, represents how much the roughness differs between the tangent and the bitangent of the mesh. In effect, it controls how stretched the specular highlight is. Anisotropy rotation allows the roughness direction to differ from the tangent of the model. In addition to these two fixed parameters, an *anisotropy texture* can be supplied. Such a texture should be a 3-channel RGB texture, where the red and green values specify a direction vector using the same conventions as a normal map ([0, 1] color values map to [-1, 1] vector values), and the the blue value represents the strength. This matches the format that the [`KHR_materials_anisotropy`] specification requires. Such textures should be loaded as linear and not sRGB. Note that this texture does consume one additional texture binding in the standard material shader. The glTF loader has been updated to properly parse the `KHR_materials_anisotropy` extension. A new example, `anisotropy`, has been added. This example loads and displays the barn lamp example from the [`glTF-Sample-Assets`] repository. Note that the textures were rather large, so I shrunk them down and converted them to a mixture of JPEG and KTX2 format, in the interests of saving space in the Bevy repository. [*Anisotropy*]: https://google.github.io/filament/Filament.md.html#materialsystem/anisotropicmodel [anisotropic filtering]: https://en.wikipedia.org/wiki/Anisotropic_filtering [`KHR_materials_anisotropy`]: https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_materials_anisotropy/README.md [`glTF-Sample-Assets`]: https://github.com/KhronosGroup/glTF-Sample-Assets/ ## Changelog ### Added * Physically-based anisotropy is now available for materials, which enhances the look of surfaces such as brushed metal or hair. glTF scenes can use the new feature with the `KHR_materials_anisotropy` extension. ## Screenshots With anisotropy: ![Screenshot 2024-05-20 233414](https://github.com/bevyengine/bevy/assets/157897/379f1e42-24e9-40b6-a430-f7d1479d0335) Without anisotropy: ![Screenshot 2024-05-20 233420](https://github.com/bevyengine/bevy/assets/157897/aa220f05-b8e7-417c-9671-b242d4bf9fc4) |
||
Mark Moissette
|
d26900a9ea
|
add handling of all missing gltf extras: scene, mesh & materials (#13453)
# Objective - fixes #4823 ## Solution As outlined in the discussion in the linked issue as the best current solution, this PR adds specific GltfExtras for - scenes - meshes - materials - As it is , it is not a breaking change, I hesitated to rename the current "GltfExtras" component to "PrimitiveGltfExtras", but that would result in a breaking change and might be a bit confusing as to what "primitive" that refers to. ## Testing - I included a bare-bones example & asset (exported gltf file from Blender) with gltf extras at all the relevant levels : scene, mesh, material --- ## Changelog - adds "SceneGltfExtras" injected at the scene level if any - adds "MeshGltfExtras", injected at the mesh level if any - adds "MaterialGltfExtras", injected at the mesh level if any: ie if a mesh has a material that has gltf extras, the component will be injected there. |
||
Pietro
|
061bee7e3c
|
fix: upgrade to winit v0.30 (#13366)
# Objective - Upgrade winit to v0.30 - Fixes https://github.com/bevyengine/bevy/issues/13331 ## Solution This is a rewrite/adaptation of the new trait system described and implemented in `winit` v0.30. ## Migration Guide The custom UserEvent is now renamed as WakeUp, used to wake up the loop if anything happens outside the app (a new [custom_user_event](https://github.com/bevyengine/bevy/pull/13366/files#diff-2de8c0a8d3028d0059a3d80ae31b2bbc1cde2595ce2d317ea378fe3e0cf6ef2d) shows this behavior. The internal `UpdateState` has been removed and replaced internally by the AppLifecycle. When changed, the AppLifecycle is sent as an event. The `UpdateMode` now accepts only two values: `Continuous` and `Reactive`, but the latter exposes 3 new properties to enable reactive to device, user or window events. The previous `UpdateMode::Reactive` is now equivalent to `UpdateMode::reactive()`, while `UpdateMode::ReactiveLowPower` to `UpdateMode::reactive_low_power()`. The `ApplicationLifecycle` has been renamed as `AppLifecycle`, and now contains the possible values of the application state inside the event loop: * `Idle`: the loop has not started yet * `Running` (previously called `Started`): the loop is running * `WillSuspend`: the loop is going to be suspended * `Suspended`: the loop is suspended * `WillResume`: the loop is going to be resumed Note: the `Resumed` state has been removed since the resumed app is just running. Finally, now that `winit` enables this, it extends the `WinitPlugin` to support custom events. ## Test platforms - [x] Windows - [x] MacOs - [x] Linux (x11) - [x] Linux (Wayland) - [x] Android - [x] iOS - [x] WASM/WebGPU - [x] WASM/WebGL2 ## Outstanding issues / regressions - [ ] iOS: build failed in CI - blocking, but may just be flakiness - [x] Cross-platform: when the window is maximised, changes in the scale factor don't apply, to make them apply one has to make the window smaller again. (Re-maximising keeps the updated scale factor) - non-blocking, but good to fix - [ ] Android: it's pretty easy to quickly open and close the app and then the music keeps playing when suspended. - non-blocking but worrying - [ ] Web: the application will hang when switching tabs - Not new, duplicate of https://github.com/bevyengine/bevy/issues/13486 - [ ] Cross-platform?: Screenshot failure, `ERROR present_frames: wgpu_core::present: No work has been submitted for this frame before` taking the first screenshot, but after pressing space - non-blocking, but good to fix --------- Co-authored-by: François <francois.mockers@vleue.com> |
||
IQuick 143
|
f67ae29338
|
Create a primitive sampling showcase example (#13519)
# Objective - Show + Visually Test that 3D primitive sampling works - Make an example that looks nice. ## Solution - Added a `sampling_primitives` examples which shows all the 3D primitives being sampled, with a firefly aesthetic. ![image](https://github.com/bevyengine/bevy/assets/27301845/f882438b-2c72-48b1-a6e9-162a80c4273e) ## Testing - `cargo run --example sampling_primitives` - Haven't tested WASM. ## Changelog ### Added - Added a new example, `sampling_primitives`, to showcase all the 3D sampleable primitives. ## Additional notes: This example borrowed a bunch of code from the other sampling example, by @mweatherley. In future updates this example should be updated with new 3D primitives as they become sampleable. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Joona Aalto <jondolf.dev@gmail.com> |
||
Matty
|
787df44288
|
Example for random sampling (#13507)
