# Objective
- Provide better compile-time errors and diagnostics.
- Add more options to allow more textures types and sampler types.
- Update array_texture example to use upgraded AsBindGroup derive macro.
## Solution
Split out the parsing of the inner struct/field attributes (the inside part of a `#[foo(...)]` attribute) for better clarity
Parse the binding index for all inner attributes, as it is part of all attributes (`#[foo(0, ...)`), then allow each attribute implementer to parse the rest of the attribute metadata as needed. This should make it very trivial to extend/change if needed in the future.
Replaced invocations of `panic!` with the `syn::Error` type, providing fine-grained errors that retains span information. This provides much nicer compile-time errors, and even better IDE errors.
![image](https://user-images.githubusercontent.com/7478134/179452241-6d85d440-4b67-44da-80a7-9d47e8c88b8a.png)
Updated the array_texture example to demonstrate the new changes.
## New AsBindGroup attribute options
### `#[texture(u32, ...)]`
Where `...` is an optional list of arguments.
| Arguments | Values | Default |
|-------------- |---------------------------------------------------------------- | ----------- |
| dimension = "..." | `"1d"`, `"2d"`, `"2d_array"`, `"3d"`, `"cube"`, `"cube_array"` | `"2d"` |
| sample_type = "..." | `"float"`, `"depth"`, `"s_int"` or `"u_int"` | `"float"` |
| filterable = ... | `true`, `false` | `true` |
| multisampled = ... | `true`, `false` | `false` |
| visibility(...) | `all`, `none`, or a list-combination of `vertex`, `fragment`, `compute` | `vertex`, `fragment` |
Example: `#[texture(0, dimension = "2d_array", visibility(vertex, fragment))]`
### `#[sampler(u32, ...)]`
Where `...` is an optional list of arguments.
| Arguments | Values | Default |
|----------- |--------------------------------------------------- | ----------- |
| sampler_type = "..." | `"filtering"`, `"non_filtering"`, `"comparison"`. | `"filtering"` |
| visibility(...) | `all`, `none`, or a list-combination of `vertex`, `fragment`, `compute` | `vertex`, `fragment` |
Example: `#[sampler(0, sampler_type = "filtering", visibility(vertex, fragment)]`
## Changelog
- Added more options to `#[texture(...)]` and `#[sampler(...)]` attributes, supporting more kinds of materials. See above for details.
- Upgraded IDE and compile-time error messages.
- Updated array_texture example using the new options.
# Objective
- Help user when they need to add both a `TransformBundle` and a `VisibilityBundle`
## Solution
- Add a `SpatialBundle` adding all components
Birbs no longer bounce too low, not coming close to their true bouncy potential.
Birbs also no longer bonk head when window is smaller. (Will still bonk head when window is made smaller too fast! pls no)
*cough cough*
Make the height of the birb-bounces dependent on the window size so they always bounce elegantly towards the top of the window.
Also no longer panics when closing the window q:
~~Might put a video here if I figure out how to.~~
<sup> rendering video is hard. birbrate go brr
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
- Add capability to use `Affine3A`s for some `GlobalTransform`s. This allows affine transformations that are not possible using a single `Transform` such as shear and non-uniform scaling along an arbitrary axis.
- Related to #1755 and #2026
## Solution
- `GlobalTransform` becomes an enum wrapping either a `Transform` or an `Affine3A`.
- The API of `GlobalTransform` is minimized to avoid inefficiency, and to make it clear that operations should be performed using the underlying data types.
- using `GlobalTransform::Affine3A` disables transform propagation, because the main use is for cases that `Transform`s cannot support.
---
## Changelog
- `GlobalTransform`s can optionally support any affine transformation using an `Affine3A`.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Port changes made to Material in #5053 to Material2d as well.
This is more or less an exact copy of the implementation in bevy_pbr; I
simply pretended the API existed, then copied stuff over until it
started building and the shapes example was working again.
# Objective
The changes in #5053 makes it possible to add custom materials with a lot less boiler plate. However, the implementation isn't shared with Material 2d as it's a kind of fork of the bevy_pbr version. It should be possible to use AsBindGroup on the 2d version as well.
## Solution
This makes the same kind of changes in Material2d in bevy_sprite.
This makes the following work:
```rust
//! Draws a circular purple bevy in the middle of the screen using a custom shader
use bevy::{
prelude::*,
reflect::TypeUuid,
render::render_resource::{AsBindGroup, ShaderRef},
sprite::{Material2d, Material2dPlugin, MaterialMesh2dBundle},
};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_plugin(Material2dPlugin::<CustomMaterial>::default())
.add_startup_system(setup)
.run();
}
/// set up a simple 2D scene
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<CustomMaterial>>,
asset_server: Res<AssetServer>,
) {
commands.spawn_bundle(MaterialMesh2dBundle {
mesh: meshes.add(shape::Circle::new(50.).into()).into(),
material: materials.add(CustomMaterial {
color: Color::PURPLE,
color_texture: Some(asset_server.load("branding/icon.png")),
}),
transform: Transform::from_translation(Vec3::new(-100., 0., 0.)),
..default()
});
commands.spawn_bundle(Camera2dBundle::default());
}
/// The Material2d trait is very configurable, but comes with sensible defaults for all methods.
/// You only need to implement functions for features that need non-default behavior. See the Material api docs for details!
impl Material2d for CustomMaterial {
fn fragment_shader() -> ShaderRef {
"shaders/custom_material.wgsl".into()
}
}
// This is the struct that will be passed to your shader
#[derive(AsBindGroup, TypeUuid, Debug, Clone)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
pub struct CustomMaterial {
#[uniform(0)]
color: Color,
#[texture(1)]
#[sampler(2)]
color_texture: Option<Handle<Image>>,
}
```
# Objective
Fixes#4907. Fixes#838. Fixes#5089.
Supersedes #5146. Supersedes #2087. Supersedes #865. Supersedes #5114
Visibility is currently entirely local. Set a parent entity to be invisible, and the children are still visible. This makes it hard for users to hide entire hierarchies of entities.
Additionally, the semantics of `Visibility` vs `ComputedVisibility` are inconsistent across entity types. 3D meshes use `ComputedVisibility` as the "definitive" visibility component, with `Visibility` being just one data source. Sprites just use `Visibility`, which means they can't feed off of `ComputedVisibility` data, such as culling information, RenderLayers, and (added in this pr) visibility inheritance information.
## Solution
Splits `ComputedVisibilty::is_visible` into `ComputedVisibilty::is_visible_in_view` and `ComputedVisibilty::is_visible_in_hierarchy`. For each visible entity, `is_visible_in_hierarchy` is computed by propagating visibility down the hierarchy. The `ComputedVisibility::is_visible()` function combines these two booleans for the canonical "is this entity visible" function.
Additionally, all entities that have `Visibility` now also have `ComputedVisibility`. Sprites, Lights, and UI entities now use `ComputedVisibility` when appropriate.
This means that in addition to visibility inheritance, everything using Visibility now also supports RenderLayers. Notably, Sprites (and other 2d objects) now support `RenderLayers` and work properly across multiple views.
Also note that this does increase the amount of work done per sprite. Bevymark with 100,000 sprites on `main` runs in `0.017612` seconds and this runs in `0.01902`. That is certainly a gap, but I believe the api consistency and extra functionality this buys us is worth it. See [this thread](https://github.com/bevyengine/bevy/pull/5146#issuecomment-1182783452) for more info. Note that #5146 in combination with #5114 _are_ a viable alternative to this PR and _would_ perform better, but that comes at the cost of api inconsistencies and doing visibility calculations in the "wrong" place. The current visibility system does have potential for performance improvements. I would prefer to evolve that one system as a whole rather than doing custom hacks / different behaviors for each feature slice.
Here is a "split screen" example where the left camera uses RenderLayers to filter out the blue sprite.
![image](https://user-images.githubusercontent.com/2694663/178814868-2e9a2173-bf8c-4c79-8815-633899d492c3.png)
Note that this builds directly on #5146 and that @james7132 deserves the credit for the baseline visibility inheritance work. This pr moves the inherited visibility field into `ComputedVisibility`, then does the additional work of porting everything to `ComputedVisibility`. See my [comments here](https://github.com/bevyengine/bevy/pull/5146#issuecomment-1182783452) for rationale.
## Follow up work
* Now that lights use ComputedVisibility, VisibleEntities now includes "visible lights" in the entity list. Functionally not a problem as we use queries to filter the list down in the desired context. But we should consider splitting this out into a separate`VisibleLights` collection for both clarity and performance reasons. And _maybe_ even consider scoping `VisibleEntities` down to `VisibleMeshes`?.
* Investigate alternative sprite rendering impls (in combination with visibility system tweaks) that avoid re-generating a per-view fixedbitset of visible entities every frame, then checking each ExtractedEntity. This is where most of the performance overhead lives. Ex: we could generate ExtractedEntities per-view using the VisibleEntities list, avoiding the need for the bitset.
* Should ComputedVisibility use bitflags under the hood? This would cut down on the size of the component, potentially speed up the `is_visible()` function, and allow us to cheaply expand ComputedVisibility with more data (ex: split out local visibility and parent visibility, add more culling classes, etc).
---
## Changelog
* ComputedVisibility now takes hierarchy visibility into account.
* 2D, UI and Light entities now use the ComputedVisibility component.
## Migration Guide
If you were previously reading `Visibility::is_visible` as the "actual visibility" for sprites or lights, use `ComputedVisibilty::is_visible()` instead:
```rust
// before (0.7)
fn system(query: Query<&Visibility>) {
for visibility in query.iter() {
if visibility.is_visible {
log!("found visible entity");
}
}
}
// after (0.8)
fn system(query: Query<&ComputedVisibility>) {
for visibility in query.iter() {
if visibility.is_visible() {
log!("found visible entity");
}
}
}
```
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Showcase how to use a `Material` and `Mesh` to spawn 3d lines
![image](https://user-images.githubusercontent.com/8348954/179034236-ebc07f90-3eb5-46cc-8fc1-be7e6bf983fb.png)
## Solution
- Add an example using a simple `Material` and `Mesh` definition to draw a 3d line
- Shows how to use `LineList` and `LineStrip` in combination with a specialized `Material`
## Notes
This isn't just a primitive shape because it needs a special Material, but I think it's a good showcase of the power of the `Material` and `AsBindGroup` abstractions. All of this is easy to figure out when you know these options are a thing, but I think they are hard to discover which is why I think this should be an example and not shipped with bevy.
Co-authored-by: Charles <IceSentry@users.noreply.github.com>
# Objective
- Added a bunch of backticks to things that should have them, like equations, abstract variable names,
- Changed all small x, y, and z to capitals X, Y, Z.
This might be more annoying than helpful; Feel free to refuse this PR.
Remove unnecessary calls to `iter()`/`iter_mut()`.
Mainly updates the use of queries in our code, docs, and examples.
```rust
// From
for _ in list.iter() {
for _ in list.iter_mut() {
// To
for _ in &list {
for _ in &mut list {
```
We already enable the pedantic lint [clippy::explicit_iter_loop](https://rust-lang.github.io/rust-clippy/stable/) inside of Bevy. However, this only warns for a few known types from the standard library.
## Note for reviewers
As you can see the additions and deletions are exactly equal.
Maybe give it a quick skim to check I didn't sneak in a crypto miner, but you don't have to torture yourself by reading every line.
I already experienced enough pain making this PR :)
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
- Reduce confusion as the example opens a window and isn't truly "headless"
- Fixes https://github.com/bevyengine/bevy/issues/5260.
## Solution
- Rename the example and add to the docs that the window is expected.
## Objective
Implement absolute minimum viable product for the changes proposed in bevyengine/rfcs#53.
## Solution
- Remove public mutative access to `Parent` (Children is already publicly read-only). This includes public construction methods like `Copy`, `Clone`, and `Default`.
- Remove `PreviousParent`
- Remove `parent_update_system`
- Update all hierarchy related commands to immediately update both `Parent` and `Children` references.
## Remaining TODOs
- [ ] Update documentation for both `Parent` and `Children`. Discourage using `EntityCommands::remove`
- [x] Add `HierarchyEvent` to notify listeners of hierarchy updates. This is meant to replace listening on `PreviousParent`
## Followup
- These changes should be best moved to the hooks mentioned in #3742.
- Backing storage for both might be best moved to indexes mentioned in the same relations.
# Objective
- Currently, the `Extract` `RenderStage` is executed on the main world, with the render world available as a resource.
- However, when needing access to resources in the render world (e.g. to mutate them), the only way to do so was to get exclusive access to the whole `RenderWorld` resource.
- This meant that effectively only one extract which wrote to resources could run at a time.
- We didn't previously make `Extract`ing writing to the world a non-happy path, even though we want to discourage that.
## Solution
- Move the extract stage to run on the render world.
- Add the main world as a `MainWorld` resource.
- Add an `Extract` `SystemParam` as a convenience to access a (read only) `SystemParam` in the main world during `Extract`.
## Future work
It should be possible to avoid needing to use `get_or_spawn` for the render commands, since now the `Commands`' `Entities` matches up with the world being executed on.
We need to determine how this interacts with https://github.com/bevyengine/bevy/pull/3519
It's theoretically possible to remove the need for the `value` method on `Extract`. However, that requires slightly changing the `SystemParam` interface, which would make it more complicated. That would probably mess up the `SystemState` api too.
## Todo
I still need to add doc comments to `Extract`.
---
## Changelog
### Changed
- The `Extract` `RenderStage` now runs on the render world (instead of the main world as before).
