mirror of
https://github.com/bevyengine/bevy
synced 2024-12-29 22:43:14 +00:00
11 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Joona Aalto
|
25bfa80e60
|
Migrate cameras to required components (#15641)
# Objective Yet another PR for migrating stuff to required components. This time, cameras! ## Solution As per the [selected proposal](https://hackmd.io/tsYID4CGRiWxzsgawzxG_g#Combined-Proposal-1-Selected), deprecate `Camera2dBundle` and `Camera3dBundle` in favor of `Camera2d` and `Camera3d`. Adding a `Camera` without `Camera2d` or `Camera3d` now logs a warning, as suggested by Cart [on Discord](https://discord.com/channels/691052431525675048/1264881140007702558/1291506402832945273). I would personally like cameras to work a bit differently and be split into a few more components, to avoid some footguns and confusing semantics, but that is more controversial, and shouldn't block this core migration. ## Testing I ran a few 2D and 3D examples, and tried cameras with and without render graphs. --- ## Migration Guide `Camera2dBundle` and `Camera3dBundle` have been deprecated in favor of `Camera2d` and `Camera3d`. Inserting them will now also insert the other components required by them automatically. |
||
Joona Aalto
|
54006b107b
|
Migrate meshes and materials to required components (#15524)
# Objective A big step in the migration to required components: meshes and materials! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ): - Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle`. - Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`. - Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`, which wrap a `Handle<M>`. - Meshes *without* a mesh material should be rendered with a default material. The existence of a material is determined by `HasMaterial2d`/`HasMaterial3d`, which is required by `MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the generics. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, previously nothing was rendered. Now, it renders a white default `ColorMaterial` in 2D and a `StandardMaterial` in 3D (this can be overridden). Below, only every other entity has a material: ![Näyttökuva 2024-09-29 181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a) ![Näyttökuva 2024-09-29 181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909) Why white? This is still open for discussion, but I think white makes sense for a *default* material, while *invalid* asset handles pointing to nothing should have something like a pink material to indicate that something is broken (I don't handle that in this PR yet). This is kind of a mix of Godot and Unity: Godot just renders a white material for non-existent materials, while Unity renders nothing when no materials exist, but renders pink for invalid materials. I can also change the default material to pink if that is preferable though. ## Testing I ran some 2D and 3D examples to test if anything changed visually. I have not tested all examples or features yet however. If anyone wants to test more extensively, it would be appreciated! ## Implementation Notes - The relationship between `bevy_render` and `bevy_pbr` is weird here. `bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all of the material logic, and `bevy_render` doesn't depend on it. I feel like the two crates should be refactored in some way, but I think that's out of scope for this PR. - I didn't migrate meshlets to required components yet. That can probably be done in a follow-up, as this is already a huge PR. - It is becoming increasingly clear to me that we really, *really* want to disallow raw asset handles as components. They caused me a *ton* of headache here already, and it took me a long time to find every place that queried for them or inserted them directly on entities, since there were no compiler errors for it. If we don't remove the `Component` derive, I expect raw asset handles to be a *huge* footgun for users as we transition to wrapper components, especially as handles as components have been the norm so far. I personally consider this to be a blocker for 0.15: we need to migrate to wrapper components for asset handles everywhere, and remove the `Component` derive. Also see https://github.com/bevyengine/bevy/issues/14124. --- ## Migration Guide Asset handles for meshes and mesh materials must now be wrapped in the `Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d` components for 2D and 3D respectively. Raw handles as components no longer render meshes. Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle` have been deprecated. Instead, use the mesh and material components directly. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, a white default material is now used. Previously, nothing was rendered if the material was missing. The `WithMesh2d` and `WithMesh3d` query filter type aliases have also been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`. --------- Co-authored-by: Tim Blackbird <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Emerson Coskey
|
