Commit graph

10 commits

Author SHA1 Message Date
JMS55
af9c945f40
Screen Space Ambient Occlusion (SSAO) MVP (#7402)
![image](https://github.com/bevyengine/bevy/assets/47158642/dbb62645-f639-4f2b-b84b-26fd915c186d)

# Objective

- Add Screen space ambient occlusion (SSAO). SSAO approximates
small-scale, local occlusion of _indirect_ diffuse light between
objects. SSAO does not apply to direct lighting, such as point or
directional lights.
- This darkens creases, e.g. on staircases, and gives nice contact
shadows where objects meet, giving entities a more "grounded" feel.
- Closes https://github.com/bevyengine/bevy/issues/3632.

## Solution

- Implement the GTAO algorithm.
-
https://www.activision.com/cdn/research/Practical_Real_Time_Strategies_for_Accurate_Indirect_Occlusion_NEW%20VERSION_COLOR.pdf
-
https://blog.selfshadow.com/publications/s2016-shading-course/activision/s2016_pbs_activision_occlusion.pdf
- Source code heavily based on [Intel's
XeGTAO](0d177ce06b/Source/Rendering/Shaders/XeGTAO.hlsli).
- Add an SSAO bevy example.

## Algorithm Overview
* Run a depth and normal prepass
* Create downscaled mips of the depth texture (preprocess_depths pass)
* GTAO pass - for each pixel, take several random samples from the
depth+normal buffers, reconstruct world position, raytrace in screen
space to estimate occlusion. Rather then doing completely random samples
on a hemisphere, you choose random _slices_ of the hemisphere, and then
can analytically compute the full occlusion of that slice. Also compute
edges based on depth differences here.
* Spatial denoise pass - bilateral blur, using edge detection to not
blur over edges. This is the final SSAO result.
* Main pass - if SSAO exists, sample the SSAO texture, and set occlusion
to be the minimum of ssao/material occlusion. This then feeds into the
rest of the PBR shader as normal.

---

## Future Improvements
- Maybe remove the low quality preset for now (too noisy)
- WebGPU fallback (see below)
- Faster depth->world position (see reverted code)
- Bent normals 
- Try interleaved gradient noise or spatiotemporal blue noise
- Replace the spatial denoiser with a combined spatial+temporal denoiser
- Render at half resolution and use a bilateral upsample
- Better multibounce approximation
(https://drive.google.com/file/d/1SyagcEVplIm2KkRD3WQYSO9O0Iyi1hfy/view)

## Far-Future Performance Improvements
- F16 math (missing naga-wgsl support
https://github.com/gfx-rs/naga/issues/1884)
- Faster coordinate space conversion for normals
- Faster depth mipchain creation
(https://github.com/GPUOpen-Effects/FidelityFX-SPD) (wgpu/naga does not
currently support subgroup ops)
- Deinterleaved SSAO for better cache efficiency
(https://developer.nvidia.com/sites/default/files/akamai/gameworks/samples/DeinterleavedTexturing.pdf)

## Other Interesting Papers
- Visibility bitmask
(https://link.springer.com/article/10.1007/s00371-022-02703-y,
https://cdrinmatane.github.io/posts/cgspotlight-slides/)
- Screen space diffuse lighting
(https://github.com/Patapom/GodComplex/blob/master/Tests/TestHBIL/2018%20Mayaux%20-%20Horizon-Based%20Indirect%20Lighting%20(HBIL).pdf)

## Platform Support
* SSAO currently does not work on DirectX12 due to issues with wgpu and
naga:
  * https://github.com/gfx-rs/wgpu/pull/3798
  * https://github.com/gfx-rs/naga/pull/2353
* SSAO currently does not work on WebGPU because r16float is not a valid
storage texture format
https://gpuweb.github.io/gpuweb/wgsl/#storage-texel-formats. We can fix
this with a fallback to r32float.

---

## Changelog

- Added ScreenSpaceAmbientOcclusionSettings,
ScreenSpaceAmbientOcclusionQualityLevel, and
ScreenSpaceAmbientOcclusionBundle

---------

Co-authored-by: IceSentry <c.giguere42@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
Co-authored-by: Daniel Chia <danstryder@gmail.com>
Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
Co-authored-by: Brandon Dyer <brandondyer64@gmail.com>
Co-authored-by: Edgar Geier <geieredgar@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-18 21:05:55 +00:00
JMS55
53667dea56
Temporal Antialiasing (TAA) (#7291)
![image](https://user-images.githubusercontent.com/47158642/214374911-412f0986-3927-4f7a-9a6c-413bdee6b389.png)

# Objective

- Implement an alternative antialias technique
- TAA scales based off of view resolution, not geometry complexity
- TAA filters textures, firefly pixels, and other aliasing not covered
by MSAA
- TAA additionally will reduce noise / increase quality in future
stochastic rendering techniques
- Closes https://github.com/bevyengine/bevy/issues/3663

## Solution

- Add a temporal jitter component
- Add a motion vector prepass
- Add a TemporalAntialias component and plugin
- Combine existing MSAA and FXAA examples and add TAA