You must use the `Extract` `SystemParam` to access the main world during the extract phase.
Resources on the render world can now be accessed using `ResMut` during extract.
### Removed
- `Commands::spawn_and_forget`. Use `Commands::get_or_spawn(e).insert_bundle(bundle)` instead
## Migration Guide
The `Extract` `RenderStage` now runs on the render world (instead of the main world as before).
You must use the `Extract` `SystemParam` to access the main world during the extract phase. `Extract` takes a single type parameter, which is any system parameter (such as `Res`, `Query` etc.). It will extract this from the main world, and returns the result of this extraction when `value` is called on it.
For example, if previously your extract system looked like:
```rust
fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) {
for cloud in clouds.iter() {
commands.get_or_spawn(cloud).insert(Cloud);
}
}
```
the new version would be:
```rust
fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) {
for cloud in clouds.value().iter() {
commands.get_or_spawn(cloud).insert(Cloud);
}
}
```
The diff is:
```diff
--- a/src/clouds.rs
+++ b/src/clouds.rs
@@ -1,5 +1,5 @@
-fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) {
- for cloud in clouds.iter() {
+fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) {
+ for cloud in clouds.value().iter() {
commands.get_or_spawn(cloud).insert(Cloud);
}
}
```
You can now also access resources from the render world using the normal system parameters during `Extract`:
```rust
fn extract_assets(mut render_assets: ResMut<MyAssets>, source_assets: Extract<Res<MyAssets>>) {
*render_assets = source_assets.clone();
}
```
Please note that all existing extract systems need to be updated to match this new style; even if they currently compile they will not run as expected. A warning will be emitted on a best-effort basis if this is not met.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
add spotlight support
## Solution / Changelog
- add spotlight angles (inner, outer) to ``PointLight`` struct. emitted light is linearly attenuated from 100% to 0% as angle tends from inner to outer. Direction is taken from the existing transform rotation.
- add spotlight direction (vec3) and angles (f32,f32) to ``GpuPointLight`` struct (60 bytes -> 80 bytes) in ``pbr/render/lights.rs`` and ``mesh_view_bind_group.wgsl``
- reduce no-buffer-support max point light count to 204 due to above
- use spotlight data to attenuate light in ``pbr.wgsl``
- do additional cluster culling on spotlights to minimise cost in ``assign_lights_to_clusters``
- changed one of the lights in the lighting demo to a spotlight
- also added a ``spotlight`` demo - probably not justified but so reviewers can see it more easily
## notes
increasing the size of the GpuPointLight struct on my machine reduces the FPS of ``many_lights -- sphere`` from ~150fps to 140fps.
i thought this was a reasonable tradeoff, and felt better than handling spotlights separately which is possible but would mean introducing a new bind group, refactoring light-assignment code and adding new spotlight-specific code in pbr.wgsl. the FPS impact for smaller numbers of lights should be very small.
the cluster culling strategy reintroduces the cluster aabb code which was recently removed... sorry. the aabb is used to get a cluster bounding sphere, which can then be tested fairly efficiently using the strategy described at the end of https://bartwronski.com/2017/04/13/cull-that-cone/. this works well with roughly cubic clusters (where the cluster z size is close to the same as x/y size), less well for other cases like single Z slice / tiled forward rendering. In the worst case we will end up just keeping the culling of the equivalent point light.
Co-authored-by: François <mockersf@gmail.com>
# Objective
Add texture sampling to the GLSL shader example, as naga does not support the commonly used sampler2d type.
Fixes#5059
## Solution
- Align the shader_material_glsl example behaviour with the shader_material example, as the later includes texture sampling.
- Update the GLSL shader to do texture sampling the way naga supports it, and document the way naga does not support it.
## Changelog
- The shader_material_glsl example has been updated to demonstrate texture sampling using the GLSL shading language.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Reduce the boilerplate code needed to make draw order sorting work correctly when queuing items through new common functionality. Also fix several instances in the bevy code-base (mostly examples) where this boilerplate appears to be incorrect.
## Solution
- Moved the logic for handling back-to-front vs front-to-back draw ordering into the PhaseItems by inverting the sort key ordering of Opaque3d and AlphaMask3d. The means that all the standard 3d rendering phases measure distance in the same way. Clients of these structs no longer need to know to negate the distance.
- Added a new utility struct, ViewRangefinder3d, which encapsulates the maths needed to calculate a "distance" from an ExtractedView and a mesh's transform matrix.
- Converted all the occurrences of the distance calculations in Bevy and its examples to use ViewRangefinder3d. Several of these occurrences appear to be buggy because they don't invert the view matrix or don't negate the distance where appropriate. This leads me to the view that Bevy should expose a facility to correctly perform this calculation.
## Migration Guide
Code which creates Opaque3d, AlphaMask3d, or Transparent3d phase items _should_ use ViewRangefinder3d to calculate the distance value.
Code which manually calculated the distance for Opaque3d or AlphaMask3d phase items and correctly negated the z value will no longer depth sort correctly. However, incorrect depth sorting for these types will not impact the rendered output as sorting is only a performance optimisation when drawing with depth-testing enabled. Code which manually calculated the distance for Transparent3d phase items will continue to work as before.
# Objective
Intended to close#5073
## Solution
Adds a stress test that use TextureAtlas based on the existing many_sprites test using the animated sprite implementation from the sprite_sheet example.
In order to satisfy the goals described in #5073 the animations are all slightly offset.
Of note is that the original stress test was designed to test fullstrum culling. I kept this test similar as to facilitate easy comparisons between the use of TextureAtlas and without.
# Objective
Currently stress tests are vsynced. This is undesirable for a stress test, as you want to run them with uncapped framerates.
## Solution
Ensure all stress tests are using PresentMode::Immediate if they render anything.
Removed `const_vec2`/`const_vec3`
and replaced with equivalent `.from_array`.
# Objective
Fixes#5112
## Solution
- `encase` needs to update to `glam` as well. See teoxoy/encase#4 on progress on that.
- `hexasphere` also needs to be updated, see OptimisticPeach/hexasphere#12.
# Objective
- Nightly clippy lints should be fixed before they get stable and break CI
## Solution
- fix new clippy lints
- ignore `significant_drop_in_scrutinee` since it isn't relevant in our loop https://github.com/rust-lang/rust-clippy/issues/8987
```rust
for line in io::stdin().lines() {
...
}
```
Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
# Objective
Users often ask for help with rotations as they struggle with `Quat`s.
`Quat` is rather complex and has a ton of verbose methods.
## Solution
Add rotation helper methods to `Transform`.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
This PR reworks Bevy's Material system, making the user experience of defining Materials _much_ nicer. Bevy's previous material system leaves a lot to be desired:
* Materials require manually implementing the `RenderAsset` trait, which involves manually generating the bind group, handling gpu buffer data transfer, looking up image textures, etc. Even the simplest single-texture material involves writing ~80 unnecessary lines of code. This was never the long term plan.
* There are two material traits, which is confusing, hard to document, and often redundant: `Material` and `SpecializedMaterial`. `Material` implicitly implements `SpecializedMaterial`, and `SpecializedMaterial` is used in most high level apis to support both use cases. Most users shouldn't need to think about specialization at all (I consider it a "power-user tool"), so the fact that `SpecializedMaterial` is front-and-center in our apis is a miss.
* Implementing either material trait involves a lot of "type soup". The "prepared asset" parameter is particularly heinous: `&<Self as RenderAsset>::PreparedAsset`. Defining vertex and fragment shaders is also more verbose than it needs to be.
## Solution
Say hello to the new `Material` system:
```rust
#[derive(AsBindGroup, TypeUuid, Debug, Clone)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
pub struct CoolMaterial {
#[uniform(0)]
color: Color,
#[texture(1)]
#[sampler(2)]
color_texture: Handle<Image>,
}
impl Material for CoolMaterial {
fn fragment_shader() -> ShaderRef {
"cool_material.wgsl".into()
}
}
```
Thats it! This same material would have required [~80 lines of complicated "type heavy" code](https://github.com/bevyengine/bevy/blob/v0.7.0/examples/shader/shader_material.rs) in the old Material system. Now it is just 14 lines of simple, readable code.
This is thanks to a new consolidated `Material` trait and the new `AsBindGroup` trait / derive.
### The new `Material` trait
The old "split" `Material` and `SpecializedMaterial` traits have been removed in favor of a new consolidated `Material` trait. All of the functions on the trait are optional.
The difficulty of implementing `Material` has been reduced by simplifying dataflow and removing type complexity:
```rust
// Old
impl Material for CustomMaterial {
fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
Some(asset_server.load("custom_material.wgsl"))
}
fn alpha_mode(render_asset: &<Self as RenderAsset>::PreparedAsset) -> AlphaMode {
render_asset.alpha_mode
}
}
// New
impl Material for CustomMaterial {
fn fragment_shader() -> ShaderRef {
"custom_material.wgsl".into()
}
fn alpha_mode(&self) -> AlphaMode {
self.alpha_mode
}
}
```
Specialization is still supported, but it is hidden by default under the `specialize()` function (more on this later).
### The `AsBindGroup` trait / derive
The `Material` trait now requires the `AsBindGroup` derive. This can be implemented manually relatively easily, but deriving it will almost always be preferable.
Field attributes like `uniform` and `texture` are used to define which fields should be bindings,
what their binding type is, and what index they should be bound at:
```rust
#[derive(AsBindGroup)]
struct CoolMaterial {
#[uniform(0)]
color: Color,
#[texture(1)]
#[sampler(2)]
color_texture: Handle<Image>,
}
```
In WGSL shaders, the binding looks like this:
```wgsl
struct CoolMaterial {
color: vec4<f32>;
};
[[group(1), binding(0)]]
var<uniform> material: CoolMaterial;
[[group(1), binding(1)]]
var color_texture: texture_2d<f32>;
[[group(1), binding(2)]]
var color_sampler: sampler;
```
Note that the "group" index is determined by the usage context. It is not defined in `AsBindGroup`. Bevy material bind groups are bound to group 1.
The following field-level attributes are supported:
* `uniform(BINDING_INDEX)`
* The field will be converted to a shader-compatible type using the `ShaderType` trait, written to a `Buffer`, and bound as a uniform. It can also be derived for custom structs.
* `texture(BINDING_INDEX)`
* This field's `Handle<Image>` will be used to look up the matching `Texture` gpu resource, which will be bound as a texture in shaders. The field will be assumed to implement `Into<Option<Handle<Image>>>`. In practice, most fields should be a `Handle<Image>` or `Option<Handle<Image>>`. If the value of an `Option<Handle<Image>>` is `None`, the new `FallbackImage` resource will be used instead. This attribute can be used in conjunction with a `sampler` binding attribute (with a different binding index).
* `sampler(BINDING_INDEX)`
* Behaves exactly like the `texture` attribute, but sets the Image's sampler binding instead of the texture.
Note that fields without field-level binding attributes will be ignored.
```rust
#[derive(AsBindGroup)]
struct CoolMaterial {
#[uniform(0)]
color: Color,
this_field_is_ignored: String,
}
```
As mentioned above, `Option<Handle<Image>>` is also supported:
```rust
#[derive(AsBindGroup)]
struct CoolMaterial {
#[uniform(0)]
color: Color,
#[texture(1)]
#[sampler(2)]
color_texture: Option<Handle<Image>>,
}
```
This is useful if you want a texture to be optional. When the value is `None`, the `FallbackImage` will be used for the binding instead, which defaults to "pure white".
Field uniforms with the same binding index will be combined into a single binding:
```rust
#[derive(AsBindGroup)]
struct CoolMaterial {
#[uniform(0)]
color: Color,
#[uniform(0)]
roughness: f32,
}
```
In WGSL shaders, the binding would look like this:
```wgsl
struct CoolMaterial {
color: vec4<f32>;
roughness: f32;
};
[[group(1), binding(0)]]
var<uniform> material: CoolMaterial;
```
Some less common scenarios will require "struct-level" attributes. These are the currently supported struct-level attributes:
* `uniform(BINDING_INDEX, ConvertedShaderType)`
* Similar to the field-level `uniform` attribute, but instead the entire `AsBindGroup` value is converted to `ConvertedShaderType`, which must implement `ShaderType`. This is useful if more complicated conversion logic is required.
* `bind_group_data(DataType)`
* The `AsBindGroup` type will be converted to some `DataType` using `Into<DataType>` and stored as `AsBindGroup::Data` as part of the `AsBindGroup::as_bind_group` call. This is useful if data needs to be stored alongside the generated bind group, such as a unique identifier for a material's bind group. The most common use case for this attribute is "shader pipeline specialization".
