Commit graph

7 commits

Author SHA1 Message Date
ickshonpe
6f7d0e5725
split up TextStyle (#15857)
# Objective

Currently text is recomputed unnecessarily on any changes to its color,
which is extremely expensive.

## Solution
Split up `TextStyle` into two separate components `TextFont` and
`TextColor`.

## Testing

I added this system to `many_buttons`:
```rust
fn set_text_colors_changed(mut colors: Query<&mut TextColor>) {
    for mut text_color in colors.iter_mut() {
        text_color.set_changed();
    }
}
```

reports ~4fps on main, ~50fps with this PR.

## Migration Guide
`TextStyle` has been renamed to `TextFont` and its `color` field has
been moved to a separate component named `TextColor` which newtypes
`Color`.
2024-10-13 17:06:22 +00:00
UkoeHB
a6be9b4ccd
Rename TextBlock to TextLayout (#15797)
# Objective

- Improve clarity when spawning a text block. See [this
discussion](https://github.com/bevyengine/bevy/pull/15591/#discussion_r1787083571).

## Solution

- Rename `TextBlock` to `TextLayout`.
2024-10-09 20:58:27 +00:00
UkoeHB
c2c19e5ae4
Text rework (#15591)
**Ready for review. Examples migration progress: 100%.**

# Objective

- Implement https://github.com/bevyengine/bevy/discussions/15014

## Solution

This implements [cart's
proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459)
faithfully except for one change. I separated `TextSpan` from
`TextSpan2d` because `TextSpan` needs to require the `GhostNode`
component, which is a `bevy_ui` component only usable by UI.

Extra changes:
- Added `EntityCommands::commands_mut` that returns a mutable reference.
This is a blocker for extension methods that return something other than
`self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable
reference for this reason.

## Testing

- [x] Text examples all work.

---

## Showcase

TODO: showcase-worthy

## Migration Guide

TODO: very breaking

### Accessing text spans by index

Text sections are now text sections on different entities in a
hierarchy, Use the new `TextReader` and `TextWriter` system parameters
to access spans by index.

Before:
```rust
fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) {
    let text = query.single_mut();
    text.sections[1].value = format_time(time.elapsed());
}
```

After:
```rust
fn refresh_text(
    query: Query<Entity, With<TimeText>>,
    mut writer: UiTextWriter,
    time: Res<Time>
) {
    let entity = query.single();
    *writer.text(entity, 1) = format_time(time.elapsed());
}
```

### Iterating text spans

Text spans are now entities in a hierarchy, so the new `UiTextReader`
and `UiTextWriter` system parameters provide ways to iterate that
hierarchy. The `UiTextReader::iter` method will give you a normal
iterator over spans, and `UiTextWriter::for_each` lets you visit each of
the spans.

---------

Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
Tim
700123ec64
Replace Handle<AnimationGraph> component with a wrapper (#15742)
# Objective

- Closes #15717 

## Solution

- Wrap the handle in a new wrapper component: `AnimationGraphHandle`.

## Testing

Searched for all instances of `AnimationGraph` in the examples and
updated and tested those

## Migration Guide

`Handle<AnimationGraph>` is no longer a component. Instead, use the
`AnimationGraphHandle` component which contains a
`Handle<AnimationGraph>`.
2024-10-08 22:41:24 +00:00
Joona Aalto
25bfa80e60
Migrate cameras to required components (#15641)
# Objective

Yet another PR for migrating stuff to required components. This time,
cameras!

## Solution

As per the [selected
proposal](https://hackmd.io/tsYID4CGRiWxzsgawzxG_g#Combined-Proposal-1-Selected),
deprecate `Camera2dBundle` and `Camera3dBundle` in favor of `Camera2d`
and `Camera3d`.

Adding a `Camera` without `Camera2d` or `Camera3d` now logs a warning,
as suggested by Cart [on
Discord](https://discord.com/channels/691052431525675048/1264881140007702558/1291506402832945273).
I would personally like cameras to work a bit differently and be split
into a few more components, to avoid some footguns and confusing
semantics, but that is more controversial, and shouldn't block this core
migration.