b04947d44f
|
Migrate bevy_transform to required components (#14964)
The first step in the migration to required components! This PR removes `GlobalTransform` from all user-facing code, since it's now added automatically wherever `Transform` is used. ## Testing - None of the examples I tested were broken, and I assume breaking transforms in any way would be visible *everywhere* --- ## Changelog - Make `Transform` require `GlobalTransform` ~~- Remove `GlobalTransform` from all engine bundles~~ - Remove in-engine insertions of GlobalTransform and TransformBundle - Deprecate `TransformBundle` - update docs to reflect changes ## Migration Guide Replace all insertions of `GlobalTransform` and/or `TransformBundle` with `Transform` alone. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Tim <JustTheCoolDude@gmail.com> |
||
Alice Cecile
|
599e5e4e76
|
Migrate from LegacyColor to bevy_color::Color (#12163)
# Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au> |
||
Alice Cecile
|
de004da8d5
|
Rename bevy_render::Color to LegacyColor (#12069)
# Objective The migration process for `bevy_color` (#12013) will be fairly involved: there will be hundreds of affected files, and a large number of APIs. ## Solution To allow us to proceed granularly, we're going to keep both `bevy_color::Color` (new) and `bevy_render::Color` (old) around until the migration is complete. However, simply doing this directly is confusing! They're both called `Color`, making it very hard to tell when a portion of the code has been ported. As discussed in #12056, by renaming the old `Color` type, we can make it easier to gradually migrate over, one API at a time. ## Migration Guide THIS MIGRATION GUIDE INTENTIONALLY LEFT BLANK. This change should not be shipped to end users: delete this section in the final migration guide! --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> |
||
Joona Aalto
|
0166db33f7
|
Deprecate shapes in bevy_render::mesh::shape (#11773)
# Objective #11431 and #11688 implemented meshing support for Bevy's new geometric primitives. The next step is to deprecate the shapes in `bevy_render::mesh::shape` and to later remove them completely for 0.14. ## Solution Deprecate the shapes and reduce code duplication by utilizing the primitive meshing API for the old shapes where possible. Note that some shapes have behavior that can't be exactly reproduced with the new primitives yet: - `Box` is more of an AABB with min/max extents - `Plane` supports a subdivision count - `Quad` has a `flipped` property These types have not been changed to utilize the new primitives yet. --- ## Changelog - Deprecated all shapes in `bevy_render::mesh::shape` - Changed all examples to use new primitives for meshing ## Migration Guide Bevy has previously used rendering-specific types like `UVSphere` and `Quad` for primitive mesh shapes. These have now been deprecated to use the geometric primitives newly introduced in version 0.13. Some examples: ```rust let before = meshes.add(shape::Box::new(5.0, 0.15, 5.0)); let after = meshes.add(Cuboid::new(5.0, 0.15, 5.0)); let before = meshes.add(shape::Quad::default()); let after = meshes.add(Rectangle::default()); let before = meshes.add(shape::Plane::from_size(5.0)); // The surface normal can now also be specified when using `new` let after = meshes.add(Plane3d::default().mesh().size(5.0, 5.0)); let before = meshes.add( Mesh::try_from(shape::Icosphere { radius: 0.5, subdivisions: 5, }) .unwrap(), ); let after = meshes.add(Sphere::new(0.5).mesh().ico(5).unwrap()); ``` |
||
Joona Aalto
|
a795de30b4
|
Use impl Into<A> for Assets::add (#10878)
# Motivation When spawning entities into a scene, it is very common to create assets like meshes and materials and to add them via asset handles. A common setup might look like this: ```rust fn setup( mut commands: Commands, mut meshes: ResMut<Assets<Mesh>>, mut materials: ResMut<Assets<StandardMaterial>>, ) { commands.spawn(PbrBundle { mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })), material: materials.add(StandardMaterial::from(Color::RED)), ..default() }); } ``` Let's take a closer look at the part that adds the assets using `add`. ```rust mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })), material: materials.add(StandardMaterial::from(Color::RED)), ``` Here, "mesh" and "material" are both repeated three times. It's very explicit, but I find it to be a bit verbose. In addition to being more code to read and write, the extra characters can sometimes also lead to the code being formatted to span