The previous `CoolMaterial` example illustrating "combining multiple field-level uniform attributes with the same binding index" can
also be equivalently represented with a single struct-level uniform attribute:
```rust
#[derive(AsBindGroup)]
#[uniform(0, CoolMaterialUniform)]
struct CoolMaterial {
color: Color,
roughness: f32,
}
#[derive(ShaderType)]
struct CoolMaterialUniform {
color: Color,
roughness: f32,
}
impl From<&CoolMaterial> for CoolMaterialUniform {
fn from(material: &CoolMaterial) -> CoolMaterialUniform {
CoolMaterialUniform {
color: material.color,
roughness: material.roughness,
}
}
}
```
### Material Specialization
Material shader specialization is now _much_ simpler:
```rust
#[derive(AsBindGroup, TypeUuid, Debug, Clone)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
#[bind_group_data(CoolMaterialKey)]
struct CoolMaterial {
#[uniform(0)]
color: Color,
is_red: bool,
}
#[derive(Copy, Clone, Hash, Eq, PartialEq)]
struct CoolMaterialKey {
is_red: bool,
}
impl From<&CoolMaterial> for CoolMaterialKey {
fn from(material: &CoolMaterial) -> CoolMaterialKey {
CoolMaterialKey {
is_red: material.is_red,
}
}
}
impl Material for CoolMaterial {
fn fragment_shader() -> ShaderRef {
"cool_material.wgsl".into()
}
fn specialize(
pipeline: &MaterialPipeline<Self>,
descriptor: &mut RenderPipelineDescriptor,
layout: &MeshVertexBufferLayout,
key: MaterialPipelineKey<Self>,
) -> Result<(), SpecializedMeshPipelineError> {
if key.bind_group_data.is_red {
let fragment = descriptor.fragment.as_mut().unwrap();
fragment.shader_defs.push("IS_RED".to_string());
}
Ok(())
}
}
```
Setting `bind_group_data` is not required for specialization (it defaults to `()`). Scenarios like "custom vertex attributes" also benefit from this system:
```rust
impl Material for CustomMaterial {
fn vertex_shader() -> ShaderRef {
"custom_material.wgsl".into()
}
fn fragment_shader() -> ShaderRef {
"custom_material.wgsl".into()
}
fn specialize(
pipeline: &MaterialPipeline<Self>,
descriptor: &mut RenderPipelineDescriptor,
layout: &MeshVertexBufferLayout,
key: MaterialPipelineKey<Self>,
) -> Result<(), SpecializedMeshPipelineError> {
let vertex_layout = layout.get_layout(&[
Mesh::ATTRIBUTE_POSITION.at_shader_location(0),
ATTRIBUTE_BLEND_COLOR.at_shader_location(1),
])?;
descriptor.vertex.buffers = vec![vertex_layout];
Ok(())
}
}
```
### Ported `StandardMaterial` to the new `Material` system
Bevy's built-in PBR material uses the new Material system (including the AsBindGroup derive):
```rust
#[derive(AsBindGroup, Debug, Clone, TypeUuid)]
#[uuid = "7494888b-c082-457b-aacf-517228cc0c22"]
#[bind_group_data(StandardMaterialKey)]
#[uniform(0, StandardMaterialUniform)]
pub struct StandardMaterial {
pub base_color: Color,
#[texture(1)]
#[sampler(2)]
pub base_color_texture: Option<Handle<Image>>,
/* other fields omitted for brevity */
```
### Ported Bevy examples to the new `Material` system
The overall complexity of Bevy's "custom shader examples" has gone down significantly. Take a look at the diffs if you want a dopamine spike.
Please note that while this PR has a net increase in "lines of code", most of those extra lines come from added documentation. There is a significant reduction
in the overall complexity of the code (even accounting for the new derive logic).
---
## Changelog
### Added
* `AsBindGroup` trait and derive, which make it much easier to transfer data to the gpu and generate bind groups for a given type.
### Changed
* The old `Material` and `SpecializedMaterial` traits have been replaced by a consolidated (much simpler) `Material` trait. Materials no longer implement `RenderAsset`.
* `StandardMaterial` was ported to the new material system. There are no user-facing api changes to the `StandardMaterial` struct api, but it now implements `AsBindGroup` and `Material` instead of `RenderAsset` and `SpecializedMaterial`.
## Migration Guide
The Material system has been reworked to be much simpler. We've removed a lot of boilerplate with the new `AsBindGroup` derive and the `Material` trait is simpler as well!
### Bevy 0.7 (old)
```rust
#[derive(Debug, Clone, TypeUuid)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
pub struct CustomMaterial {
color: Color,
color_texture: Handle<Image>,
}
#[derive(Clone)]
pub struct GpuCustomMaterial {
_buffer: Buffer,
bind_group: BindGroup,
}
impl RenderAsset for CustomMaterial {
type ExtractedAsset = CustomMaterial;
type PreparedAsset = GpuCustomMaterial;
type Param = (SRes<RenderDevice>, SRes<MaterialPipeline<Self>>);
fn extract_asset(&self) -> Self::ExtractedAsset {
self.clone()
}
fn prepare_asset(
extracted_asset: Self::ExtractedAsset,
(render_device, material_pipeline): &mut SystemParamItem<Self::Param>,
) -> Result<Self::PreparedAsset, PrepareAssetError<Self::ExtractedAsset>> {
let color = Vec4::from_slice(&extracted_asset.color.as_linear_rgba_f32());
let byte_buffer = [0u8; Vec4::SIZE.get() as usize];
let mut buffer = encase::UniformBuffer::new(byte_buffer);
buffer.write(&color).unwrap();
let buffer = render_device.create_buffer_with_data(&BufferInitDescriptor {
contents: buffer.as_ref(),
label: None,
usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST,
});
let (texture_view, texture_sampler) = if let Some(result) = material_pipeline
.mesh_pipeline
.get_image_texture(gpu_images, &Some(extracted_asset.color_texture.clone()))
{
result
} else {
return Err(PrepareAssetError::RetryNextUpdate(extracted_asset));
};
let bind_group = render_device.create_bind_group(&BindGroupDescriptor {
entries: &[
BindGroupEntry {
binding: 0,
resource: buffer.as_entire_binding(),
},
BindGroupEntry {
binding: 0,
resource: BindingResource::TextureView(texture_view),
},
BindGroupEntry {
binding: 1,
resource: BindingResource::Sampler(texture_sampler),
},
],
label: None,
layout: &material_pipeline.material_layout,
});
Ok(GpuCustomMaterial {
_buffer: buffer,
bind_group,
})
}
}
impl Material for CustomMaterial {
fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
Some(asset_server.load("custom_material.wgsl"))
}
fn bind_group(render_asset: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup {
&render_asset.bind_group
}
fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout {
render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
entries: &[
BindGroupLayoutEntry {
binding: 0,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: Some(Vec4::min_size()),
},
count: None,
},
BindGroupLayoutEntry {
binding: 1,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Texture {
multisampled: false,
sample_type: TextureSampleType::Float { filterable: true },
view_dimension: TextureViewDimension::D2Array,
},
count: None,
},
BindGroupLayoutEntry {
binding: 2,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Sampler(SamplerBindingType::Filtering),
count: None,
},
],
label: None,
})
}
}
```
### Bevy 0.8 (new)
```rust
impl Material for CustomMaterial {
fn fragment_shader() -> ShaderRef {
"custom_material.wgsl".into()
}
}
#[derive(AsBindGroup, TypeUuid, Debug, Clone)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
pub struct CustomMaterial {
#[uniform(0)]
color: Color,
#[texture(1)]
#[sampler(2)]
color_texture: Handle<Image>,
}
```
## Future Work
* Add support for more binding types (cubemaps, buffers, etc). This PR intentionally includes a bare minimum number of binding types to keep "reviewability" in check.
* Consider optionally eliding binding indices using binding names. `AsBindGroup` could pass in (optional?) reflection info as a "hint".
* This would make it possible for the derive to do this:
```rust
#[derive(AsBindGroup)]
pub struct CustomMaterial {
#[uniform]
color: Color,
#[texture]
#[sampler]
color_texture: Option<Handle<Image>>,
alpha_mode: AlphaMode,
}
```
* Or this
```rust
#[derive(AsBindGroup)]
pub struct CustomMaterial {
#[binding]
color: Color,
#[binding]
color_texture: Option<Handle<Image>>,
alpha_mode: AlphaMode,
}
```
* Or even this (if we flip to "include bindings by default")
```rust
#[derive(AsBindGroup)]
pub struct CustomMaterial {
color: Color,
color_texture: Option<Handle<Image>>,
#[binding(ignore)]
alpha_mode: AlphaMode,
}
```
* If we add the option to define custom draw functions for materials (which could be done in a type-erased way), I think that would be enough to support extra non-material bindings. Worth considering!
# Objective
- Make Bevy work on android
## Solution
- Update android metadata and add a few more
- Set the target sdk to 31 as it will soon (in august) be the minimum sdk level for play store
- Remove the custom code to create an activity and use ndk-glue macro instead
- Delay window creation event on android
- Set the example with compatibility settings for wgpu. Those are needed for Bevy to work on my 2019 android tablet
- Add a few details on how to debug in case of failures
- Fix running the example on emulator. This was failing because of the name of the example
Bevy still doesn't work on android with this, audio features need to be disabled because of an ndk-glue version mismatch: rodio depends on 0.6.2, winit on 0.5.2. You can test with:
```
cargo apk run --release --example android_example --no-default-features --features "bevy_winit,render"
```
# Objective
- Make the reusable PBR shading functionality a little more reusable
- Add constructor functions for `StandardMaterial` and `PbrInput` structs to populate them with default values
- Document unclear `PbrInput` members
- Demonstrate how to reuse the bevy PBR shading functionality
- The final important piece from #3969 as the initial shot at making the PBR shader code reusable in custom materials
## Solution
- Add back and rework the 'old' `array_texture` example from pre-0.6.
- Create a custom shader material
- Use a single array texture binding and sampler for the material bind group
- Use a shader that calls `pbr()` from the `bevy_pbr::pbr_functions` import
- Spawn a row of cubes using the custom material
- In the shader, select the array texture layer to sample by using the world position x coordinate modulo the number of array texture layers
<img width="1392" alt="Screenshot 2022-06-23 at 12 28 05" src="https://user-images.githubusercontent.com/302146/175278593-2296f519-f577-4ece-81c0-d842283784a1.png">
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Small bug in the example game given in examples/ecs/ecs_guide
Currently, if there are 2 players in this example game, the function exclusive_player_system can add a player with the name "Player 2". However, the name should be "Player 3". This PR fixes this. I also add a message to inform that a new player has arrived in the mock game.
Co-authored-by: Dilyan Kostov <dilyanks@amazon.com>
# Objective
- Have information about examples only in one place that can be used for the repo and for the website (and remove the need to keep a list of example to build for wasm in the website 75acb73040/generate-wasm-examples/generate_wasm_examples.sh (L92-L99))
## Solution
- Add metadata about examples in `Cargo.toml`
- Build the `examples/README.md` from a template using those metadata. I used tera as the template engine to use the same tech as the website.
- Make CI fail if an example is missing metadata, or if the readme file needs to be updated (the command to update it is displayed in the failed step in CI)
## Remaining To Do
- After the next release with this merged in, the website will be able to be updated to use those metadata too
- I would like to build the examples in wasm and make them available at http://dev-docs.bevyengine.org/ but that will require more design
- https://github.com/bevyengine/bevy-website/issues/299 for other ToDos
Co-authored-by: Readme <github-actions@github.com>
# Objective
`bevy_ui` doesn't support correctly touch inputs because of two problems in the focus system:
- It attempts to retrieve touch input with a specific `0` id
- It doesn't retrieve touch positions and bases its focus solely on mouse position, absent from mobile devices
## Solution
I added a few methods to the `Touches` resource, allowing to check if **any** touch input was pressed, released or cancelled and to retrieve the *position* of the first pressed touch input and adapted the focus system.
I added a test button to the *iOS* example and it works correclty on emulator. I did not test on a real touch device as:
- Android is not working (https://github.com/bevyengine/bevy/issues/3249)
- I don't have an iOS device
- changed `EntityCountDiagnosticsPlugin` to not use an exclusive system to get its entity count
- removed mention of `WgpuResourceDiagnosticsPlugin` in example `log_diagnostics` as it doesn't exist anymore
- added ability to enable, disable ~~or toggle~~ a diagnostic (fix#3767)
- made diagnostic values lazy, so they are only computed if the diagnostic is enabled
- do not log an average for diagnostics with only one value
- removed `sum` function from diagnostic as it isn't really useful
- ~~do not keep an average of the FPS diagnostic. it is already an average on the last 20 frames, so the average FPS was an average of the last 20 frames over the last 20 frames~~
- do not compute the FPS value as an average over the last 20 frames but give the actual "instant FPS"
- updated log format to use variable capture
- added some doc
- the frame counter diagnostic value can be reseted to 0
# Objective
- Add reusable shader functions for transforming positions / normals / tangents between local and world / clip space for 2D and 3D so that they are done in a simple and correct way
- The next step in #3969 so check there for more details.
## Solution
- Add `bevy_pbr::mesh_functions` and `bevy_sprite::mesh2d_functions` shader imports
- These contain `mesh_` and `mesh2d_` versions of the following functions:
- `mesh_position_local_to_world`
- `mesh_position_world_to_clip`
- `mesh_position_local_to_clip`
- `mesh_normal_local_to_world`
- `mesh_tangent_local_to_world`
- Use them everywhere where it is appropriate
- Notably not in the sprite and UI shaders where `mesh2d_position_world_to_clip` could have been used, but including all the functions depends on the mesh binding so I chose to not use the function there
- NOTE: The `mesh_` and `mesh2d_` functions are currently identical. However, if I had defined only `bevy_pbr::mesh_functions` and used that in bevy_sprite, then bevy_sprite would have a runtime dependency on bevy_pbr, which seems undesirable. I also expect that when we have a proper 2D rendering API, these functions will diverge between 2D and 3D.
---
## Changelog
- Added: `bevy_pbr::mesh_functions` and `bevy_sprite::mesh2d_functions` shader imports containing `mesh_` and `mesh2d_` versions of the following functions:
- `mesh_position_local_to_world`
- `mesh_position_world_to_clip`
- `mesh_position_local_to_clip`
- `mesh_normal_local_to_world`
- `mesh_tangent_local_to_world`
## Migration Guide
- The `skin_tangents` function from the `bevy_pbr::skinning` shader import has been replaced with the `mesh_tangent_local_to_world` function from the `bevy_pbr::mesh_functions` shader import
# Objective
- Closes#4464
## Solution
- Specify default mag and min filter types for `Image` instead of using `wgpu`'s defaults.