## Testing

I ran a few 2D and 3D examples, and tried cameras with and without
render graphs.

---

## Migration Guide

`Camera2dBundle` and `Camera3dBundle` have been deprecated in favor of
`Camera2d` and `Camera3d`. Inserting them will now also insert the other
components required by them automatically.
2024-10-05 01:59:52 +00:00
Matty
429987ebf8
Curve-based animation (#15434)
# Objective

This PR extends and reworks the material from #15282 by allowing
arbitrary curves to be used by the animation system to animate arbitrary
properties. The goals of this work are to:
- Allow far greater flexibility in how animations are allowed to be
defined in order to be used with `bevy_animation`.
- Delegate responsibility over keyframe interpolation to `bevy_math` and
the `Curve` libraries and reduce reliance on keyframes in animation
definitions generally.
- Move away from allowing the glTF spec to completely define animations
on a mechanical level.

## Solution

### Overview

At a high level, curves have been incorporated into the animation system
using the `AnimationCurve` trait (closely related to what was
`Keyframes`). From the top down:

1. In `animate_targets`, animations are driven by `VariableCurve`, which
is now a thin wrapper around a `Box<dyn AnimationCurve>`.
2. `AnimationCurve` is something built out of a `Curve`, and it tells
the animation system how to use the curve's output to actually mutate
component properties. The trait looks like this:
```rust
/// A low-level trait that provides control over how curves are actually applied to entities
/// by the animation system.
///
/// Typically, this will not need to be implemented manually, since it is automatically
/// implemented by [`AnimatableCurve`] and other curves used by the animation system
/// (e.g. those that animate parts of transforms or morph weights). However, this can be
/// implemented manually when `AnimatableCurve` is not sufficiently expressive.
///
/// In many respects, this behaves like a type-erased form of [`Curve`], where the output
/// type of the curve is remembered only in the components that are mutated in the
/// implementation of [`apply`].
///
/// [`apply`]: AnimationCurve::apply
pub trait AnimationCurve: Reflect + Debug + Send + Sync {
    /// Returns a boxed clone of this value.
    fn clone_value(&self) -> Box<dyn AnimationCurve>;

    /// The range of times for which this animation is defined.
    fn domain(&self) -> Interval;

    /// Write the value of sampling this curve at time `t` into `transform` or `entity`,
    /// as appropriate, interpolating between the existing value and the sampled value
    /// using the given `weight`.
    fn apply<'a>(
        &self,
        t: f32,
        transform: Option<Mut<'a, Transform>>,
        entity: EntityMutExcept<'a, (Transform, AnimationPlayer, Handle<AnimationGraph>)>,
        weight: f32,
    ) -> Result<(), AnimationEvaluationError>;
}
```
3. The conversion process from a `Curve` to an `AnimationCurve` involves
using wrappers which communicate the intent to animate a particular
property. For example, here is `TranslationCurve`, which wraps a
`Curve<Vec3>` and uses it to animate `Transform::translation`:
```rust
/// This type allows a curve valued in `Vec3` to become an [`AnimationCurve`] that animates
/// the translation component of a transform.
pub struct TranslationCurve<C>(pub C);
```

### Animatable Properties

The `AnimatableProperty` trait survives in the transition, and it can be
used to allow curves to animate arbitrary component properties. The
updated documentation for `AnimatableProperty` explains this process:
<details>
  <summary>Expand AnimatableProperty example</summary

An `AnimatableProperty` is a value on a component that Bevy can animate.