# Objective We introduced a bunch of neat random sampling stuff in this release; we should do a good job of showing people how to use it, and writing examples is part of this. ## Solution A new Math example, `random_sampling`, shows off the `ShapeSample` API functionality. For the moment, it renders a cube and allows the user to sample points from its interior or boundary in sets of either 1 or 100: <img width="1440" alt="Screenshot 2024-05-25 at 1 16 08 PM" src="https://github.com/bevyengine/bevy/assets/2975848/9cb6f53f-c89a-42c2-8907-b11d294c402a"> On the level of code, these are reflected by two ways of using `ShapeSample`: ```rust // Get a single random Vec3: let sample: Vec3 = match *mode { Mode::Interior => shape.0.sample_interior(rng), Mode::Boundary => shape.0.sample_boundary(rng), }; ``` ```rust // Get 100 random Vec3s: let samples: Vec<Vec3> = match *mode { Mode::Interior => { let dist = shape.0.interior_dist(); dist.sample_iter(&mut rng).take(100).collect() } Mode::Boundary => { let dist = shape.0.boundary_dist(); dist.sample_iter(&mut rng).take(100).collect() } }; ``` ## Testing Run the example! ## Discussion Maybe in the future it would be nice to show off all of the different shapes that we have implemented `ShapeSample` for, but I wanted to start just by demonstrating the functionality. Here, I chose a cube because it's simple and because it looks good rendered transparently with backface culling disabled. |
||
Patrick Walton
|
f398674e51
|
Implement opt-in sharp screen-space reflections for the deferred renderer, with improved raymarching code. (#13418)
This commit, a revamp of #12959, implements screen-space reflections (SSR), which approximate real-time reflections based on raymarching through the depth buffer and copying samples from the final rendered frame. This patch is a relatively minimal implementation of SSR, so as to provide a flexible base on which to customize and build in the future. However, it's based on the production-quality [raymarching code by Tomasz Stachowiak](https://gist.github.com/h3r2tic/9c8356bdaefbe80b1a22ae0aaee192db). For a general basic overview of screen-space reflections, see [1](https://lettier.github.io/3d-game-shaders-for-beginners/screen-space-reflection.html). The raymarching shader uses the basic algorithm of tracing forward in large steps, refining that trace in smaller increments via binary search, and then using the secant method. No temporal filtering or roughness blurring, is performed at all; for this reason, SSR currently only operates on very shiny surfaces. No acceleration via the hierarchical Z-buffer is implemented (though note that https://github.com/bevyengine/bevy/pull/12899 will add the infrastructure for this). Reflections are traced at full resolution, which is often considered slow. All of these improvements and more can be follow-ups. SSR is built on top of the deferred renderer and is currently only supported in that mode. Forward screen-space reflections are possible albeit uncommon (though e.g. *Doom Eternal* uses them); however, they require tracing from the previous frame, which would add complexity. This patch leaves the door open to implementing SSR in the forward rendering path but doesn't itself have such an implementation. Screen-space reflections aren't supported in WebGL 2, because they require sampling from the depth buffer, which Naga can't do because of a bug (`sampler2DShadow` is incorrectly generated instead of `sampler2D`; this is the same reason why depth of field is disabled on that platform). To add screen-space reflections to a camera, use the `ScreenSpaceReflectionsBundle` bundle or the `ScreenSpaceReflectionsSettings` component. In addition to `ScreenSpaceReflectionsSettings`, `DepthPrepass` and `DeferredPrepass` must also be present for the reflections to show up. The `ScreenSpaceReflectionsSettings` component contains several settings that artists can tweak, and also comes with sensible defaults. A new example, `ssr`, has been added. It's loosely based on the [three.js ocean sample](https://threejs.org/examples/webgl_shaders_ocean.html), but all the assets are original. Note that the three.js demo has no screen-space reflections and instead renders a mirror world. In contrast to #12959, this demo tests not only a cube but also a more complex model (the flight helmet). ## Changelog ### Added * Screen-space reflections can be enabled for very smooth surfaces by adding the `ScreenSpaceReflections` component to a camera. Deferred rendering must be enabled for the reflections to appear. ![Screenshot 2024-05-18 143555](https://github.com/bevyengine/bevy/assets/157897/b8675b39-8a89-433e-a34e-1b9ee1233267) ![Screenshot 2024-05-18 143606](https://github.com/bevyengine/bevy/assets/157897/cc9e1cd0-9951-464a-9a08-e589210e5606) |
||
Ben Harper
|
ec01c2dc45
|
New circular primitives: Arc2d , CircularSector , CircularSegment (#13482)
# Objective Adopted #11748 ## Solution I've rebased on main to fix the merge conflicts. ~~Not quite ready to merge yet~~ * Clippy is happy and the tests are passing, but... * ~~The new shapes in `examples/2d/2d_shapes.rs` don't look right at all~~ Never mind, looks like radians and degrees just got mixed up at some point? * I have updated one doc comment based on a review in the original PR. --------- Co-authored-by: Alexis "spectria" Horizon <spectria.limina@gmail.com> Co-authored-by: Alexis "spectria" Horizon <118812919+spectria-limina@users.noreply.github.com> Co-authored-by: Joona Aalto <jondolf.dev@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Ben Harper <ben@tukom.org> |
||
Mincong Lu
|
1d950e6195
|
Allow AssetServer::load to acquire a guard item. (#13051)
# Objective Supercedes #12881 . Added a simple implementation that allows the user to react to multiple asset loads both synchronously and asynchronously. ## Solution Added `load_acquire`, that holds an item and drops it when loading is finished or failed. When used synchronously Hold an `Arc<()>`, check for `Arc::strong_count() == 1` when all loading completed. When used asynchronously Hold a `SemaphoreGuard`, await on `acquire_all` for completion. This implementation has more freedom than the original in my opinion. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au> |
||
Gino Valente
|
5db52663b3
|
bevy_reflect: Custom attributes (#11659)
# Objective As work on the editor starts to ramp up, it might be nice to start allowing types to specify custom attributes. These can be used to provide certain functionality to fields, such as ranges or controlling how data is displayed. A good example of this can be seen in [`bevy-inspector-egui`](https://github.com/jakobhellermann/bevy-inspector-egui) with its [`InspectorOptions`](https://docs.rs/bevy-inspector-egui/0.22.1/bevy_inspector_egui/struct.InspectorOptions.html): ```rust #[derive(Reflect, Default, InspectorOptions)] #[reflect(InspectorOptions)] struct Slider { #[inspector(min = 0.0, max = 1.0)] value: f32, } ``` Normally, as demonstrated in the example above, these attributes are handled by a derive macro and stored in a corresponding `TypeData` struct (i.e. `ReflectInspectorOptions`). Ideally, we would have a good way of defining this directly via reflection so that users don't need to create and manage a whole proc macro just to allow these sorts of attributes. And note that this doesn't have to just be for inspectors and editors. It can be used for things done purely on the code side of things. ## Solution Create a new method for storing attributes on fields via the `Reflect` derive. These custom attributes are stored in type info (e.g. `NamedField`, `StructInfo`, etc.). ```rust #[derive(Reflect)] struct Slider { #[reflect(@0.0..=1.0)] value: f64, } let TypeInfo::Struct(info) = Slider::type_info() else { panic!