---
## Changelog
### Changed
- Default `Image` filtering changed from `Nearest` to `Linear`.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Spawning a scene is handled as a special case with a command `spawn_scene` that takes an handle but doesn't let you specify anything else. This is the only handle that works that way.
- Workaround for this have been to add the `spawn_scene` on `ChildBuilder` to be able to specify transform of parent, or to make the `SceneSpawner` available to be able to select entities from a scene by their instance id
## Solution
Add a bundle
```rust
pub struct SceneBundle {
pub scene: Handle<Scene>,
pub transform: Transform,
pub global_transform: GlobalTransform,
pub instance_id: Option<InstanceId>,
}
```
and instead of
```rust
commands.spawn_scene(asset_server.load("models/FlightHelmet/FlightHelmet.gltf#Scene0"));
```
you can do
```rust
commands.spawn_bundle(SceneBundle {
scene: asset_server.load("models/FlightHelmet/FlightHelmet.gltf#Scene0"),
..Default::default()
});
```
The scene will be spawned as a child of the entity with the `SceneBundle`
~I would like to remove the command `spawn_scene` in favor of this bundle but didn't do it yet to get feedback first~
Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Right now, a direct reference to the target TaskPool is required to launch tasks on the pools, despite the three newtyped pools (AsyncComputeTaskPool, ComputeTaskPool, and IoTaskPool) effectively acting as global instances. The need to pass a TaskPool reference adds notable friction to spawning subtasks within existing tasks. Possible use cases for this may include chaining tasks within the same pool like spawning separate send/receive I/O tasks after waiting on a network connection to be established, or allowing cross-pool dependent tasks like starting dependent multi-frame computations following a long I/O load.
Other task execution runtimes provide static access to spawning tasks (i.e. `tokio::spawn`), which is notably easier to use than the reference passing required by `bevy_tasks` right now.
This PR makes does the following:
* Adds `*TaskPool::init` which initializes a `OnceCell`'ed with a provided TaskPool. Failing if the pool has already been initialized.
* Adds `*TaskPool::get` which fetches the initialized global pool of the respective type or panics. This generally should not be an issue in normal Bevy use, as the pools are initialized before they are accessed.
* Updated default task pool initialization to either pull the global handles and save them as resources, or if they are already initialized, pull the a cloned global handle as the resource.
This should make it notably easier to build more complex task hierarchies for dependent tasks. It should also make writing bevy-adjacent, but not strictly bevy-only plugin crates easier, as the global pools ensure it's all running on the same threads.
One alternative considered is keeping a thread-local reference to the pool for all threads in each pool to enable the same `tokio::spawn` interface. This would spawn tasks on the same pool that a task is currently running in. However this potentially leads to potential footgun situations where long running blocking tasks run on `ComputeTaskPool`.
# Objective
Users should be able to configure depth load operations on cameras. Currently every camera clears depth when it is rendered. But sometimes later passes need to rely on depth from previous passes.
## Solution
This adds the `Camera3d::depth_load_op` field with a new `Camera3dDepthLoadOp` value. This is a custom type because Camera3d uses "reverse-z depth" and this helps us record and document that in a discoverable way. It also gives us more control over reflection + other trait impls, whereas `LoadOp` is owned by the `wgpu` crate.
```rust
commands.spawn_bundle(Camera3dBundle {
camera_3d: Camera3d {
depth_load_op: Camera3dDepthLoadOp::Load,
..default()
},
..default()
});
```
### two_passes example with the "second pass" camera configured to the default (clear depth to 0.0)
![image](https://user-images.githubusercontent.com/2694663/171743172-46d4fdd5-5090-46ea-abe4-1fbc519f6ee8.png)
### two_passes example with the "second pass" camera configured to "load" the depth
![image](https://user-images.githubusercontent.com/2694663/171743323-74dd9a1d-9c25-4883-98dd-38ca0bed8c17.png)
---
## Changelog
### Added
* `Camera3d` now has a `depth_load_op` field, which can configure the Camera's main 3d pass depth loading behavior.
# Objective
In the `queue_custom` system in `shader_instancing` example, the query of `material_meshes` has a redundant `With<Handle<Mesh>>` query filter because `Handle<Mesh>` is included in the component access.
## Solution
Remove the `With<Handle<Mesh>>` filter
# Objective
- Add an example showing a custom post processing effect, done after the first rendering pass.
## Solution
- A simple post processing "chromatic aberration" effect. I mixed together examples `3d/render_to_texture`, and `shader/shader_material_screenspace_texture`
- Reading a bit how https://github.com/bevyengine/bevy/pull/3430 was done gave me pointers to apply the main pass to the 2d render rather than using a 3d quad.
This work might be or not be relevant to https://github.com/bevyengine/bevy/issues/2724
<details>
<summary> ⚠️ Click for a video of the render ⚠️ I’ve been told it might hurt the eyes 👀 , maybe we should choose another effect just in case ?</summary>
https://user-images.githubusercontent.com/2290685/169138830-a6dc8a9f-8798-44b9-8d9e-449e60614916.mp4
</details>
# Request for feedbacks
- [ ] Is chromatic aberration effect ok ? (Correct term, not a danger for the eyes ?) I'm open to suggestion to make something different.
- [ ] Is the code idiomatic ? I preferred a "main camera -> **new camera with post processing applied to a quad**" approach to emulate minimum modification to existing code wanting to add global post processing.
---
## Changelog
- Add a full screen post processing shader example
# Objective
Users should be able to render cameras to specific areas of a render target, which enables scenarios like split screen, minimaps, etc.
Builds on the new Camera Driven Rendering added here: #4745Fixes: #202
Alternative to #1389 and #3626 (which are incompatible with the new Camera Driven Rendering)
## Solution
![image](https://user-images.githubusercontent.com/2694663/171560044-f0694f67-0cd9-4598-83e2-a9658c4fed57.png)
Cameras can now configure an optional "viewport", which defines a rectangle within their render target to draw to. If a `Viewport` is defined, the camera's `CameraProjection`, `View`, and visibility calculations will use the viewport configuration instead of the full render target.
```rust
// This camera will render to the first half of the primary window (on the left side).
commands.spawn_bundle(Camera3dBundle {
camera: Camera {
viewport: Some(Viewport {
physical_position: UVec2::new(0, 0),
physical_size: UVec2::new(window.physical_width() / 2, window.physical_height()),
depth: 0.0..1.0,
}),
..default()
},
..default()
});
```
To account for this, the `Camera` component has received a few adjustments:
* `Camera` now has some new getter functions:
* `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, `projection_matrix`
* All computed camera values are now private and live on the `ComputedCameraValues` field (logical/physical width/height, the projection matrix). They are now exposed on `Camera` via getters/setters This wasn't _needed_ for viewports, but it was long overdue.
---
## Changelog
### Added
* `Camera` components now have a `viewport` field, which can be set to draw to a portion of a render target instead of the full target.
* `Camera` component has some new functions: `logical_viewport_size`, `physical_viewport_size`, `logical_target_size`, `physical_target_size`, and `projection_matrix`
* Added a new split_screen example illustrating how to render two cameras to the same scene
## Migration Guide
`Camera::projection_matrix` is no longer a public field. Use the new `Camera::projection_matrix()` method instead:
```rust
// Bevy 0.7
let projection = camera.projection_matrix;
// Bevy 0.8
let projection = camera.projection_matrix();
```
# Objective
- To fix the broken commented code in `examples/shader/compute_shader_game_of_life.rs` for disabling frame throttling
## Solution
- Change the commented code from using the old `WindowDescriptor::vsync` to the new `WindowDescriptor::present_mode`
### Note
I chose to use the fully qualified scope `bevy:🪟:PresentWindow::Immediate` rather than explicitly including `PresentWindow` to avoid an unused import when the code is commented.
This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier.
Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915):
![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png)
Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work".
Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id:
```rust
// main camera (main window)
commands.spawn_bundle(Camera2dBundle::default());
// second camera (other window)
commands.spawn_bundle(Camera2dBundle {
camera: Camera {
target: RenderTarget::Window(window_id),
..default()
},
..default()
});
```
Rendering to a texture is as simple as pointing the camera at a texture:
```rust
commands.spawn_bundle(Camera2dBundle {
camera: Camera {
target: RenderTarget::Texture(image_handle),
..default()
},
..default()
});
```
Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`).
```rust
// main pass camera with a default priority of 0
commands.spawn_bundle(Camera2dBundle::default());
commands.spawn_bundle(Camera2dBundle {
camera: Camera {
target: RenderTarget::Texture(image_handle.clone()),
priority: -1,
..default()
},
..default()
});
commands.spawn_bundle(SpriteBundle {
texture: image_handle,
..default()
})
```
Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system:
```rust
commands.spawn_bundle(Camera3dBundle::default());
commands.spawn_bundle(Camera2dBundle {
camera: Camera {
// this will render 2d entities "on top" of the default 3d camera's render
priority: 1,
..default()
},
..default()
});
```
There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active.
Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections.
```rust
// old 3d perspective camera
commands.spawn_bundle(PerspectiveCameraBundle::default())
// new 3d perspective camera
commands.spawn_bundle(Camera3dBundle::default())
```
```rust
// old 2d orthographic camera
commands.spawn_bundle(OrthographicCameraBundle::new_2d())
// new 2d orthographic camera
commands.spawn_bundle(Camera2dBundle::default())
```
```rust
// old 3d orthographic camera
commands.spawn_bundle(OrthographicCameraBundle::new_3d())
// new 3d orthographic camera
commands.spawn_bundle(Camera3dBundle {
projection: OrthographicProjection {
scale: 3.0,
scaling_mode: ScalingMode::FixedVertical,
..default()
}.into(),
..default()
})
```
Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors.
If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component:
```rust
commands.spawn_bundle(Camera3dBundle {
camera_render_graph: CameraRenderGraph::new(some_render_graph_name),
..default()
})
```
Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added.
Speaking of using components to configure graphs / passes, there are a number of new configuration options:
```rust
commands.spawn_bundle(Camera3dBundle {
camera_3d: Camera3d {
// overrides the default global clear color
clear_color: ClearColorConfig::Custom(Color::RED),
..default()
},
..default()
})
commands.spawn_bundle(Camera3dBundle {
camera_3d: Camera3d {
// disables clearing
clear_color: ClearColorConfig::None,
..default()
},
..default()
})
```
Expect to see more of the "graph configuration Components on Cameras" pattern in the future.
By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component:
```rust
commands
.spawn_bundle(Camera3dBundle::default())
.insert(CameraUi {
is_enabled: false,
..default()
})
```
## Other Changes
* The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr.
* I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization.
* I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler.
* All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr.
* Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic.
* Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals:
1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs.
2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense.
## Follow Up Work
* Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen)
* Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor)
* Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system).
* Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable.
* Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home.
# Objective
- Split PBR and 2D mesh shaders into types and bindings to prepare the shaders to be more reusable.
- See #3969 for details. I'm doing this in multiple steps to make review easier.
---
## Changelog
- Changed: 2D and PBR mesh shaders are now split into types and bindings, the following shader imports are available: `bevy_pbr::mesh_view_types`, `bevy_pbr::mesh_view_bindings`, `bevy_pbr::mesh_types`, `bevy_pbr::mesh_bindings`, `bevy_sprite::mesh2d_view_types`, `bevy_sprite::mesh2d_view_bindings`, `bevy_sprite::mesh2d_types`, `bevy_sprite::mesh2d_bindings`
## Migration Guide
- In shaders for 3D meshes:
- `#import bevy_pbr::mesh_view_bind_group` -> `#import bevy_pbr::mesh_view_bindings`
- `#import bevy_pbr::mesh_struct` -> `#import bevy_pbr::mesh_types`
- NOTE: If you are using the mesh bind group at bind group index 2, you can remove those binding statements in your shader and just use `#import bevy_pbr::mesh_bindings` which itself imports the mesh types needed for the bindings.
- In shaders for 2D meshes:
- `#import bevy_sprite::mesh2d_view_bind_group` -> `#import bevy_sprite::mesh2d_view_bindings`
- `#import bevy_sprite::mesh2d_struct` -> `#import bevy_sprite::mesh2d_types`
- NOTE: If you are using the mesh2d bind group at bind group index 2, you can remove those binding statements in your shader and just use `#import bevy_sprite::mesh2d_bindings` which itself imports the mesh2d types needed for the bindings.
# Objective
- The `scene_viewer` example assumes the `animation` feature is enabled, which it is by default. However, animations may have a performance cost that is undesirable when testing performance, for example. Then it is useful to be able to disable the `animation` feature and one would still like the `scene_viewer` example to work.
## Solution
- Gate animation code in `scene_viewer` on the `animation` feature being enabled.
# Objective
- Add an `ExtractResourcePlugin` for convenience and consistency
## Solution
- Add an `ExtractResourcePlugin` similar to `ExtractComponentPlugin` but for ECS `Resource`s. The system that is executed simply clones the main world resource into a render world resource, if and only if the main world resource was either added or changed since the last execution of the system.
- Add an `ExtractResource` trait with a `fn extract_resource(res: &Self) -> Self` function. This is used by the `ExtractResourcePlugin` to extract the resource
- Add a derive macro for `ExtractResource` on a `Resource` with the `Clone` trait, that simply returns `res.clone()`
- Use `ExtractResourcePlugin` wherever both possible and appropriate
# Objective
- Add Vertex Color support to 2D meshes and ColorMaterial. This extends the work from #4528 (which in turn builds on the excellent tangent handling).