You can implement this trait on a unit struct in order to support
animating
custom components other than transforms and morph weights. Use that type
in
conjunction with `AnimatableCurve` (and perhaps
`AnimatableKeyframeCurve`
to define the animation itself). For example, in order to animate font
size of a
text section from 24 pt. to 80 pt., you might use:

```rust
#[derive(Reflect)]
struct FontSizeProperty;

impl AnimatableProperty for FontSizeProperty {
    type Component = Text;
    type Property = f32;
    fn get_mut(component: &mut Self::Component) -> Option<&mut Self::Property> {
        Some(&mut component.sections.get_mut(0)?.style.font_size)
    }
}
```

You can then create an `AnimationClip` to animate this property like so:

```rust
let mut animation_clip = AnimationClip::default();
animation_clip.add_curve_to_target(
    animation_target_id,
    AnimatableKeyframeCurve::new(
        [
            (0.0, 24.0),
            (1.0, 80.0),
        ]
    )
    .map(AnimatableCurve::<FontSizeProperty, _>::from_curve)
    .expect("Failed to create font size curve")
);
```

Here, the use of `AnimatableKeyframeCurve` creates a curve out of the
given keyframe time-value
pairs, using the `Animatable` implementation of `f32` to interpolate
between them. The
invocation of `AnimatableCurve::from_curve` with `FontSizeProperty`
indicates that the `f32`
output from that curve is to be used to animate the font size of a
`Text` component (as
configured above).


</details>

### glTF Loading

glTF animations are now loaded into `Curve` types of various kinds,
depending on what is being animated and what interpolation mode is being
used. Those types get wrapped into and converted into `Box<dyn
AnimationCurve>` and shoved inside of a `VariableCurve` just like
everybody else.

### Morph Weights

There is an `IterableCurve` abstraction which allows sampling these from
a contiguous buffer without allocating. Its only reason for existing is
that Rust disallows you from naming function types, otherwise we would
just use `Curve` with an iterator output type. (The iterator involves
`Map`, and the name of the function type would have to be able to be
named, but it is not.)

A `WeightsCurve` adaptor turns an `IterableCurve` into an
`AnimationCurve`, so it behaves like everything else in that regard.

## Testing

Tested by running existing animation examples. Interpolation logic has
had additional tests added within the `Curve` API to replace the tests
in `bevy_animation`. Some kinds of out-of-bounds errors have become
impossible.

Performance testing on `many_foxes` (`animate_targets`) suggests that
performance is very similar to the existing implementation. Here are a
couple trace histograms across different runs (yellow is this branch,
red is main).
<img width="669" alt="Screenshot 2024-09-27 at 9 41 50 AM"
src="https://github.com/user-attachments/assets/5ba4e9ac-3aea-452e-aaf8-1492acc2d7fc">
<img width="673" alt="Screenshot 2024-09-27 at 9 45 18 AM"
src="https://github.com/user-attachments/assets/8982538b-04cf-46b5-97b2-164c6bc8162e">

---

## Migration Guide

Most user code that does not directly deal with `AnimationClip` and
`VariableCurve` will not need to be changed. On the other hand,
`VariableCurve` has been completely overhauled. If you were previously
defining animation curves in code using keyframes, you will need to
migrate that code to use curve constructors instead. For example, a
rotation animation defined using keyframes and added to an animation
clip like this:
```rust
animation_clip.add_curve_to_target(
    animation_target_id,
    VariableCurve {
        keyframe_timestamps: vec![0.0, 1.0, 2.0, 3.0, 4.0],
        keyframes: Keyframes::Rotation(vec![
            Quat::IDENTITY,
            Quat::from_axis_angle(Vec3::Y, PI / 2.),
            Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.),
            Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.),
            Quat::IDENTITY,
        ]),
        interpolation: Interpolation::Linear,
    },
);
```

would now be added like this:
```rust
animation_clip.add_curve_to_target(
    animation_target_id,
    AnimatableKeyframeCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([
        Quat::IDENTITY,
        Quat::from_axis_angle(Vec3::Y, PI / 2.),
        Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.),
        Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.),
        Quat::IDENTITY,
    ]))
    .map(RotationCurve)
    .expect("Failed to build rotation curve"),
);
```

Note that the interface of `AnimationClip::add_curve_to_target` has also
changed (as this example shows, if subtly), and now takes its curve
input as an `impl AnimationCurve`. If you need to add a `VariableCurve`
directly, a new method `add_variable_curve_to_target` accommodates that
(and serves as a one-to-one migration in this regard).