("expected struct info"); }; let field = info.field("value").unwrap(); let range = field.get_attribute::<RangeInclusive<f64>>().unwrap(); assert_eq!(*range, 0.0..=1.0); ``` ## TODO - [x] ~~Bikeshed syntax~~ Went with a type-based approach, prefixed by `@` for ease of parsing and flexibility - [x] Add support for custom struct/tuple struct field attributes - [x] Add support for custom enum variant field attributes - [x] ~~Add support for custom enum variant attributes (maybe?)~~ ~~Will require a larger refactor. Can be saved for a future PR if we really want it.~~ Actually, we apparently still have support for variant attributes despite not using them, so it was pretty easy to add lol. - [x] Add support for custom container attributes - [x] Allow custom attributes to store any reflectable value (not just `Lit`) - [x] ~~Store attributes in registry~~ This PR used to store these in attributes in the registry, however, it has since switched over to storing them in type info - [x] Add example ## Bikeshedding > [!note] > This section was made for the old method of handling custom attributes, which stored them by name (i.e. `some_attribute = 123`). The PR has shifted away from that, to a more type-safe approach. > > This section has been left for reference. There are a number of ways we can syntactically handle custom attributes. Feel free to leave a comment on your preferred one! Ideally we want one that is clear, readable, and concise since these will potentially see _a lot_ of use. Below is a small, non-exhaustive list of them. Note that the `skip_serializing` reflection attribute is added to demonstrate how each case plays with existing reflection attributes. <details> <summary>List</summary> ##### 1. `@(name = value)` > The `@` was chosen to make them stand out from other attributes and because the "at" symbol is a subtle pneumonic for "attribute". Of course, other symbols could be used (e.g. `$`, `#`, etc.). ```rust #[derive(Reflect)] struct Slider { #[reflect(@(min = 0.0, max = 1.0), skip_serializing)] #[[reflect(@(bevy_editor::hint = "Range: 0.0 to 1.0"))] value: f32, } ``` ##### 2. `@name = value` > This is my personal favorite. ```rust #[derive(Reflect)] struct Slider { #[reflect(@min = 0.0, @max = 1.0, skip_serializing)] #[[reflect(@bevy_editor::hint = "Range: 0.0 to 1.0")] value: f32, } ``` ##### 3. `custom_attr(name = value)` > `custom_attr` can be anything. Other possibilities include `with` or `tag`. ```rust #[derive(Reflect)] struct Slider { #[reflect(custom_attr(min = 0.0, max = 1.0), skip_serializing)] #[[reflect(custom_attr(bevy_editor::hint = "Range: 0.0 to 1.0"))] value: f32, } ``` ##### 4. `reflect_attr(name = value)` ```rust #[derive(Reflect)] struct Slider { #[reflect(skip_serializing)] #[reflect_attr(min = 0.0, max = 1.0)] #[[reflect_attr(bevy_editor::hint = "Range: 0.0 to 1.0")] value: f32, } ``` </details> --- ## Changelog - Added support for custom attributes on reflected types (i.e. `#[reflect(@Foo::new("bar")]`) |
||
Alice Cecile
|
ee6dfd35c9
|
Revert "Add on_unimplemented Diagnostics to Most Public Traits" (#13413)
# Objective - Rust 1.78 breaks all Android support, see https://github.com/bevyengine/bevy/issues/13331 - We should not bump the MSRV to 1.78 until that's resolved in #13366. ## Solution - Temporarily revert https://github.com/bevyengine/bevy/pull/13347 Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> |
||
Zachary Harrold
|
11f0a2dcde
|
Add on_unimplemented Diagnostics to Most Public Traits (#13347)
# Objective - Fixes #12377 ## Solution Added simple `#[diagnostic::on_unimplemented(...)]` attributes to some critical public traits providing a more approachable initial error message. Where appropriate, a `note` is added indicating that a `derive` macro is available. ## Examples <details> <summary>Examples hidden for brevity</summary> Below is a collection of examples showing the new error messages produced by this change. In general, messages will start with a more Bevy-centric error message (e.g., _`MyComponent` is not a `Component`_), and a note directing the user to an available derive macro where appropriate. ### Missing `#[derive(Resource)]` <details> <summary>Example Code</summary> ```rust use bevy::prelude::*; struct MyResource; fn main() { App::new() .insert_resource(MyResource) .run(); } ``` </details> <details> <summary>Error Generated</summary> ```error error[E0277]: `MyResource` is not a `Resource` --> examples/app/empty.rs:7:26 | 7 | .insert_resource(MyResource) | --------------- ^^^^^^^^^^ invalid `Resource` | | | required by a bound introduced by this call | = help: the trait `Resource` is not implemented for `MyResource` = note: consider annotating `MyResource` with `#[derive(Resource)]` = help: the following other types implement trait `Resource`: AccessibilityRequested ManageAccessibilityUpdates bevy::bevy_a11y::Focus DiagnosticsStore FrameCount bevy::prelude::State<S> SystemInfo bevy::prelude::Axis<T> and 141 others note: required by a bound in `bevy::prelude::App::insert_resource` --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:419:31 | 419 | pub fn insert_resource<R: Resource>(&mut self, resource: R) -> &mut Self { | ^^^^^^^^ required by this bound in `App::insert_resource` ``` </details> ### Putting A `QueryData` in a `QueryFilter` Slot <details> <summary>Example Code</summary> ```rust use bevy::prelude::*; #[derive(Component)] struct A; #[derive(Component)] struct B; fn my_system(_query: Query<&A, &B>) {} fn main() { App::new() .add_systems(Update, my_system) .run(); } ``` </details> <details> <summary>Error Generated</summary> ```error error[E0277]: `&B` is not a valid `Query` filter --> examples/app/empty.rs:9:22 | 9 | fn my_system(_query: Query<&A, &B>) {} | ^^^^^^^^^^^^^ invalid `Query` filter | = help: the trait `QueryFilter` is not implemented for `&B` = help: the following other types implement trait `QueryFilter`: With<T> Without<T> bevy::prelude::Or<()> bevy::prelude::Or<(F0,)> bevy::prelude::Or<(F0, F1)> bevy::prelude::Or<(F0, F1, F2)> bevy::prelude::Or<(F0, F1, F2, F3)> bevy::prelude::Or<(F0, F1, F2, F3, F4)> and 28 others note: required by a bound in `bevy::prelude::Query` --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_ecs\src\system\query.rs:349:51 | 349 | pub struct Query<'world, 'state, D: QueryData, F: QueryFilter = ()> { | ^^^^^^^^^^^ required by this bound in `Query` ``` </details> ### Missing `#[derive(Component)]` <details> <summary>Example Code</summary> ```rust use bevy::prelude::*; struct A; fn my_system(mut commands: Commands) { commands.spawn(A); } fn main() { App::new() .add_systems(Startup, my_system) .run(); } ``` </details> <details> <summary>Error Generated</summary> ```error error[E0277]: `A` is not a `Bundle` --> examples/app/empty.rs:6:20 | 6 | commands.spawn(A); | ----- ^ invalid `Bundle` | | | required by a bound introduced by this call | = help: the trait `bevy::prelude::Component` is not implemented for `A`, which is required by `A: Bundle` = note: consider annotating `A` with `#[derive(Component)]` or `#[derive(Bundle)]` = help: the following other types implement trait `Bundle`: TransformBundle SceneBundle DynamicSceneBundle AudioSourceBundle<Source> SpriteBundle SpriteSheetBundle Text2dBundle