## Solution
- Added `#ifdef` wrapped support for vertex colors in the 2D mesh shader and `ColorMaterial` shader.
- Added an example, `mesh2d_vertex_color_texture` to demonstrate it in action.
![image](https://user-images.githubusercontent.com/14896751/169530930-6ae0c6be-2f69-40e3-a600-ba91d7178bc3.png)
---
## Changelog
- Added optional (ifdef wrapped) vertex color support to the 2dmesh and color material systems.
# Objective
- Sometimes, people might load an asset as one type, then use it with an `Asset`s for a different type.
- See e.g. #4784.
- This is especially likely with the Gltf types, since users may not have a clear conceptual model of what types the assets will be.
- We had an instance of this ourselves, in the `scene_viewer` example
## Solution
- Make `Assets::get` require a type safe handle.
---
## Changelog
### Changed
- `Assets::<T>::get` and `Assets::<T>::get_mut` now require that the passed handles are `Handle<T>`, improving the type safety of handles.
### Added
- `HandleUntyped::typed_weak`, a helper function for creating a weak typed version of an exisitng `HandleUntyped`.
## Migration Guide
`Assets::<T>::get` and `Assets::<T>::get_mut` now require that the passed handles are `Handle<T>`, improving the type safety of handles. If you were previously passing in:
- a `HandleId`, use `&Handle::weak(id)` instead, to create a weak handle. You may have been able to store a type safe `Handle` instead.
- a `HandleUntyped`, use `&handle_untyped.typed_weak()` to create a weak handle of the specified type. This is most likely to be the useful when using [load_folder](https://docs.rs/bevy_asset/latest/bevy_asset/struct.AssetServer.html#method.load_folder)
- a `Handle<U>` of of a different type, consider whether this is the correct handle type to store. If it is (i.e. the same handle id is used for multiple different Asset types) use `Handle::weak(handle.id)` to cast to a different type.
# Objective
Fixes#3183. Requiring a `&TaskPool` parameter is sort of meaningless if the only correct one is to use the one provided by `Res<ComputeTaskPool>` all the time.
## Solution
Have `QueryState` save a clone of the `ComputeTaskPool` which is used for all `par_for_each` functions.
~~Adds a small overhead of the internal `Arc` clone as a part of the startup, but the ergonomics win should be well worth this hardly-noticable overhead.~~
Updated the docs to note that it will panic the task pool is not present as a resource.
# Future Work
If https://github.com/bevyengine/rfcs/pull/54 is approved, we can replace these resource lookups with a static function call instead to get the `ComputeTaskPool`.
---
## Changelog
Removed: The `task_pool` parameter of `Query(State)::par_for_each(_mut)`. These calls will use the `World`'s `ComputeTaskPool` resource instead.
## Migration Guide
The `task_pool` parameter for `Query(State)::par_for_each(_mut)` has been removed. Remove these parameters from all calls to these functions.
Before:
```rust
fn parallel_system(
task_pool: Res<ComputeTaskPool>,
query: Query<&MyComponent>,
) {
query.par_for_each(&task_pool, 32, |comp| {
...
});
}
```
After:
```rust
fn parallel_system(query: Query<&MyComponent>) {
query.par_for_each(32, |comp| {
...
});
}
```
If using `Query(State)` outside of a system run by the scheduler, you may need to manually configure and initialize a `ComputeTaskPool` as a resource in the `World`.
# Objective
- Coming from 7a596f1910 (r876310734)
- Simplify the examples regarding addition of `Msaa` Resource with default value.
## Solution
- Remove addition of `Msaa` Resource with default value from examples,
# Objective
Reduce the catch-all grab-bag of functionality in bevy_core by minimally splitting off time functionality into bevy_time. Functionality like that provided by #3002 would increase the complexity of bevy_time, so this is a good candidate for pulling into its own unit.
A step in addressing #2931 and splitting bevy_core into more specific locations.
## Solution
Pull the time module of bevy_core into a new crate, bevy_time.
# Migration guide
- Time related types (e.g. `Time`, `Timer`, `Stopwatch`, `FixedTimestep`, etc.) should be imported from `bevy::time::*` rather than `bevy::core::*`.
- If you were adding `CorePlugin` manually, you'll also want to add `TimePlugin` from `bevy::time`.
- The `bevy::core::CorePlugin::Time` system label is replaced with `bevy::time::TimeSystem`.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Fixes#4456
## Solution
- Removed the `near` and `far` fields from the camera and the views.
---
## Changelog
- Removed the `near` and `far` fields from the camera and the views.
- Removed the `ClusterFarZMode::CameraFarPlane` far z mode.
## Migration Guide
- Cameras no longer accept near and far values during initialization
- `ClusterFarZMode::Constant` should be used with the far value instead of `ClusterFarZMode::CameraFarPlane`
# Objective
Provide a starting point for #3951, or a partial solution.
Providing a few comment blocks to discuss, and hopefully find better one in the process.
## Solution
Since I am pretty new to pretty much anything in this context, I figured I'd just start with a draft for some file level doc blocks. For some of them I found more relevant details (or at least things I considered interessting), for some others there is less.
## Changelog
- Moved some existing comments from main() functions in the 2d examples to the file header level
- Wrote some more comment blocks for most other 2d examples
TODO:
- [x] 2d/sprite_sheet, wasnt able to come up with something good yet
- [x] all other example groups...
Also: Please let me know if the commit style is okay, or to verbose. I could certainly squash these things, or add more details if needed.
I also hope its okay to raise this PR this early, with just a few files changed. Took me long enough and I dont wanted to let it go to waste because I lost motivation to do the whole thing. Additionally I am somewhat uncertain over the style and contents of the commets. So let me know what you thing please.
# Objective
> ℹ️ **Note**: This is a rebased version of #2383. A large portion of it has not been touched (only a few minor changes) so that any additional discussion may happen here. All credit should go to @NathanSWard for their work on the original PR.
- Currently reflection is not supported for arrays.
- Fixes#1213
## Solution
* Implement reflection for arrays via the `Array` trait.
* Note, `Array` is different from `List` in the way that you cannot push elements onto an array as they are statically sized.
* Now `List` is defined as a sub-trait of `Array`.
---
## Changelog
* Added the `Array` reflection trait
* Allows arrays up to length 32 to be reflected via the `Array` trait
## Migration Guide
* The `List` trait now has the `Array` supertrait. This means that `clone_dynamic` will need to specify which version to use:
```rust
// Before
let cloned = my_list.clone_dynamic();
// After
let cloned = List::clone_dynamic(&my_list);
```
* All implementers of `List` will now need to implement `Array` (this mostly involves moving the existing methods to the `Array` impl)
Co-authored-by: NathanW <nathansward@comcast.net>
Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
# Objective
- It's pretty common to want to check if an EventReader has received one or multiple events while also needing to consume the iterator to "clear" the EventReader.
- The current approach is to do something like `events.iter().count() > 0` or `events.iter().last().is_some()`. It's not immediately obvious that the purpose of that is to consume the events and check if there were any events. My solution doesn't really solve that part, but it encapsulates the pattern.
## Solution
- Add a `.clear()` method that consumes the iterator.
- It takes the EventReader by value to make sure it isn't used again after it has been called.
---
## Migration Guide
Not a breaking change, but if you ever found yourself in a situation where you needed to consume the EventReader and check if there was any events you can now use
```rust
fn system(events: EventReader<MyEvent>) {
if !events.is_empty {
events.clear();
// Process the fact that one or more event was received
}
}
```
Co-authored-by: Charles <IceSentry@users.noreply.github.com>
# Objective
Fixes#3180, builds from https://github.com/bevyengine/bevy/pull/2898
## Solution
Support requesting a window to be closed and closing a window in `bevy_window`, and handle this in `bevy_winit`.
This is a stopgap until we move to windows as entites, which I'm sure I'll get around to eventually.
## Changelog
### Added
- `Window::close` to allow closing windows.
- `WindowClosed` to allow reacting to windows being closed.
### Changed
Replaced `bevy::system::exit_on_esc_system` with `bevy:🪟:close_on_esc`.
## Fixed
The app no longer exits when any window is closed. This difference is only observable when there are multiple windows.
## Migration Guide
`bevy::input::system::exit_on_esc_system` has been removed. Use `bevy:🪟:close_on_esc` instead.
`CloseWindow` has been removed. Use `Window::close` instead.
The `Close` variant has been added to `WindowCommand`. Handle this by closing the relevant window.
# Objective
Add support for vertex colors
## Solution
This change is modeled after how vertex tangents are handled, so the shader is conditionally compiled with vertex color support if the mesh has the corresponding attribute set.
Vertex colors are multiplied by the base color. I'm not sure if this is the best for all cases, but may be useful for modifying vertex colors without creating a new mesh.
I chose `VertexFormat::Float32x4`, but I'd prefer 16-bit floats if/when support is added.
## Changelog
### Added
- Vertex colors can be specified using the `Mesh::ATTRIBUTE_COLOR` mesh attribute.
# Objective
Bevy users often want to create circles and other simple shapes.
All the machinery is in place to accomplish this, and there are external crates that help. But when writing code for e.g. a new bevy example, it's not really possible to draw a circle without bringing in a new asset, writing a bunch of scary looking mesh code, or adding a dependency.
In particular, this PR was inspired by this interaction in another PR: https://github.com/bevyengine/bevy/pull/3721#issuecomment-1016774535
## Solution
This PR adds `shape::RegularPolygon` and `shape::Circle` (which is just a `RegularPolygon` that defaults to a large number of sides)
## Discussion
There's a lot of ongoing discussion about shapes in <https://github.com/bevyengine/rfcs/pull/12> and at least one other lingering shape PR (although it seems incomplete).
That RFC currently includes `RegularPolygon` and `Circle` shapes, so I don't think that having working mesh generation code in the engine for those shapes would add much burden to an author of an implementation.
But if we'd prefer not to add additional shapes until after that's sorted out, I'm happy to close this for now.
## Alternatives for users
For any users stumbling on this issue, here are some plugins that will help if you need more shapes.
https://github.com/Nilirad/bevy_prototype_lyonhttps://github.com/johanhelsing/bevy_smudhttps://github.com/Weasy666/bevy_svghttps://github.com/redpandamonium/bevy_more_shapeshttps://github.com/ForesightMiningSoftwareCorporation/bevy_polyline
This is a replacement for #2106
This adds a `Metadata` struct which contains metadata information about a file, at the moment only the file type.
It also adds a `get_metadata` to `AssetIo` trait and an `asset_io` accessor method to `AssetServer` and `LoadContext`
I am not sure about the changes in `AndroidAssetIo ` and `WasmAssetIo`.
# Objective
- As requested here: https://github.com/bevyengine/bevy/pull/4520#issuecomment-1109302039
- Make it easier to spot issues with built-in shapes
## Solution
https://user-images.githubusercontent.com/200550/165624709-c40dfe7e-0e1e-4bd3-ae52-8ae66888c171.mp4
- Add an example showcasing the built-in 3d shapes with lighting/shadows
- Rotate objects in such a way that all faces are seen by the camera
- Add a UV debug texture
## Discussion
I'm not sure if this is what @alice-i-cecile had in mind, but I adapted the little "torus playground" from the issue linked above to include all built-in shapes.
This exact arrangement might not be particularly scalable if many more shapes are added. Maybe a slow camera pan, or cycling with the keyboard or on a timer, or a sidebar with buttons would work better. If one of the latter options is used, options for showing wireframes or computed flat normals might add some additional utility.
Ideally, I think we'd have a better way of visualizing normals.
Happy to rework this or close it if there's not a consensus around it being useful.
# Objective
- Part of the splitting process of #3692.
## Solution
- Remove / change the tuple structs inside of `gamepad.rs` of `bevy_input` to normal structs.
## Reasons
- It made the `gamepad_connection_system` cleaner.
- It made the `gamepad_input_events.rs` example cleaner (which is probably the most notable change for the user facing API).
- Tuple structs are not descriptive (`.0`, `.1`).
- Using tuple structs for more than 1 field is a bad idea (This means that the `Gamepad` type might be fine as a tuple struct, but I still prefer normal structs over tuple structs).
Feel free to discuss this change as this is more or less just a matter of taste.
## Changelog
### Changed
- The `Gamepad`, `GamepadButton`, `GamepadAxis`, `GamepadEvent` and `GamepadEventRaw` types are now normal structs instead of tuple structs and have a `new()` function.
## Migration Guide
- The `Gamepad`, `GamepadButton`, `GamepadAxis`, `GamepadEvent` and `GamepadEventRaw` types are now normal structs instead of tuple structs and have a `new()` function. To migrate change every instantiation to use the `new()` function instead and use the appropriate field names instead of `.0` and `.1`.
# Objective
`bevy_ecs` has large amounts of unsafe code which is hard to get right and makes it difficult to audit for soundness.
## Solution
Introduce lifetimed, type-erased pointers: `Ptr<'a>` `PtrMut<'a>` `OwningPtr<'a>'` and `ThinSlicePtr<'a, T>` which are newtypes around a raw pointer with a lifetime and conceptually representing strong invariants about the pointee and validity of the pointer.
The process of converting bevy_ecs to use these has already caught multiple cases of unsound behavior.