### For reviewers

The diff is pretty big, and the structure of some of the changes might
not be super-obvious:
- `keyframes.rs` became `animation_curves.rs`, and `AnimationCurve` is
based heavily on `Keyframes`, with the adaptors also largely following
suite.
- The Curve API adaptor structs were moved from `bevy_math::curve::mod`
into their own module `adaptors`. There are no functional changes to how
these adaptors work; this is just to make room for the specialized
reflection implementations since `mod.rs` was getting kind of cramped.
- The new module `gltf_curves` holds the additional curve constructions
that are needed by the glTF loader. Note that the loader uses a mix of
these and off-the-shelf `bevy_math` curve stuff.
- `animatable.rs` no longer holds logic related to keyframe
interpolation, which is now delegated to the existing abstractions in
`bevy_math::curve::cores`.

---------

Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
Co-authored-by: aecsocket <43144841+aecsocket@users.noreply.github.com>
2024-09-30 19:56:55 +00:00
Patrick Walton
8154164f1b
Allow animation clips to animate arbitrary properties. (#15282)
Currently, Bevy restricts animation clips to animating
`Transform::translation`, `Transform::rotation`, `Transform::scale`, or
`MorphWeights`, which correspond to the properties that glTF can
animate. This is insufficient for many use cases such as animating UI,
as the UI layout systems expect to have exclusive control over UI
elements' `Transform`s and therefore the `Style` properties must be
animated instead.

This commit fixes this, allowing for `AnimationClip`s to animate
arbitrary properties. The `Keyframes` structure has been turned into a
low-level trait that can be implemented to achieve arbitrary animation
behavior. Along with `Keyframes`, this patch adds a higher-level trait,
`AnimatableProperty`, that simplifies the task of animating single
interpolable properties. Built-in `Keyframes` implementations exist for
translation, rotation, scale, and morph weights. For the most part, you
can migrate by simply changing your code from
`Keyframes::Translation(...)` to `TranslationKeyframes(...)`, and
likewise for rotation, scale, and morph weights.

An example `AnimatableProperty` implementation for the font size of a
text section follows:

     #[derive(Reflect)]
     struct FontSizeProperty;

     impl AnimatableProperty for FontSizeProperty {
         type Component = Text;
         type Property = f32;
fn get_mut(component: &mut Self::Component) -> Option<&mut
Self::Property> {
             Some(&mut component.sections.get_mut(0)?.style.font_size)
         }
     }

In order to keep this patch relatively small, this patch doesn't include
an implementation of `AnimatableProperty` on top of the reflection
system. That can be a follow-up.

This patch builds on top of the new `EntityMutExcept<>` type in order to
widen the `AnimationTarget` query to include write access to all
components. Because `EntityMutExcept<>` has some performance overhead
over an explicit query, we continue to explicitly query `Transform` in
order to avoid regressing the performance of skeletal animation, such as
the `many_foxes` benchmark. I've measured the performance of that
benchmark and have found no significant regressions.

A new example, `animated_ui`, has been added. This example shows how to
use Bevy's built-in animation infrastructure to animate font size and
color, which wasn't possible before this patch.

## Showcase


https://github.com/user-attachments/assets/1fa73492-a9ce-405a-a8f2-4aacd7f6dc97

## Migration Guide

* Animation keyframes are now an extensible trait, not an enum. Replace
`Keyframes::Translation(...)`, `Keyframes::Scale(...)`,
`Keyframes::Rotation(...)`, and `Keyframes::Weights(...)` with
`Box::new(TranslationKeyframes(...))`, `Box::new(ScaleKeyframes(...))`,
`Box::new(RotationKeyframes(...))`, and
`Box::new(MorphWeightsKeyframes(...))` respectively.
2024-09-23 17:14:12 +00:00