MaterialMesh2dBundle<M> and 34 others = note: required for `A` to implement `Bundle` note: required by a bound in `bevy::prelude::Commands::<'w, 's>::spawn` --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_ecs\src\system\commands\mod.rs:243:21 | 243 | pub fn spawn<T: Bundle>(&mut self, bundle: T) -> EntityCommands { | ^^^^^^ required by this bound in `Commands::<'w, 's>::spawn` ``` </details> ### Missing `#[derive(Asset)]` <details> <summary>Example Code</summary> ```rust use bevy::prelude::*; struct A; fn main() { App::new() .init_asset::<A>() .run(); } ``` </details> <details> <summary>Error Generated</summary> ```error error[E0277]: `A` is not an `Asset` --> examples/app/empty.rs:7:23 | 7 | .init_asset::<A>() | ---------- ^ invalid `Asset` | | | required by a bound introduced by this call | = help: the trait `Asset` is not implemented for `A` = note: consider annotating `A` with `#[derive(Asset)]` = help: the following other types implement trait `Asset`: Font AnimationGraph DynamicScene Scene AudioSource Pitch bevy::bevy_gltf::Gltf GltfNode and 17 others note: required by a bound in `init_asset` --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_asset\src\lib.rs:307:22 | 307 | fn init_asset<A: Asset>(&mut self) -> &mut Self; | ^^^^^ required by this bound in `AssetApp::init_asset` ``` </details> ### Mismatched Input and Output on System Piping <details> <summary>Example Code</summary> ```rust use bevy::prelude::*; fn producer() -> u32 { 123 } fn consumer(_: In<u16>) {} fn main() { App::new() .add_systems(Update, producer.pipe(consumer)) .run(); } ``` </details> <details> <summary>Error Generated</summary> ```error error[E0277]: `fn(bevy::prelude::In<u16>) {consumer}` is not a valid system with input `u32` and output `_` --> examples/app/empty.rs:11:44 | 11 | .add_systems(Update, producer.pipe(consumer)) | ---- ^^^^^^^^ invalid system | | | required by a bound introduced by this call | = help: the trait `bevy::prelude::IntoSystem<u32, _, _>` is not implemented for fn item `fn(bevy::prelude::In<u16>) {consumer}` = note: expecting a system which consumes `u32` and produces `_` note: required by a bound in `pipe` --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_ecs\src\system\mod.rs:168:12 | 166 | fn pipe<B, Final, MarkerB>(self, system: B) -> PipeSystem<Self::System, B::System> | ---- required by a bound in this associated function 167 | where 168 | B: IntoSystem<Out, Final, MarkerB>, | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ required by this bound in `IntoSystem::pipe` ``` </details> ### Missing Reflection <details> <summary>Example Code</summary> ```rust use bevy::prelude::*; #[derive(Component)] struct MyComponent; fn main() { App::new() .register_type::<MyComponent>() .run(); } ``` </details> <details> <summary>Error Generated</summary> ```error error[E0277]: `MyComponent` does not provide type registration information --> examples/app/empty.rs:8:26 | 8 | .register_type::<MyComponent>() | ------------- ^^^^^^^^^^^ the trait `GetTypeRegistration` is not implemented for `MyComponent` | | | required by a bound introduced by this call | = note: consider annotating `MyComponent` with `#[derive(Reflect)]` = help: the following other types implement trait `GetTypeRegistration`: bool char isize i8 i16 i32 i64 i128 and 443 others note: required by a bound in `bevy::prelude::App::register_type` --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:619:29 | 619 | pub fn register_type<T: bevy_reflect::GetTypeRegistration>(&mut self) -> &mut Self { | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ required by this bound in `App::register_type` ``` </details> ### Missing `#[derive(States)]` Implementation <details> <summary>Example Code</summary> ```rust use bevy::prelude::*; #[derive(Debug, Clone, Copy, Default, Eq, PartialEq, Hash)] enum AppState { #[default] Menu, InGame { paused: bool, turbo: bool, }, } fn main() { App::new() .init_state::<AppState>() .run(); } ``` </details> <details> <summary>Error Generated</summary> ```error error[E0277]: the trait bound `AppState: FreelyMutableState` is not satisfied --> examples/app/empty.rs:15:23 | 15 | .init_state::<AppState>() | ---------- ^^^^^^^^ the trait `FreelyMutableState` is not implemented for `AppState` | | | required by a bound introduced by this call | = note: consider annotating `AppState` with `#[derive(States)]` note: required by a bound in `bevy::prelude::App::init_state` --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:282:26 | 282 | pub fn init_state<S: FreelyMutableState + FromWorld>(&mut self) -> &mut Self { | ^^^^^^^^^^^^^^^^^^ required by this bound in `App::init_state` ``` </details> ### Adding a `System` with Unhandled Output <details> <summary>Example Code</summary> ```rust use bevy::prelude::*; fn producer() -> u32 { 123 } fn main() { App::new() .add_systems(Update, consumer) .run(); } ``` </details> <details> <summary>Error Generated</summary> ```error error[E0277]: `fn() -> u32 {producer}` does not describe a valid system configuration --> examples/app/empty.rs:9:30 | 9 | .add_systems(Update, producer) | ----------- ^^^^^^^^ invalid system configuration | | | required by a bound introduced by this call | = help: the trait `IntoSystem<(), (), _>` is not implemented for fn item `fn() -> u32 {producer}`, which is required by `fn() -> u32 {producer}: IntoSystemConfigs<_>` = help: the following other types implement trait `IntoSystemConfigs<Marker>`: <Box<(dyn bevy::prelude::System<In = (), Out = ()> + 'static)> as IntoSystemConfigs<()>> <NodeConfigs<Box<(dyn bevy::prelude::System<In = (), Out = ()> + 'static)>> as IntoSystemConfigs<()>> <(S0,) as IntoSystemConfigs<(SystemConfigTupleMarker, P0)>> <(S0, S1) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1)>> <(S0, S1, S2) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1, P2)>> <(S0, S1, S2, S3) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1, P2, P3)>> <(S0, S1, S2, S3, S4) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1, P2, P3, P4)>> <(S0, S1, S2, S3, S4, S5) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1, P2, P3, P4, P5)>> and 14 others = note: required for `fn() -> u32 {producer}` to implement `IntoSystemConfigs<_>` note: required by a bound in `bevy::prelude::App::add_systems` --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:342:23 | 339 | pub fn add_systems<M>( | ----------- required by a bound in this associated function ... 342 | systems: impl IntoSystemConfigs<M>, | ^^^^^^^^^^^^^^^^^^^^ required by this bound in `App::add_systems` ``` </details> </details> ## Testing CI passed locally. ## Migration Guide Upgrade to version 1.78 (or higher) of Rust. ## Future Work - Currently, hints are not supported in this diagnostic. Ideally, suggestions like _"consider using ..."_ would be in a hint rather than a note, but that is the best option for now. - System chaining and other `all_tuples!(...)`-based traits have bad error messages due to the slightly different error message format. --------- Co-authored-by: Jamie Ridding <Themayu@users.noreply.github.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com> |
||
Patrick Walton
|
19bfa41768
|
Implement volumetric fog and volumetric lighting, also known as light shafts or god rays. (#13057)