multiple lines even though the core task, adding e.g. a primitive mesh, is extremely simple. A way to address this is by using `.into()`: ```rust mesh: meshes.add(shape::Cube { size: 1.0 }.into()), material: materials.add(Color::RED.into()), ``` This is fine, but from the names and the type of `meshes`, we already know what the type should be. It's very clear that `Cube` should be turned into a `Mesh` because of the context it's used in. `.into()` is just seven characters, but it's so common that it quickly adds up and gets annoying. It would be nice if you could skip all of the conversion and let Bevy handle it for you: ```rust mesh: meshes.add(shape::Cube { size: 1.0 }), material: materials.add(Color::RED), ``` # Objective Make adding assets more ergonomic by making `Assets::add` take an `impl Into<A>` instead of `A`. ## Solution `Assets::add` now takes an `impl Into<A>` instead of `A`, so e.g. this works: ```rust commands.spawn(PbrBundle { mesh: meshes.add(shape::Cube { size: 1.0 }), material: materials.add(Color::RED), ..default() }); ``` I also changed all examples to use this API, which increases consistency as well because `Mesh::from` and `into` were being used arbitrarily even in the same file. This also gets rid of some lines of code because formatting is nicer. --- ## Changelog - `Assets::add` now takes an `impl Into<A>` instead of `A` - Examples don't use `T::from(K)` or `K.into()` when adding assets ## Migration Guide Some `into` calls that worked previously might now be broken because of the new trait bounds. You need to either remove `into` or perform the conversion explicitly with `from`: ```rust // Doesn't compile let mesh_handle = meshes.add(shape::Cube { size: 1.0 }.into()), // These compile let mesh_handle = meshes.add(shape::Cube { size: 1.0 }), let mesh_handle = meshes.add(Mesh::from(shape::Cube { size: 1.0 })), ``` ## Concerns I believe the primary concerns might be: 1. Is this too implicit? 2. Does this increase codegen bloat? Previously, the two APIs were using `into` or `from`, and now it's "nothing" or `from`. You could argue that `into` is slightly more explicit than "nothing" in cases like the earlier examples where a `Color` gets converted to e.g. a `StandardMaterial`, but I personally don't think `into` adds much value even in this case, and you could still see the actual type from the asset type. As for codegen bloat, I doubt it adds that much, but I'm not very familiar with the details of codegen. I personally value the user-facing code reduction and ergonomics improvements that these changes would provide, but it might be worth checking the other effects in more detail. Another slight concern is migration pain; apps might have a ton of `into` calls that would need to be removed, and it did take me a while to do so for Bevy itself (maybe around 20-40 minutes). However, I think the fact that there *are* so many `into` calls just highlights that the API could be made nicer, and I'd gladly migrate my own projects for it. |
||
Joseph
|
02b520b4e8
|
Split ComputedVisibility into two components to allow for accurate change detection and speed up visibility propagation (#9497)
# Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> |
||
Carter Anderson
|
aefe1f0739
|
Schedule-First: the new and improved add_systems (#8079)
Co-authored-by: Mike <mike.hsu@gmail.com> |
||
Carter Anderson
|
01aedc8431 |
Spawn now takes a Bundle (#6054)
# Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ``` |
||
Nicola Papale
|
6c5403cf47 |
Add warning when a hierarchy component is missing (#5590)
# Objective A common pitfall since 0.8 is the requirement on `ComputedVisibility` being present on all ancestors of an entity that itself has `ComputedVisibility`, without which, the entity becomes invisible. I myself hit the issue and got very confused, and saw a few people hit it as well, so it makes sense to provide a hint of what to do when such a situation is encountered. - Fixes #5849 - Closes #5616 - Closes #2277 - Closes #5081 ## Solution We now check that all entities with both a `Parent` and a `ComputedVisibility` component have parents that themselves have a `ComputedVisibility` component. Note that the warning is only printed once. We also add a similar warning to `GlobalTransform`. This only emits a warning. Because sometimes it could be an intended behavior. Alternatives: - Do nothing and keep repeating to newcomers how to avoid recurring pitfalls - Make the transform and visibility propagation tolerant to missing components (#5616) - Probably archetype invariants, though the current draft would not allow detecting that kind of errors --- ## Changelog - Add a warning when encountering dubious component hierarchy structure Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com> |