## Changelog
TL;DR for release notes: `bevy_ecs` now uses lifetimed, type-erased pointers internally, significantly improving safety and legibility without sacrificing performance. This should have approximately no end user impact, unless you were meddling with the (unfortunately public) internals of `bevy_ecs`.
- `Fetch`, `FilterFetch` and `ReadOnlyFetch` trait no longer have a `'state` lifetime
- this was unneeded
- `ReadOnly/Fetch` associated types on `WorldQuery` are now on a new `WorldQueryGats<'world>` trait
- was required to work around lack of Generic Associated Types (we wish to express `type Fetch<'a>: Fetch<'a>`)
- `derive(WorldQuery)` no longer requires `'w` lifetime on struct
- this was unneeded, and improves the end user experience
- `EntityMut::get_unchecked_mut` returns `&'_ mut T` not `&'w mut T`
- allows easier use of unsafe API with less footguns, and can be worked around via lifetime transmutery as a user
- `Bundle::from_components` now takes a `ctx` parameter to pass to the `FnMut` closure
- required because closure return types can't borrow from captures
- `Fetch::init` takes `&'world World`, `Fetch::set_archetype` takes `&'world Archetype` and `&'world Tables`, `Fetch::set_table` takes `&'world Table`
- allows types implementing `Fetch` to store borrows into world
- `WorldQuery` trait now has a `shrink` fn to shorten the lifetime in `Fetch::<'a>::Item`
- this works around lack of subtyping of assoc types, rust doesnt allow you to turn `<T as Fetch<'static>>::Item'` into `<T as Fetch<'a>>::Item'`
- `QueryCombinationsIter` requires this
- Most types implementing `Fetch` now have a lifetime `'w`
- allows the fetches to store borrows of world data instead of using raw pointers
## Migration guide
- `EntityMut::get_unchecked_mut` returns a more restricted lifetime, there is no general way to migrate this as it depends on your code
- `Bundle::from_components` implementations must pass the `ctx` arg to `func`
- `Bundle::from_components` callers have to use a fn arg instead of closure captures for borrowing from world
- Remove lifetime args on `derive(WorldQuery)` structs as it is nonsensical
- `<Q as WorldQuery>::ReadOnly/Fetch` should be changed to either `RO/QueryFetch<'world>` or `<Q as WorldQueryGats<'world>>::ReadOnly/Fetch`
- `<F as Fetch<'w, 's>>` should be changed to `<F as Fetch<'w>>`
- Change the fn sigs of `Fetch::init/set_archetype/set_table` to match respective trait fn sigs
- Implement the required `fn shrink` on any `WorldQuery` implementations
- Move assoc types `Fetch` and `ReadOnlyFetch` on `WorldQuery` impls to `WorldQueryGats` impls
- Pass an appropriate `'world` lifetime to whatever fetch struct you are for some reason using
### Type inference regression
in some cases rustc may give spurrious errors when attempting to infer the `F` parameter on a query/querystate this can be fixed by manually specifying the type, i.e. `QueryState:🆕:<_, ()>(world)`. The error is rather confusing:
```rust=
error[E0271]: type mismatch resolving `<() as Fetch<'_>>::Item == bool`
--> crates/bevy_pbr/src/render/light.rs:1413:30
|
1413 | main_view_query: QueryState::new(world),
| ^^^^^^^^^^^^^^^ expected `bool`, found `()`
|
= note: required because of the requirements on the impl of `for<'x> FilterFetch<'x>` for `<() as WorldQueryGats<'x>>::Fetch`
note: required by a bound in `bevy_ecs::query::QueryState::<Q, F>::new`
--> crates/bevy_ecs/src/query/state.rs:49:32
|
49 | for<'x> QueryFetch<'x, F>: FilterFetch<'x>,
| ^^^^^^^^^^^^^^^ required by this bound in `bevy_ecs::query::QueryState::<Q, F>::new`
```
---
Made with help from @BoxyUwU and @alice-i-cecile
Co-authored-by: Boxy <supbscripter@gmail.com>
# Objective
Reduce the catch-all grab-bag of functionality in bevy_core by moving FloatOrd to bevy_utils.
A step in addressing #2931 and splitting bevy_core into more specific locations.
## Solution
Move FloatOrd into bevy_utils. Fix the compile errors.
As a result, bevy_core_pipeline, bevy_pbr, bevy_sprite, bevy_text, and bevy_ui no longer depend on bevy_core (they were only using it for `FloatOrd` previously).
# Objective
- Closes#335.
- Related #4285.
- Part of the splitting process of #3503.
## Solution
- Move `Rect` to `bevy_ui` and rename it to `UiRect`.
## Reasons
- `Rect` is only used in `bevy_ui` and therefore calling it `UiRect` makes the intent clearer.
- We have two types that are called `Rect` currently and it's missleading (see `bevy_sprite::Rect` and #335).
- Discussion in #3503.
## Changelog
### Changed
- The `Rect` type got moved from `bevy_math` to `bevy_ui` and renamed to `UiRect`.
## Migration Guide
- The `Rect` type got renamed to `UiRect`. To migrate you just have to change every occurrence of `Rect` to `UiRect`.
Co-authored-by: KDecay <KDecayMusic@protonmail.com>
# Objective
- Related #4276.
- Part of the splitting process of #3503.
## Solution
- Move `Size` to `bevy_ui`.
## Reasons
- `Size` is only needed in `bevy_ui` (because it needs to use `Val` instead of `f32`), but it's also used as a worse `Vec2` replacement in other areas.
- `Vec2` is more powerful than `Size` so it should be used whenever possible.
- Discussion in #3503.
## Changelog
### Changed
- The `Size` type got moved from `bevy_math` to `bevy_ui`.
## Migration Guide
- The `Size` type got moved from `bevy::math` to `bevy::ui`. To migrate you just have to import `bevy::ui::Size` instead of `bevy::math::Math` or use the `bevy::prelude` instead.
Co-authored-by: KDecay <KDecayMusic@protonmail.com>
# Objective
- Fixes#4234
- Fixes#4473
- Built on top of #3989
- Improve performance of `assign_lights_to_clusters`
## Solution
- Remove the OBB-based cluster light assignment algorithm and calculation of view space AABBs
- Implement the 'iterative sphere refinement' algorithm used in Just Cause 3 by Emil Persson as documented in the Siggraph 2015 Practical Clustered Shading talk by Persson, on pages 42-44 http://newq.net/dl/pub/s2015_practical.pdf
- Adapt to also support orthographic projections
- Add `many_lights -- orthographic` for testing many lights using an orthographic projection
## Results
- `assign_lights_to_clusters` in `many_lights` before this PR on an M1 Max over 1500 frames had a median execution time of 1.71ms. With this PR it is 1.51ms, a reduction of 0.2ms or 11.7% for this system.
---
## Changelog
- Changed: Improved cluster light assignment performance
Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Continue the effort to clean up this example
## Solution
- Store contributor name as component to avoid awkward vec of tuples
- Name the variable storing the Random Number Generator "rng"
- Use init_resource for resource implementing default
- Fix a few spots where an Entity was unnecessarily referenced and immediately dereferenced
- Fix up an awkward comment
# Objective
Fixes https://github.com/bevyengine/bevy/issues/3499
## Solution
Uses a `HashMap` from `RenderTarget` to sampled textures when preparing `ViewTarget`s to ensure that two passes with the same render target get sampled to the same texture.
This builds on and depends on https://github.com/bevyengine/bevy/pull/3412, so this will be a draft PR until #3412 is merged. All changes for this PR are in the last commit.
# Objective
glTF files can contain cameras. Currently the scene viewer example uses _a_ camera defined in the file if possible, otherwise it spawns a new one. It would be nice if instead it could load all the cameras and cycle through them, while also having a separate user-controller camera.
## Solution
- instead of just a camera that is already defined, always spawn a new separate user-controller camera
- maintain a list of loaded cameras and cycle through them (wrapping to the user-controller camera) when pressing `C`
This matches the behavious that https://github.khronos.org/glTF-Sample-Viewer-Release/ has.
## Implementation notes
- The gltf scene asset loader just spawns the cameras into the world, but does not return a mapping of camera index to bevy entity. So instead the scene_viewer example just collects all spawned cameras with a good old `query.iter().collect()`, so the order is unspecified and may change between runs.
## Demo
https://user-images.githubusercontent.com/22177966/161826637-40161482-5b3b-4df5-aae8-1d5e9b918393.mp4
using the virtual city glTF sample file: https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/VC
Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
# Objective
- Several examples are useful for qualitative tests of Bevy's performance
- By contrast, these are less useful for learning material: they are often relatively complex and have large amounts of setup and are performance optimized.
## Solution
- Move bevymark, many_sprites and many_cubes into the new stress_tests example folder
- Move contributors into the games folder: unlike the remaining examples in the 2d folder, it is not focused on demonstrating a clear feature.
Remove the 'chaining' api, as it's peculiar
~~Implement the label traits for `Box<dyn ThatTrait>` (n.b. I'm not confident about this change, but it was the quickest path to not regressing)~~
Remove the need for '`.system`' when using run criteria piping
# Objective
- Make use of storage buffers, where they are available, for clustered forward bindings to support far more point lights in a scene
- Fixes#3605
- Based on top of #4079
This branch on an M1 Max can keep 60fps with about 2150 point lights of radius 1m in the Sponza scene where I've been testing. The bottleneck is mostly assigning lights to clusters which grows faster than linearly (I think 1000 lights was about 1.5ms and 5000 was 7.5ms). I have seen papers and presentations leveraging compute shaders that can get this up to over 1 million. That said, I think any further optimisations should probably be done in a separate PR.
## Solution
- Add `RenderDevice` to the `Material` and `SpecializedMaterial` trait `::key()` functions to allow setting flags on the keys depending on feature/limit availability
- Make `GpuPointLights` and `ViewClusterBuffers` into enums containing `UniformVec` and `StorageBuffer` variants. Implement the necessary API on them to make usage the same for both cases, and the only difference is at initialisation time.
- Appropriate shader defs in the shader code to handle the two cases
## Context on some decisions / open questions
- I'm using `max_storage_buffers_per_shader_stage >= 3` as a check to see if storage buffers are supported. I was thinking about diving into 'binding resource management' but it feels like we don't have enough use cases to understand the problem yet, and it is mostly a separate concern to this PR, so I think it should be handled separately.
- Should `ViewClusterBuffers` and `ViewClusterBindings` be merged, duplicating the count variables into the enum variants?
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Changing animation mid animation can leave the model not in its original position
- ~~The movement speed is fixed, no matter the size of the model~~
## Solution
- when changing animation, set it to its initial state and wait for one frame before changing the animation
- ~~when settings the camera controller, use the camera transform to know how far it is from the origin and use the distance for the speed~~
The scene viewer example doesn't run on wasm because it sets the asset folder to `std::env::var("CARGO_MANIFEST_DIR").unwrap()`, which isn't supported on the web.
Solution: set the asset folder to `"."` instead.
# Objective
- `Local`s can no longer be accessed outside of their creating system, but these docs say they can be.
- There's also little reason to have a pure wrapper type for `Local`s; they can just use the real type. The parameter name should be sufficiently documenting.
# Objective
- Only move the camera when explicitly wanted, otherwise the camera goes crazy if the cursor isn't already in the middle of the window when it opens.
## Solution
- Check if the Left mouse button is pressed before updating the mouse delta
- Input is configurable
The example was broken in #3635 when the `ActiveCamera` logic was introduced, after which there could only be one active `Camera3d` globally.
Ideally there could be one `Camera3d` per render target, not globally, but that isn't the case yet.
To fix the example, we need to
- don't use `Camera3d` twice, add a new `SecondWindowCamera3d` marker
- add the `CameraTypePlugin::<SecondWindowCamera3d>`
- extract the correct `RenderPhase`s
- add a 3d pass driver node for the secondary camera
Fixes#4378
Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
# Objective
- Since #4224, using labels which only refer to one system doesn't make sense.
## Solution
- Remove some of those.
## Future work
- We should remove the ability to use strings as system labels entirely. I haven't in this PR because there are tests which use this, and that's a lot of code to change.
- The only use cases for labels are either intra-crate, which use #4224, or inter-crate, which should either use #4224 or explicit types. Neither of those should use strings.
# Objective
Add a system parameter `ParamSet` to be used as container for conflicting parameters.
## Solution
Added two methods to the SystemParamState trait, which gives the access used by the parameter. Did the implementation. Added some convenience methods to FilteredAccessSet. Changed `get_conflicts` to return every conflicting component instead of breaking on the first conflicting `FilteredAccess`.
Co-authored-by: bilsen <40690317+bilsen@users.noreply.github.com>
# Objective
Fixes#4344.
## Solution
Add a new component `Text2dBounds` to `Text2dBundle` that specifies the maximum width and height of text. Text will wrap according to this size.
# Objective
Load skeletal weights and indices from GLTF files. Animate meshes.
## Solution
- Load skeletal weights and indices from GLTF files.
- Added `SkinnedMesh` component and ` SkinnedMeshInverseBindPose` asset
- Added `extract_skinned_meshes` to extract joint matrices.
- Added queue phase systems for enqueuing the buffer writes.
Some notes:
- This ports part of # #2359 to the current main.
- This generates new `BufferVec`s and bind groups every frame. The expectation here is that the number of `Query::get` calls during extract is probably going to be the stronger bottleneck, with up to 256 calls per skinned mesh. Until that is optimized, caching buffers and bind groups is probably a non-concern.
- Unfortunately, due to the uniform size requirements, this means a 16KB buffer is allocated for every skinned mesh every frame. There's probably a few ways to get around this, but most of them require either compute shaders or storage buffers, which are both incompatible with WebGL2.