This commit implements a more physically-accurate, but slower, form of fog than the `bevy_pbr::fog` module does. Notably, this *volumetric fog* allows for light beams from directional lights to shine through, creating what is known as *light shafts* or *god rays*. To add volumetric fog to a scene, add `VolumetricFogSettings` to the camera, and add `VolumetricLight` to directional lights that you wish to be volumetric. `VolumetricFogSettings` has numerous settings that allow you to define the accuracy of the simulation, as well as the look of the fog. Currently, only interaction with directional lights that have shadow maps is supported. Note that the overhead of the effect scales directly with the number of directional lights in use, so apply `VolumetricLight` sparingly for the best results. The overall algorithm, which is implemented as a postprocessing effect, is a combination of the techniques described in [Scratchapixel] and [this blog post]. It uses raymarching in screen space, transformed into shadow map space for sampling and combined with physically-based modeling of absorption and scattering. Bevy employs the widely-used [Henyey-Greenstein phase function] to model asymmetry; this essentially allows light shafts to fade into and out of existence as the user views them. Volumetric rendering is a huge subject, and I deliberately kept the scope of this commit small. Possible follow-ups include: 1. Raymarching at a lower resolution. 2. A post-processing blur (especially useful when combined with (1)). 3. Supporting point lights and spot lights. 4. Supporting lights with no shadow maps. 5. Supporting irradiance volumes and reflection probes. 6. Voxel components that reuse the volumetric fog code to create voxel shapes. 7. *Horizon: Zero Dawn*-style clouds. These are all useful, but out of scope of this patch for now, to keep things tidy and easy to review. A new example, `volumetric_fog`, has been added to demonstrate the effect. ## Changelog ### Added * A new component, `VolumetricFog`, is available, to allow for a more physically-accurate, but more resource-intensive, form of fog. * A new component, `VolumetricLight`, can be placed on directional lights to make them interact with `VolumetricFog`. Notably, this allows such lights to emit light shafts/god rays. ![Screenshot 2024-04-21 162808](https://github.com/bevyengine/bevy/assets/157897/7a1fc81d-eed5-4735-9419-286c496391a9) ![Screenshot 2024-04-21 132005](https://github.com/bevyengine/bevy/assets/157897/e6d3b5ca-8f59-488d-a3de-15e95aaf4995) [Scratchapixel]: https://www.scratchapixel.com/lessons/3d-basic-rendering/volume-rendering-for-developers/intro-volume-rendering.html [this blog post]: https://www.alexandre-pestana.com/volumetric-lights/ [Henyey-Greenstein phase function]: https://www.pbr-book.org/4ed/Volume_Scattering/Phase_Functions#TheHenyeyndashGreensteinPhaseFunction |
||
Patrick Walton
|
df31b808c3
|
Implement fast depth of field as a postprocessing effect. (#13009)
This commit implements the [depth of field] effect, simulating the blur of objects out of focus of the virtual lens. Either the [hexagonal bokeh] effect or a faster Gaussian blur may be used. In both cases, the implementation is a simple separable two-pass convolution. This is not the most physically-accurate real-time bokeh technique that exists; Unreal Engine has [a more accurate implementation] of "cinematic depth of field" from 2018. However, it's simple, and most engines provide something similar as a fast option, often called "mobile" depth of field. The general approach is outlined in [a blog post from 2017]. We take advantage of the fact that both Gaussian blurs and hexagonal bokeh blurs are *separable*. This means that their 2D kernels can be reduced to a small number of 1D kernels applied one after another, asymptotically reducing the amount of work that has to be done. Gaussian blurs can be accomplished by blurring horizontally and then vertically, while hexagonal bokeh blurs can be done with a vertical blur plus a diagonal blur, plus two diagonal blurs. In both cases, only two passes are needed. Bokeh requires the first pass to have a second render target and requires two subpasses in the second pass, which decreases its performance relative to the Gaussian blur. The bokeh blur is generally more aesthetically pleasing than the Gaussian blur, as it simulates the effect of a camera more accurately. The shape of the bokeh circles are determined by the number of blades of the aperture. In our case, we use a hexagon, which is usually considered specific to lower-quality cameras. (This is a downside of the fast hexagon approach compared to the higher-quality approaches.) The blur amount is generally specified by the [f-number], which we use to compute the focal length from the film size and FOV. By default, we simulate standard cinematic cameras of f/1 and [Super 35]. The developer can customize these values as desired. A new example has been added to demonstrate depth of field. It allows customization of the mode (Gaussian vs. bokeh), focal distance and f-numbers. The test scene is inspired by a [blog post on depth of field in Unity]; however, the effect is implemented in a completely different way from that blog post, and all the assets (textures, etc.) are original. Bokeh depth of field: ![Screenshot 2024-04-17 152535](https://github.com/bevyengine/bevy/assets/157897/702f0008-1c8a-4cf3-b077-4110f8c46584) Gaussian depth of field: ![Screenshot 2024-04-17 152542](https://github.com/bevyengine/bevy/assets/157897/f4ece47a-520e-4483-a92d-f4fa760795d3) No depth of field: ![Screenshot 2024-04-17 152547](https://github.com/bevyengine/bevy/assets/157897/9444e6aa-fcae-446c-b66b-89469f1a1325) [depth of field]: https://en.wikipedia.org/wiki/Depth_of_field [hexagonal bokeh]: https://colinbarrebrisebois.com/2017/04/18/hexagonal-bokeh-blur-revisited/ [a more accurate implementation]: https://epicgames.ent.box.com/s/s86j70iamxvsuu6j35pilypficznec04 [a blog post from 2017]: https://colinbarrebrisebois.com/2017/04/18/hexagonal-bokeh-blur-revisited/ [f-number]: https://en.wikipedia.org/wiki/F-number [Super 35]: https://en.wikipedia.org/wiki/Super_35 [blog post on depth of field in Unity]: https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/ ## Changelog ### Added * A depth of field postprocessing effect is now available, to simulate objects being out of focus of the camera. To use it, add `DepthOfFieldSettings` to an entity containing a `Camera3d` component. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Bram Buurlage <brambuurlage@gmail.com> |
||
Lee-Orr
|
42ba9dfaea
|
Separate state crate (#13216)
# Objective Extracts the state mechanisms into a new crate called "bevy_state". This comes with a few goals: - state wasn't really an inherent machinery of the ecs system, and so keeping it within bevy_ecs felt forced - by mixing it in with bevy_ecs, the maintainability of our more robust state system was significantly compromised moving state into a new crate makes it easier to encapsulate as it's own feature, and easier to read and understand since it's no longer a single, massive file. ## Solution move the state-related elements from bevy_ecs to a new crate ## Testing - Did you test these changes? If so, how? all the automated tests migrated and passed, ran the pre-existing examples without changes to validate. --- ## Migration Guide Since bevy_state is now gated behind the `bevy_state` feature, projects that use state but don't use the `default-features` will need to add that feature flag. Since it is no longer part of bevy_ecs, projects that use bevy_ecs directly will need to manually pull in `bevy_state`, trigger the StateTransition schedule, and handle any of the elements that bevy_app currently sets up. --------- Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com> |
||
Vitaliy Sapronenko
|
d9d305dab5
|
Headless renderer example has been added (#13006)
# Objective Fixes #11457. Fixes #22. ## Solution Based on [another headless application](https://github.com/richardanaya/headless/) --- ## Changelog - Adopted to bevy 0.14 --------- Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com> Co-authored-by: François Mockers <francois.mockers@vleue.com> |
||
andristarr
|
bb76a2c69c
|
multi_threaded feature rename (#12997)
# Objective Fixes #12966 ## Solution Renaming multi_threaded feature to match snake case ## Migration Guide Bevy feature multi-threaded should be refered to multi_threaded from now on. |
||
Patrick Walton
|
77ed72bc16
|
Implement clearcoat per the Filament and the KHR_materials_clearcoat specifications. (#13031)
Clearcoat is a separate material layer that represents a thin translucent layer of a material. Examples include (from the [Filament spec]) car paint, soda cans, and lacquered wood. This commit implements support for clearcoat following the Filament and Khronos specifications, marking the beginnings of support for multiple PBR layers in Bevy. The [`KHR_materials_clearcoat`] specification describes the clearcoat support in glTF. In Blender, applying a clearcoat to the Principled BSDF node causes the clearcoat settings to be exported via this extension. As of this commit, Bevy parses and reads the extension data when present in glTF. Note that the `gltf` crate has no support for `KHR_materials_clearcoat`; this patch therefore implements the JSON semantics manually. Clearcoat is integrated with `StandardMaterial`, but the code is behind a series of `#ifdef`s that only activate when clearcoat is present. Additionally, the `pbr_feature_layer_material_textures` Cargo feature must be active in order to enable support for clearcoat factor maps, clearcoat roughness maps, and clearcoat normal maps. This approach mirrors the same pattern used by the existing transmission feature and exists to avoid running out of texture bindings on platforms like WebGL and WebGPU. Note that constant clearcoat factors and roughness values *are* supported in the browser; only the relatively-less-common maps are disabled on those platforms. This patch refactors the lighting code in `StandardMaterial` significantly in order to better support multiple layers in a natural way. That code was due for a refactor in any case, so this is a nice improvement. A new demo, `clearcoat`, has been added. It's based on [the corresponding three.js demo], but all the assets (aside from the skybox and environment map) are my original work. [Filament spec]: https://google.github.io/filament/Filament.html#materialsystem/clearcoatmodel [`KHR_materials_clearcoat`]: https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_materials_clearcoat/README.md [the corresponding three.js demo]: https://threejs.org/examples/webgl_materials_physical_clearcoat.html ![Screenshot 2024-04-19 101143](https://github.com/bevyengine/bevy/assets/157897/3444bcb5-5c20-490c-b0ad-53759bd47ae2) ![Screenshot 2024-04-19 102054](https://github.com/bevyengine/bevy/assets/157897/6e953944-75b8-49ef-bc71-97b0a53b3a27) ## Changelog ### Added * `StandardMaterial` now supports a clearcoat layer, which represents a thin translucent layer over an underlying material. * The glTF loader now supports the `KHR_materials_clearcoat` extension, representing materials with clearcoat layers. ## Migration Guide * The lighting functions in the `pbr_lighting` WGSL module now have clearcoat parameters, if `STANDARD_MATERIAL_CLEARCOAT` is defined. * The `R` reflection vector parameter has been removed from some lighting functions, as it was unused. |
||
Brezak
|
423a4732c3
|
Update compile test to use ui_test 0.23 (#13245)
# Objective Closes #13241 ## Solution Update test utils to use `ui_test` 0.23.0. ## Testing - Run compile tests for bevy_ecs. cc @BD103 |
||
Vitaliy Sapronenko
|
088960f597
|
Example with repeated texture (#13176)
# Objective Fixes #11136 . Fixes https://github.com/bevyengine/bevy/pull/11161. ## Solution - Set image sampler with repeated mode for u and v - set uv_transform of StandardMaterial to resizing params ## Testing Got this view on example run ![image](https://github.com/bevyengine/bevy/assets/17225606/a5f7c414-7966-4c31-97e1-320241ddc75b) |
||
Gino Valente
|
40837501b4
|
examples: Add Dynamic Types reflection example (#13220)
# Objective Dynamic types can be tricky to understand and work with in bevy_reflect. There should be an example that shows what they are and how they're used. ## Solution Add a `Dynamic Types` reflection example. I'm planning to go through the reflection examples, adding new ones and updating old ones. And I think this walkthrough style tends to work best. Due to the amount of text and associated explanation, it might fit better in a dedicated reflection chapter of the WIP Bevy Book. However, I think it might be valuable to have some public-facing tutorials for these concepts. Let me know if there any thoughts or critiques with the example— both in content and this overall structure! ## Testing To test these changes, you can run the example locally: ``` cargo run --example dynamic_types ``` --- ## Changelog - Add `Dynamic Types` reflection example |
||
Bram Buurlage
|
d390420093
|
Implement Auto Exposure plugin (#12792)
# Objective - Add auto exposure/eye adaptation to the bevy render pipeline. - Support features that users might expect from other engines: - Metering masks - Compensation curves - Smooth exposure transitions This PR is based on an implementation I already built for a personal project before https://github.com/bevyengine/bevy/pull/8809 was submitted, so I wasn't able to adopt that PR in the proper way. I've still drawn inspiration from it, so @fintelia should be credited as well. ## Solution An auto exposure compute shader builds a 64 bin histogram of the scene's luminance, and then adjusts the exposure based on that histogram. Using a histogram allows the system to ignore outliers like shadows and specular highlights, and it allows to give more weight to certain areas based on a mask. --- ## Changelog - Added: AutoExposure plugin that allows to adjust a camera's exposure based on it's scene's luminance. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
BD103
|
bdb4899978
|
Move compile fail tests (#13196)
# Objective
- Follow-up of #13184 :)
- We use `ui_test` to test compiler errors for our custom macros.
- There are four crates related to compile fail tests
- `bevy_ecs_compile_fail_tests`, `bevy_macros_compile_fail_tests`, and
`bevy_reflect_compile_fail_tests`, which actually test the macros.