Co-authored-by: james7132 <contact@jamessliu.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: James Liu <contact@jamessliu.com>
# Objective
A common pattern in Rust is the [newtype](https://doc.rust-lang.org/rust-by-example/generics/new_types.html). This is an especially useful pattern in Bevy as it allows us to give common/foreign types different semantics (such as allowing it to implement `Component` or `FromWorld`) or to simply treat them as a "new type" (clever). For example, it allows us to wrap a common `Vec<String>` and do things like:
```rust
#[derive(Component)]
struct Items(Vec<String>);
fn give_sword(query: Query<&mut Items>) {
query.single_mut().0.push(String::from("Flaming Poisoning Raging Sword of Doom"));
}
```
> We could then define another struct that wraps `Vec<String>` without anything clashing in the query.
However, one of the worst parts of this pattern is the ugly `.0` we have to write in order to access the type we actually care about. This is why people often implement `Deref` and `DerefMut` in order to get around this.
Since it's such a common pattern, especially for Bevy, it makes sense to add a derive macro to automatically add those implementations.
## Solution
Added a derive macro for `Deref` and another for `DerefMut` (both exported into the prelude). This works on all structs (including tuple structs) as long as they only contain a single field:
```rust
#[derive(Deref)]
struct Foo(String);
#[derive(Deref, DerefMut)]
struct Bar {
name: String,
}
```
This allows us to then remove that pesky `.0`:
```rust
#[derive(Component, Deref, DerefMut)]
struct Items(Vec<String>);
fn give_sword(query: Query<&mut Items>) {
query.single_mut().push(String::from("Flaming Poisoning Raging Sword of Doom"));
}
```
### Alternatives
There are other alternatives to this such as by using the [`derive_more`](https://crates.io/crates/derive_more) crate. However, it doesn't seem like we need an entire crate just yet since we only need `Deref` and `DerefMut` (for now).
### Considerations
One thing to consider is that the Rust std library recommends _not_ using `Deref` and `DerefMut` for things like this: "`Deref` should only be implemented for smart pointers to avoid confusion" ([reference](https://doc.rust-lang.org/std/ops/trait.Deref.html)). Personally, I believe it makes sense to use it in the way described above, but others may disagree.
### Additional Context
Discord: https://discord.com/channels/691052431525675048/692572690833473578/956648422163746827 (controversiality discussed [here](https://discord.com/channels/691052431525675048/692572690833473578/956711911481835630))
---
## Changelog
- Add `Deref` derive macro (exported to prelude)
- Add `DerefMut` derive macro (exported to prelude)
- Updated most newtypes in examples to use one or both derives
Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com>
# Objective
1. Spawning walls in the Breakout example was hard to follow and error-prone.
2. The strategy used in `paddle_movement_system` was somewhat convoluted.
3. Correctly modifying the size of the arena was hard, due to implicit coupling between the bounds and the bounds that the paddle can move in.
## Solution
1. Refactor this to use a WallBundle struct with a builder; neatly demonstrating some essential patterns along the way.
2. Use clamp and avoid using weird &mut strategies.
3. Refactor logic to allow users to tweak the brick size, and automatically adjust the number of rows and columns to match.
4. Make the brick layout more like classic breakout!
![image](https://user-images.githubusercontent.com/3579909/160019864-06747361-3b5b-4944-b3fd-4978604e2ef5.png)
# Objective
- The Breakout example uses system names like `paddle_movement_system`
- _system syntax is redundant
- the [community has spoken](https://github.com/bevyengine/bevy/discussions/2804), and prefers to avoid `_system` system names by a more than 2:1 ratio
- existing system names were not terribly descriptive
## Solution
- rename the systems to take the form of `verb`, rather than `noun_system` to better capture the behavior they are implenting
- yeet `_system`
This adds the concept of "default labels" for systems (currently scoped to "parallel systems", but this could just as easily be implemented for "exclusive systems"). Function systems now include their function's `SystemTypeIdLabel` by default.
This enables the following patterns:
```rust
// ordering two systems without manually defining labels
app
.add_system(update_velocity)
.add_system(movement.after(update_velocity))
// ordering sets of systems without manually defining labels
app
.add_system(foo)
.add_system_set(
SystemSet::new()
.after(foo)
.with_system(bar)
.with_system(baz)
)
```
Fixes: #4219
Related to: #4220
Credit to @aevyrie @alice-i-cecile @DJMcNab (and probably others) for proposing (and supporting) this idea about a year ago. I was a big dummy that both shut down this (very good) idea and then forgot I did that. Sorry. You all were right!
# Objective
- The components in the Breakout game are defined in a strange fashion.
- Components should decouple behavior wherever possible.
- Systems should be as general as possible, to make extending behavior easier.
- Marker components are idiomatic and useful, but marker components and query filters were not used.
- The existing design makes it challenging for beginners to extend the example into a high-quality game.
## Solution
- Refactor component definitions in the Breakout example to reflect principles above.
## Context
A small portion of the changes made in #2094. Interacts with changes in #4255; merge conflicts will have to be resolved.
# Objective
- Fixes#3970
- To support Bevy's shader abstraction(shader defs, shader imports and hot shader reloading) for compute shaders, I have followed carts advice and change the `PipelinenCache` to accommodate both compute and render pipelines.
## Solution
- renamed `RenderPipelineCache` to `PipelineCache`
- Cached Pipelines are now represented by an enum (render, compute)
- split the `SpecializedPipelines` into `SpecializedRenderPipelines` and `SpecializedComputePipelines`
- updated the game of life example
## Open Questions
- should `SpecializedRenderPipelines` and `SpecializedComputePipelines` be merged and how would we do that?
- should the `get_render_pipeline` and `get_compute_pipeline` methods be merged?
- is pipeline specialization for different entry points a good pattern
Co-authored-by: Kurt Kühnert <51823519+Ku95@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
## Objective
There recently was a discussion on Discord about a possible test case for stress-testing transform hierarchies.
## Solution
Create a test case for stress testing transform propagation.
*Edit:* I have scrapped my previous example and built something more functional and less focused on visuals.
There are three test setups:
- `TestCase::Tree` recursively creates a tree with a specified depth and branch width
- `TestCase::NonUniformTree` is the same as `Tree` but omits nodes in a way that makes the tree "lean" towards one side, like this:
<details>
<summary></summary>
![image](https://user-images.githubusercontent.com/3957610/158069737-2ddf4e4a-7d5c-4ee5-8566-424a54a06723.png)
</details>
- `TestCase::Humanoids` creates one or more separate hierarchies based on the structure of common humanoid rigs
- this can both insert `active` and `inactive` instances of the human rig
It's possible to parameterize which parts of the hierarchy get updated (transform change) and which remain unchanged. This is based on @james7132 suggestion:
There's a probability to decide which entities should remain static. On top of that these changes can be limited to a certain range in the hierarchy (min_depth..max_depth).
# Objective
- The Breakout example has a lot of configurable constant values for setup, but these are buried in the source code.
- Magic numbers scattered in the source code are hard to follow.
- Providing constants up front makes tweaking examples very approachable.
## Solution
- Move magic numbers into constants
## Context
Part of the changes made in #2094; split out for easier review.
# Objective
- Allow quick and easy testing of scenes
## Solution
- Add a `scene-viewer` tool based on `load_gltf`.
- Run it with e.g. `cargo run --release --example scene_viewer --features jpeg -- ../some/path/assets/models/Sponza/glTF/Sponza.gltf#Scene0`
- Configure the asset path as pointing to the repo root for convenience (paths specified relative to current working directory)
- Copy over the camera controller from the `shadow_biases` example
- Support toggling the light animation
- Support toggling shadows
- Support adjusting the directional light shadow projection (cascaded shadow maps will remove the need for this later)
I don't want to do too much on it up-front. Rather we can add features over time as we need them.
# Objective
- Make the example a little easier to follow by removing unnecessary steps.
## Solution
- `Assets<Image>` will give us a handle for our render texture if we call `add()` instead of `set()`. No need to set it manually; one less thing to think about while reading the example.
# Add Transform Examples
- Adding examples for moving/rotating entities (with its own section) to resolve#2400
I've stumbled upon this project and been fiddling around a little. Saw the issue and thought I might just add some examples for the proposed transformations.
Mind to check if I got the gist correctly and suggest anything I can improve?
**Problem**
- whenever you want more than one of the builtin cameras (for example multiple windows, split screen, portals), you need to add a render graph node that executes the correct sub graph, extract the camera into the render world and add the correct `RenderPhase<T>` components
- querying for the 3d camera is annoying because you need to compare the camera's name to e.g. `CameraPlugin::CAMERA_3d`
**Solution**
- Introduce the marker types `Camera3d`, `Camera2d` and `CameraUi`
-> `Query<&mut Transform, With<Camera3d>>` works
- `PerspectiveCameraBundle::new_3d()` and `PerspectiveCameraBundle::<Camera3d>::default()` contain the `Camera3d` marker
- `OrthographicCameraBundle::new_3d()` has `Camera3d`, `OrthographicCameraBundle::new_2d()` has `Camera2d`
- remove `ActiveCameras`, `ExtractedCameraNames`
- run 2d, 3d and ui passes for every camera of their respective marker
-> no custom setup for multiple windows example needed
**Open questions**
- do we need a replacement for `ActiveCameras`? What about a component `ActiveCamera { is_active: bool }` similar to `Visibility`?
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Use the low power, reactive rendering settings for UI examples.
- Make the feature more discoverable by using it in an applicable context.
# Objective
Fixes#4036
## Solution
- Use `VertexBufferLayout::from_vertex_formats`
- Actually put a u32 into `ATTRIBUTE_COLOR` and convert it in the shader
I'm not 100% sure about the color stuff. It seems like `ATTRIBUTE_COLOR` has been `Uint32` this whole time, but this example previously worked with `[f32; 4]` somehow, perhaps because the vertex layout was manually specified.
Let me know if that can be improved, or feel free to close for an alternative fix.
# Objective
- Improve documentation.
- Provide helper functions for common uses of `Windows` relating to getting the primary `Window`.
- Reduce repeated `Window` code.
# Solution
- Adds infallible `primary()` and `primary_mut()` functions with standard error text. This replaces the commonly used `get_primary().unwrap()` seen throughout bevy which has inconsistent or nonexistent error messages.
- Adds `scale_factor(WindowId)` to replace repeated code blocks throughout.
# Considerations
- The added functions can panic if the primary window does not exist.
- It is very uncommon for the primary window to not exist, as seen by the regular use of `get_primary().unwrap()`. Most users will have a single window and will need to reference the primary window in their code multiple times.
- The panic provides a consistent error message to make this class of error easy to spot from the panic text.
- This follows the established standard of short names for infallible-but-unlikely-to-panic functions in bevy.
- Removes line noise for common usage of `Windows`.
# Objective
- Reduce power usage for games when not focused.
- Reduce power usage to ~0 when a desktop application is minimized (opt-in).
- Reduce power usage when focused, only updating on a `winit` event, or the user sends a redraw request. (opt-in)
https://user-images.githubusercontent.com/2632925/156904387-ec47d7de-7f06-4c6f-8aaf-1e952c1153a2.mp4
Note resource usage in the Task Manager in the above video.
## Solution
- Added a type `UpdateMode` that allows users to specify how the winit event loop is updated, without exposing winit types.
- Added two fields to `WinitConfig`, both with the `UpdateMode` type. One configures how the application updates when focused, and the other configures how the application behaves when it is not focused. Users can modify this resource manually to set the type of event loop control flow they want.
- For convenience, two functions were added to `WinitConfig`, that provide reasonable presets: `game()` (default) and `desktop_app()`.
- The `game()` preset, which is used by default, is unchanged from current behavior with one exception: when the app is out of focus the app updates at a minimum of 10fps, or every time a winit event is received. This has a huge positive impact on power use and responsiveness on my machine, which will otherwise continue running the app at many hundreds of fps when out of focus or minimized.
- The `desktop_app()` preset is fully reactive, only updating when user input (winit event) is supplied or a `RedrawRequest` event is sent. When the app is out of focus, it only updates on `Window` events - i.e. any winit event that directly interacts with the window. What this means in practice is that the app uses *zero* resources when minimized or not interacted with, but still updates fluidly when the app is out of focus and the user mouses over the application.
- Added a `RedrawRequest` event so users can force an update even if there are no events. This is useful in an application when you want to, say, run an animation even when the user isn't providing input.
- Added an example `low_power` to demonstrate these changes
## Usage
Configuring the event loop:
```rs
use bevy::winit::{WinitConfig};
// ...
.insert_resource(WinitConfig::desktop_app()) // preset
// or
.insert_resource(WinitConfig::game()) // preset
// or
.insert_resource(WinitConfig{ .. }) // manual
```
Requesting a redraw:
```rs
use bevy:🪟:RequestRedraw;
// ...
fn request_redraw(mut event: EventWriter<RequestRedraw>) {
event.send(RequestRedraw);
}
```
## Other details
- Because we have a single event loop for multiple windows, every time I've mentioned "focused" above, I more precisely mean, "if at least one bevy window is focused".
- Due to a platform bug in winit (https://github.com/rust-windowing/winit/issues/1619), we can't simply use `Window::request_redraw()`. As a workaround, this PR will temporarily set the window mode to `Poll` when a redraw is requested. This is then reset to the user's `WinitConfig` setting on the next frame.
# Objective
- Make the many_cubes example more interesting (and look more like many_sprites)
## Solution
- Actually display many cubes
- Move the camera around
Adds a `default()` shorthand for `Default::default()` ... because life is too short to constantly type `Default::default()`.
```rust
use bevy::prelude::*;
#[derive(Default)]
struct Foo {
bar: usize,
baz: usize,
}
// Normally you would do this:
let foo = Foo {
bar: 10,
..Default::default()
};
// But now you can do this:
let foo = Foo {
bar: 10,
..default()
};
```
The examples have been adapted to use `..default()`. I've left internal crates as-is for now because they don't pull in the bevy prelude, and the ergonomics of each case should be considered individually.
# Objective
- Add ways to control how audio is played
## Solution
- playing a sound will return a (weak) handle to an asset that can be used to control playback
- if the asset is dropped, it will detach the sink (same behaviour as now)
# Objective
- In the large majority of cases, users were calling `.unwrap()` immediately after `.get_resource`.
- Attempting to add more helpful error messages here resulted in endless manual boilerplate (see #3899 and the linked PRs).
## Solution
- Add an infallible variant named `.resource` and so on.
- Use these infallible variants over `.get_resource().unwrap()` across the code base.
## Notes
I did not provide equivalent methods on `WorldCell`, in favor of removing it entirely in #3939.
## Migration Guide
Infallible variants of `.get_resource` have been added that implicitly panic, rather than needing to be unwrapped.
Replace `world.get_resource::<Foo>().unwrap()` with `world.resource::<Foo>()`.
## Impact
- `.unwrap` search results before: 1084
- `.unwrap` search results after: 942
- internal `unwrap_or_else` calls added: 4
- trivial unwrap calls removed from tests and code: 146
- uses of the new `try_get_resource` API: 11
- percentage of the time the unwrapping API was used internally: 93%
# Objective
Will fix#3377 and #3254
## Solution
Use an enum to represent either a `WindowId` or `Handle<Image>` in place of `Camera::window`.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Closes#786
- Closes#2252
- Closes#2588
This PR implements a derive macro that allows users to define their queries as structs with named fields.
## Example
```rust
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct NumQuery<'w, T: Component, P: Component> {
entity: Entity,
u: UNumQuery<'w>,
generic: GenericQuery<'w, T, P>,
}
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct UNumQuery<'w> {
u_16: &'w u16,
u_32_opt: Option<&'w u32>,
}
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct GenericQuery<'w, T: Component, P: Component> {
generic: (&'w T, &'w P),
}
#[derive(WorldQuery)]
#[world_query(filter)]
struct NumQueryFilter<T: Component, P: Component> {
_u_16: With<u16>,
_u_32: With<u32>,
_or: Or<(With<i16>, Changed<u16>, Added<u32>)>,
_generic_tuple: (With<T>, With<P>),
_without: Without<Option<u16>>,
_tp: PhantomData<(T, P)>,
}
fn print_nums_readonly(query: Query<NumQuery<u64, i64>, NumQueryFilter<u64, i64>>) {
for num in query.iter() {
println!("{:#?}", num);
}
}
#[derive(WorldQuery)]
#[world_query(mutable, derive(Debug))]
struct MutNumQuery<'w, T: Component, P: Component> {
i_16: &'w mut i16,
i_32_opt: Option<&'w mut i32>,
}
fn print_nums(mut query: Query<MutNumQuery, NumQueryFilter<u64, i64>>) {
for num in query.iter_mut() {
println!("{:#?}", num);
}
}
```
## TODOs:
- [x] Add support for `&T` and `&mut T`
- [x] Test
- [x] Add support for optional types
- [x] Test
- [x] Add support for `Entity`
- [x] Test
- [x] Add support for nested `WorldQuery`
- [x] Test
- [x] Add support for tuples
- [x] Test
- [x] Add support for generics
- [x] Test
- [x] Add support for query filters
- [x] Test
- [x] Add support for `PhantomData`
- [x] Test
- [x] Refactor `read_world_query_field_type_info`
- [x] Properly document `readonly` attribute for nested queries and the static assertions that guarantee safety
- [x] Test that we never implement `ReadOnlyFetch` for types that need mutable access
- [x] Test that we insert static assertions for nested `WorldQuery` that a user marked as readonly
This PR makes a number of changes to how meshes and vertex attributes are handled, which the goal of enabling easy and flexible custom vertex attributes:
* Reworks the `Mesh` type to use the newly added `VertexAttribute` internally
* `VertexAttribute` defines the name, a unique `VertexAttributeId`, and a `VertexFormat`
* `VertexAttributeId` is used to produce consistent sort orders for vertex buffer generation, replacing the more expensive and often surprising "name based sorting"
* Meshes can be used to generate a `MeshVertexBufferLayout`, which defines the layout of the gpu buffer produced by the mesh. `MeshVertexBufferLayouts` can then be used to generate actual `VertexBufferLayouts` according to the requirements of a specific pipeline. This decoupling of "mesh layout" vs "pipeline vertex buffer layout" is what enables custom attributes. We don't need to standardize _mesh layouts_ or contort meshes to meet the needs of a specific pipeline. As long as the mesh has what the pipeline needs, it will work transparently.
* Mesh-based pipelines now specialize on `&MeshVertexBufferLayout` via the new `SpecializedMeshPipeline` trait (which behaves like `SpecializedPipeline`, but adds `&MeshVertexBufferLayout`). The integrity of the pipeline cache is maintained because the `MeshVertexBufferLayout` is treated as part of the key (which is fully abstracted from implementers of the trait ... no need to add any additional info to the specialization key).
* Hashing `MeshVertexBufferLayout` is too expensive to do for every entity, every frame. To make this scalable, I added a generalized "pre-hashing" solution to `bevy_utils`: `Hashed<T>` keys and `PreHashMap<K, V>` (which uses `Hashed<T>` internally) . Why didn't I just do the quick and dirty in-place "pre-compute hash and use that u64 as a key in a hashmap" that we've done in the past? Because its wrong! Hashes by themselves aren't enough because two different values can produce the same hash. Re-hashing a hash is even worse! I decided to build a generalized solution because this pattern has come up in the past and we've chosen to do the wrong thing. Now we can do the right thing! This did unfortunately require pulling in `hashbrown` and using that in `bevy_utils`, because avoiding re-hashes requires the `raw_entry_mut` api, which isn't stabilized yet (and may never be ... `entry_ref` has favor now, but also isn't available yet). If std's HashMap ever provides the tools we need, we can move back to that. Note that adding `hashbrown` doesn't increase our dependency count because it was already in our tree. I will probably break these changes out into their own PR.
* Specializing on `MeshVertexBufferLayout` has one non-obvious behavior: it can produce identical pipelines for two different MeshVertexBufferLayouts. To optimize the number of active pipelines / reduce re-binds while drawing, I de-duplicate pipelines post-specialization using the final `VertexBufferLayout` as the key. For example, consider a pipeline that needs the layout `(position, normal)` and is specialized using two meshes: `(position, normal, uv)` and `(position, normal, other_vec2)`. If both of these meshes result in `(position, normal)` specializations, we can use the same pipeline! Now we do. Cool!
To briefly illustrate, this is what the relevant section of `MeshPipeline`'s specialization code looks like now:
```rust
impl SpecializedMeshPipeline for MeshPipeline {
type Key = MeshPipelineKey;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayout,
) -> RenderPipelineDescriptor {
let mut vertex_attributes = vec![
Mesh::ATTRIBUTE_POSITION.at_shader_location(0),
Mesh::ATTRIBUTE_NORMAL.at_shader_location(1),
Mesh::ATTRIBUTE_UV_0.at_shader_location(2),
];
let mut shader_defs = Vec::new();
if layout.contains(Mesh::ATTRIBUTE_TANGENT) {
shader_defs.push(String::from("VERTEX_TANGENTS"));
vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(3));
}
let vertex_buffer_layout = layout
.get_layout(&vertex_attributes)
.expect("Mesh is missing a vertex attribute");
```
Notice that this is _much_ simpler than it was before. And now any mesh with any layout can be used with this pipeline, provided it has vertex postions, normals, and uvs. We even got to remove `HAS_TANGENTS` from MeshPipelineKey and `has_tangents` from `GpuMesh`, because that information is redundant with `MeshVertexBufferLayout`.
This is still a draft because I still need to:
* Add more docs
* Experiment with adding error handling to mesh pipeline specialization (which would print errors at runtime when a mesh is missing a vertex attribute required by a pipeline). If it doesn't tank perf, we'll keep it.
* Consider breaking out the PreHash / hashbrown changes into a separate PR.
* Add an example illustrating this change
* Verify that the "mesh-specialized pipeline de-duplication code" works properly
Please dont yell at me for not doing these things yet :) Just trying to get this in peoples' hands asap.
Alternative to #3120Fixes#3030
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- `WgpuOptions` is mutated to be updated with the actual device limits and features, but this information is readily available to both the main and render worlds through the `RenderDevice` which has .limits() and .features() methods
- Information about the adapter in terms of its name, the backend in use, etc were not being exposed but have clear use cases for being used to take decisions about what rendering code to use. For example, if something works well on AMD GPUs but poorly on Intel GPUs. Or perhaps something works well in Vulkan but poorly in DX12.
## Solution
- Stop mutating `WgpuOptions `and don't insert the updated values into the main and render worlds
- Return `AdapterInfo` from `initialize_renderer` and insert it into the main and render worlds
- Use `RenderDevice` limits in the lighting code that was using `WgpuOptions.limits`.
- Renamed `WgpuOptions` to `WgpuSettings`
I wanted to try one of the new examples but it felt so clunky that I wanted to improve it.
It did make me feel like maybe some input axes abstraction like Unity has might be useful.
Also, eating cake should probably be a separate system from movement.
What is says on the tin.
This has got more to do with making `clippy` slightly more *quiet* than it does with changing anything that might greatly impact readability or performance.
that said, deriving `Default` for a couple of structs is a nice easy win
# Objective
My attempt at fixing #2142. My very first attempt at contributing to Bevy so more than open to any feedback.
I borrowed heavily from the [Bevy Cheatbook page](https://bevy-cheatbook.github.io/patterns/generic-systems.html?highlight=generic#generic-systems).
## Solution
Fairly straightforward example using a clean up system to delete entities that are coupled with app state after exiting that state.
Co-authored-by: B-Janson <brandon@canva.com>
# Objective
- Bevy currently has no simple way to make an "empty" Entity work correctly in a Hierachy.
- The current Solution is to insert a Tuple instead:
```rs
.insert_bundle((Transform::default(), GlobalTransform::default()))
```
## Solution
* Add a `TransformBundle` that combines the Components:
```rs
.insert_bundle(TransformBundle::default())
```
* The code is based on #2331, except for missing the more controversial usage of `TransformBundle` as a Sub-bundle in preexisting Bundles.
Co-authored-by: MinerSebas <66798382+MinerSebas@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Add two examples on how to communicate with a task that is running either in another thread or in a thread from `AsyncComputeTaskPool`.
Loosely based on https://github.com/bevyengine/bevy/discussions/1150
# Objective
Enable the user to specify any presentation modes (including `Mailbox`).
Fixes#3807
## Solution
I've added a new `PresentMode` enum in `bevy_window` that mirrors the `wgpu` enum 1:1. Alternatively, I could add a new dependency on `wgpu-types` if that would be preferred.
## Objective
The [`DrawMeshInstanced`] command in the example sets vertex buffer 0 twice, with two identical calls to:
```rs
pass.set_vertex_buffer(0, gpu_mesh.vertex_buffer.slice(..));
```
## Solution
Remove the second call as it is unecessary.
[`DrawMeshInstanced`]: f3de12bc5e/examples/shader/shader_instancing.rs (L217-L258)
# Objective
- `asset_server.watch_for_changes().unwrap()` only watches changes for assets loaded **_after_** that call.
- Technically, the `hot_asset_reloading` example is racey as the watch on the asset path is set up in an async task scheduled from the asset `load()`, but the filesystem watcher is only constructed in a call that comes **_after_** the call to `load()`.
## Solution
- It feels safest to allow enabling watching the filesystem for changes on the asset server from the point of its construction. Therefore, adding such an option to `AssetServerSettings` seemed to be the correct solution.
- Fix `hot_asset_reloading` by inserting the `AssetServerSettings` resource with `watch_for_changes: true` instead of calling `asset_server.watch_for_changes().unwrap()`.
- Document the shortcomings of `.watch_for_changes()`
# Objective
When using empty events, it can feel redundant to have to specify the type of the event when sending it.
## Solution
Add a new `fire()` function that sends the default value of the event. This requires that the event derives Default.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
## Objective
There is no bevy example that shows how to transform a sprite. At least as its singular purpose. This creates an example of how to use transform.translate to move a sprite up and down. The last pull request had issues that I couldn't fix so I created a new one
### Solution
I created move_sprite example.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
I think the 'collide' function inside the 'bevy/crates/bevy_sprite/src/collide_aabb.rs' file should return 'Some' if the two rectangles are fully overlapping or one is inside the other. This can happen on low-end machines when a lot of time passes between two frames because of a stutter, so a bullet for example gets inside its target. I can also think of situations where this is a valid use case even without stutters.
## Solution
I added an 'Inside' version to the Collision enum declared in the file. And I use it, when the two rectangles are overlapping, but we can't say from which direction it happened. I gave a 'penetration depth' of minus Infinity to these cases, so that this variant only appears, when the two rectangles overlap from each side fully. I am not sure if this is the right thing to do.
Fixes#1980
Co-authored-by: Carter Anderson <mcanders1@gmail.com>