-
[`bevy_compile_test_utils`](
|
||
Patrick Walton
|
31835ff76d
|
Implement visibility ranges, also known as hierarchical levels of detail (HLODs). (#12916)
Implement visibility ranges, also known as hierarchical levels of detail (HLODs). This commit introduces a new component, `VisibilityRange`, which allows developers to specify camera distances in which meshes are to be shown and hidden. Hiding meshes happens early in the rendering pipeline, so this feature can be used for level of detail optimization. Additionally, this feature is properly evaluated per-view, so different views can show different levels of detail. This feature differs from proper mesh LODs, which can be implemented later. Engines generally implement true mesh LODs later in the pipeline; they're typically more efficient than HLODs with GPU-driven rendering. However, mesh LODs are more limited than HLODs, because they require the lower levels of detail to be meshes with the same vertex layout and shader (and perhaps the same material) as the original mesh. Games often want to use objects other than meshes to replace distant models, such as *octahedral imposters* or *billboard imposters*. The reason why the feature is called *hierarchical level of detail* is that HLODs can replace multiple meshes with a single mesh when the camera is far away. This can be useful for reducing drawcall count. Note that `VisibilityRange` doesn't automatically propagate down to children; it must be placed on every mesh. Crossfading between different levels of detail is supported, using the standard 4x4 ordered dithering pattern from [1]. The shader code to compute the dithering patterns should be well-optimized. The dithering code is only active when visibility ranges are in use for the mesh in question, so that we don't lose early Z. Cascaded shadow maps show the HLOD level of the view they're associated with. Point light and spot light shadow maps, which have no CSMs, display all HLOD levels that are visible in any view. To support this efficiently and avoid doing visibility checks multiple times, we precalculate all visible HLOD levels for each entity with a `VisibilityRange` during the `check_visibility_range` system. A new example, `visibility_range`, has been added to the tree, as well as a new low-poly version of the flight helmet model to go with it. It demonstrates use of the visibility range feature to provide levels of detail. [1]: https://en.wikipedia.org/wiki/Ordered_dithering#Threshold_map [^1]: Unreal doesn't have a feature that exactly corresponds to visibility ranges, but Unreal's HLOD system serves roughly the same purpose. ## Changelog ### Added * A new `VisibilityRange` component is available to conditionally enable entity visibility at camera distances, with optional crossfade support. This can be used to implement different levels of detail (LODs). ## Screenshots High-poly model: ![Screenshot 2024-04-09 185541](https://github.com/bevyengine/bevy/assets/157897/7e8be017-7187-4471-8866-974e2d8f2623) Low-poly model up close: ![Screenshot 2024-04-09 185546](https://github.com/bevyengine/bevy/assets/157897/429603fe-6bb7-4246-8b4e-b4888fd1d3a0) Crossfading between the two: ![Screenshot 2024-04-09 185604](https://github.com/bevyengine/bevy/assets/157897/86d0d543-f8f3-49ec-8fe5-caa4d0784fd4) --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
François Mockers
|
1c15ac647a
|
Example setup for tooling (#13088)
# Objective - #12755 introduced the need to download a file to run an example - This means the example fails to run in CI without downloading that file ## Solution - Add a new metadata to examples "setup" that provides setup instructions - Replace the URL in the meshlet example to one that can actually be downloaded - example-showcase execute the setup before running an example |
||
Lee-Orr
|
b8832dc862
|
Computed State & Sub States (#11426)
## Summary/Description This PR extends states to allow support for a wider variety of state types and patterns, by providing 3 distinct types of state: - Standard [`States`] can only be changed by manually setting the [`NextState<S>`] resource. These states are the baseline on which the other state types are built, and can be used on their own for many simple patterns. See the [state example](https://github.com/bevyengine/bevy/blob/latest/examples/ecs/state.rs) for a simple use case - these are the states that existed so far in Bevy. - [`SubStates`] are children of other states - they can be changed manually using [`NextState<S>`], but are removed from the [`World`] if the source states aren't in the right state. See the [sub_states example](https://github.com/lee-orr/bevy/blob/derived_state/examples/ecs/sub_states.rs) for a simple use case based on the derive macro, or read the trait docs for more complex scenarios. - [`ComputedStates`] are fully derived from other states - they provide a [`compute`](ComputedStates::compute) method that takes in the source states and returns their derived value. They are particularly useful for situations where a simplified view of the source states is necessary - such as having an `InAMenu` computed state derived from a source state that defines multiple distinct menus. See the [computed state example](https://github.com/lee-orr/bevy/blob/derived_state/examples/ecs/computed_states.rscomputed_states.rs) to see a sampling of uses for these states. # Objective This PR is another attempt at allowing Bevy to better handle complex state objects in a manner that doesn't rely on strict equality. While my previous attempts (https://github.com/bevyengine/bevy/pull/10088 and https://github.com/bevyengine/bevy/pull/9957) relied on complex matching capacities at the point of adding a system to application, this one instead relies on deterministically deriving simple states from more complex ones. As a result, it does not require any special macros, nor does it change any other interactions with the state system once you define and add your derived state. It also maintains a degree of distinction between `State` and just normal application state - your derivations have to end up being discreet pre-determined values, meaning there is less of a risk/temptation to place a significant amount of logic and data within a given state. ### Addition - Sub States closes #9942 After some conversation with Maintainers & SMEs, a significant concern was that people might attempt to use this feature as if it were sub-states, and find themselves unable to use it appropriately. Since `ComputedState` is mainly a state matching feature, while `SubStates` are more of a state mutation related feature - but one that is easy to add with the help of the machinery introduced by `ComputedState`, it was added here as well. The relevant discussion is here: https://discord.com/channels/691052431525675048/1200556329803186316 ## Solution closes #11358 The solution is to create a new type of state - one implementing `ComputedStates` - which is deterministically tied to one or more other states. Implementors write a function to transform the source states into the computed state, and it gets triggered whenever one of the source states changes. In addition, we added the `FreelyMutableState` trait , which is implemented as part of the derive macro for `States`. This allows us to limit use of `NextState<S>` to states that are actually mutable, preventing mis-use of `ComputedStates`. --- ## Changelog - Added `ComputedStates` trait - Added `FreelyMutableState` trait - Converted `NextState` resource to an Enum, with `Unchanged` and `Pending` - Added `App::add_computed_state::<S: ComputedStates>()`, to allow for easily adding derived states to an App. - Moved the `StateTransition` schedule label from `bevy_app` to `bevy_ecs` - but maintained the export in `bevy_app` for continuity. - Modified the process for updating states. Instead of just having an `apply_state_transition` system that can be added anywhere, we now have a multi-stage process that has to run within the `StateTransition` label. First, all the state changes are calculated - manual transitions rely on `apply_state_transition`, while computed transitions run their computation process before both call `internal_apply_state_transition` to apply the transition, send out the transition event, trigger dependent states, and record which exit/transition/enter schedules need to occur. Once all the states have been updated, the transition schedules are called - first the exit schedules, then transition schedules and finally enter schedules. - Added `SubStates` trait - Adjusted `apply_state_transition` to be a no-op if the `State<S>` resource doesn't exist ## Migration Guide If the user accessed the NextState resource's value directly or created them from scratch they will need to adjust to use the new enum variants: - if they created a `NextState(Some(S))` - they should now use `NextState::Pending(S)` - if they created a `NextState(None)` -they should now use `NextState::Unchanged` - if they matched on the `NextState` value, they would need to make the adjustments above If the user manually utilized `apply_state_transition`, they should instead use systems that trigger the `StateTransition` schedule. --- ## Future Work There is still some future potential work in the area, but I wanted to keep these potential features and changes separate to keep the scope here contained, and keep the core of it easy to understand and use. However, I do want to note some of these things, both as inspiration to others and an illustration of what this PR could unlock. - `NextState::Remove` - Now that the `State` related mechanisms all utilize options (#11417), it's fairly easy to add support for explicit state removal. And while `ComputedStates` can add and remove themselves, right now `FreelyMutableState`s can't be removed from within the state system. While it existed originally in this PR, it is a different question with a separate scope and usability concerns - so having it as it's own future PR seems like the best approach. This feature currently lives in a separate branch in my fork, and the differences between it and this PR can be seen here: https://github.com/lee-orr/bevy/pull/5 - `NextState::ReEnter` - this would allow you to trigger exit & entry systems for the current state type. We can potentially also add a `NextState::ReEnterRecirsive` to also re-trigger any states that depend on the current one. - More mechanisms for `State` updates - This PR would finally make states that aren't a set of exclusive Enums useful, and with that comes the question of setting state more effectively. Right now, to update a state you either need to fully create the new state, or include the `Res<Option<State<S>>>` resource in your system, clone the state, mutate it, and then use `NextState.set(my_mutated_state)` to make it the pending next state. There are a few other potential methods that could be implemented in future PRs: - Inverse Compute States - these would essentially be compute states that have an additional (manually defined) function that can be used to nudge the source states so that they result in the computed states having a given value. For example, you could use set the `IsPaused` state, and it would attempt to pause or unpause the game by modifying the `AppState` as needed. - Closure-based state modification - this would involve adding a `NextState.modify(f: impl Fn(Option<S> -> Option<S>)` method, and then you can pass in closures or function pointers to adjust the state as needed. - Message-based state modification - this would involve either creating states that can respond to specific messages, similar to Elm or Redux. These could either use the `NextState` mechanism or the Event mechanism. - ~`SubStates` - which are essentially a hybrid of computed and manual states. In the simplest (and most likely) version, they would work by having a computed element that determines whether the state should exist, and if it should has the capacity to add a new version in, but then any changes to it's content would be freely mutated.~ this feature is now part of this PR. See above. - Lastly, since states are getting more complex there might be value in moving them out of `bevy_ecs` and into their own crate, or at least out of the `schedule` module into a `states` module. #11087 As mentioned, all these future work elements are TBD and are explicitly not part of this PR - I just wanted to provide them as potential explorations for the future. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Marcel Champagne <voiceofmarcel@gmail.com> Co-authored-by: MiniaczQ <xnetroidpl@gmail.com> |
||
BD103
|
e357b63448
|
Add README.md to all crates (#13184)
# Objective - `README.md` is a common file that usually gives an overview of the folder it is in. - When on <https://crates.io>, `README.md` is rendered as the main description. - Many crates in this repository are lacking `README.md` files, which makes it more difficult to understand their purpose. <img width="1552" alt="image" src="https://github.com/bevyengine/bevy/assets/59022059/78ebf91d-b0c4-4b18-9874-365d6310640f"> - There are also a few inconsistencies with `README.md` files that this PR and its follow-ups intend to fix. ## Solution - Create a `README.md` file for all crates that do not have one. - This file only contains the title of the crate (underscores removed, proper capitalization, acronyms expanded) and the <https://shields.io> badges. - Remove the `readme` field in `Cargo.toml` for `bevy` and `bevy_reflect`. - This field is redundant because [Cargo automatically detects `README.md` files](https://doc.rust-lang.org/cargo/reference/manifest.html#the-readme-field). The field is only there if you name it something else, like `INFO.md`. - Fix capitalization of `bevy_utils`'s `README.md`. - It was originally `Readme.md`, which is inconsistent with the rest of the project. - I created two commits renaming it to `README.md`, because Git appears to be case-insensitive. - Expand acronyms in title of `bevy_ptr` and `bevy_utils`. - In the commit where I created all the new `README.md` files, I preferred using expanded acronyms in the titles. (E.g. "Bevy Developer Tools" instead of "Bevy Dev Tools".) - This commit changes the title of existing `README.md` files to follow the same scheme. - I do not feel strongly about this change, please comment if you disagree and I can revert it. - Add <https://shields.io> badges to `bevy_time` and `bevy_transform`, which are the only crates currently lacking them. --- ## Changelog - Added `README.md` files to all crates missing it. |
||
Patrick Walton
|
961b24deaf
|
Implement filmic color grading. (#13121)
This commit expands Bevy's existing tonemapping feature to a complete set of filmic color grading tools, matching those of engines like Unity, Unreal, and Godot. The following features are supported: * White point adjustment. This is inspired by Unity's implementation of the feature, but simplified and optimized. *Temperature* and *tint* control the adjustments to the *x* and *y* chromaticity values of [CIE 1931]. Following Unity, the adjustments are made relative to the [D65 standard illuminant] in the [LMS color space]. * Hue rotation. This simply converts the RGB value to [HSV], alters the hue, and converts back. * Color correction. This allows the *gamma*, *gain*, and *lift* values to be adjusted according to the standard [ASC CDL combined function]. * Separate color correction for shadows, midtones, and highlights. Blender's source code was used as a reference for the implementation of this. The midtone ranges can be adjusted by the user. To avoid abrupt color changes, a small crossfade is used between the different sections of the image, again following Blender's formulas. A new example, `color_grading`, has been added, offering a GUI to change all the color grading settings. It uses the same test scene as the existing `tonemapping` example, which has been factored out into a shared glTF scene. [CIE 1931]: https://en.wikipedia.org/wiki/CIE_1931_color_space [D65 standard illuminant]: https://en.wikipedia.org/wiki/Standard_illuminant#Illuminant_series_D [LMS color space]: https://en.wikipedia.org/wiki/LMS_color_space [HSV]: https://en.wikipedia.org/wiki/HSL_and_HSV [ASC CDL combined function]: https://en.wikipedia.org/wiki/ASC_CDL#Combined_Function ## Changelog ### Added * Many new filmic color grading options have been added to the `ColorGrading` component. ## Migration Guide * `ColorGrading::gamma` and `ColorGrading::pre_saturation` are now set separately for the `shadows`, `midtones`, and `highlights` sections. You can migrate code with the `ColorGrading::all_sections` and `ColorGrading::all_sections_mut` functions, which access and/or update all sections at once. * `ColorGrading::post_saturation` and `ColorGrading::exposure` are now fields of `ColorGrading::global`. ## Screenshots ![Screenshot 2024-04-27 143144](https://github.com/bevyengine/bevy/assets/157897/c1de5894-917d-4101-b5c9-e644d141a941) ![Screenshot 2024-04-27 143216](https://github.com/bevyengine/bevy/assets/157897/da393c8a-d747-42f5-b47c-6465044c788d) |