## Followup Work
- Prepass motion vector support for skinned meshes
- Move uniforms needed for motion vectors into a separate bind group,
instead of using different bind group layouts
- Reuse previous frame's GPU view buffer for motion vectors, instead of
recomputing
- Mip biasing for sharper textures, and or unjitter texture UVs
https://github.com/bevyengine/bevy/issues/7323
- Compute shader for better performance
- Investigate FSR techniques
  - Historical depth based disocclusion tests, for geometry disocclusion
  - Historical luminance/hue based tests, for shading disocclusion
- Pixel "locks" to reduce blending rate / revamp history confidence
mechanism
- Orthographic camera support for TemporalJitter
- Figure out COD's 1-tap bicubic filter

---

## Changelog

- Added MotionVectorPrepass and TemporalJitter
- Added TemporalAntialiasPlugin, TemporalAntialiasBundle, and
TemporalAntialiasSettings

---------

Co-authored-by: IceSentry <c.giguere42@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: Daniel Chia <danstryder@gmail.com>
Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com>
Co-authored-by: Brandon Dyer <brandondyer64@gmail.com>
Co-authored-by: Edgar Geier <geieredgar@gmail.com>
2023-03-27 22:22:40 +00:00
Griffin
912fb58869 Initial tonemapping options (#7594)
# Objective

Splits tone mapping from https://github.com/bevyengine/bevy/pull/6677 into a separate PR.
Address https://github.com/bevyengine/bevy/issues/2264.
Adds tone mapping options:
- None: Bypasses tonemapping for instances where users want colors output to match those set.
- Reinhard
- Reinhard Luminance: Bevy's exiting tonemapping
- [ACES](https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl) (Fitted version, based on the same implementation that Godot 4 uses) see https://github.com/bevyengine/bevy/issues/2264
- [AgX](https://github.com/sobotka/AgX)
- SomewhatBoringDisplayTransform
- TonyMcMapface
- Blender Filmic

This PR also adds support for EXR images so they can be used to compare tonemapping options with reference images.

## Migration Guide
- Tonemapping is now an enum with NONE and the various tonemappers.
- The DebandDither is now a separate component.




Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
2023-02-19 20:38:13 +00:00
JMS55
dd4299bcf9 EnvironmentMapLight, BRDF Improvements (#7051)
(Before)
![image](https://user-images.githubusercontent.com/47158642/213946111-15ec758f-1f1d-443c-b196-1fdcd4ae49da.png)
(After)
![image](https://user-images.githubusercontent.com/47158642/217051179-67381e73-dd44-461b-a2c7-87b0440ef8de.png)
![image](https://user-images.githubusercontent.com/47158642/212492404-524e4ad3-7837-4ed4-8b20-2abc276aa8e8.png)

# Objective
- Improve lighting; especially reflections.
- Closes https://github.com/bevyengine/bevy/issues/4581.

## Solution
- Implement environment maps, providing better ambient light.
- Add microfacet multibounce approximation for specular highlights from Filament.
- Occlusion is no longer incorrectly applied to direct lighting. It now only applies to diffuse indirect light. Unsure if it's also supposed to apply to specular indirect light - the glTF specification just says "indirect light". In the case of ambient occlusion, for instance, that's usually only calculated as diffuse though. For now, I'm choosing to apply this just to indirect diffuse light, and not specular.
- Modified the PBR example to use an environment map, and have labels.
- Added `FallbackImageCubemap`.

## Implementation
- IBL technique references can be found in environment_map.wgsl.
- It's more accurate to use a LUT for the scale/bias. Filament has a good reference on generating this LUT. For now, I just used an analytic approximation.
 - For now, environment maps must first be prefiltered outside of bevy using a 3rd party tool. See the `EnvironmentMap` documentation.
- Eventually, we should have our own prefiltering code, so that we can have dynamically changing environment maps, as well as let users drop in an HDR image and use asset preprocessing to create the needed textures using only bevy. 

---

## Changelog
- Added an `EnvironmentMapLight` camera component that adds additional ambient light to a scene.
- StandardMaterials will now appear brighter and more saturated at high roughness, due to internal material changes. This is more physically correct.
- Fixed StandardMaterial occlusion being incorrectly applied to direct lighting.
- Added `FallbackImageCubemap`.

Co-authored-by: IceSentry <c.giguere42@gmail.com>
Co-authored-by: James Liu <contact@jamessliu.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
2023-02-09 16:46:32 +00:00
Marco Buono
1a96d820fd Add Distance and Atmospheric Fog support (#6412)
<img width="1392" alt="image" src="https://user-images.githubusercontent.com/418473/203873533-44c029af-13b7-4740-8ea3-af96bd5867c9.png">
<img width="1392" alt="image" src="https://user-images.githubusercontent.com/418473/203873549-36be7a23-b341-42a2-8a9f-ceea8ac7a2b8.png">


# Objective

- Add support for the “classic” distance fog effect, as well as a more advanced atmospheric fog effect.

## Solution

This PR:

- Introduces a new `FogSettings` component that controls distance fog per-camera. 
- Adds support for three widely used “traditional” fog falloff modes: `Linear`, `Exponential` and `ExponentialSquared`, as well as a more advanced `Atmospheric` fog;
- Adds support for directional light influence over fog color;
- Extracts fog via `ExtractComponent`, then uses a prepare system that sets up a new dynamic uniform struct (`Fog`), similar to other mesh view types;
- Renders fog in PBR material shader, as a final adjustment to the `output_color`, after PBR is computed (but before tone mapping);
- Adds a new `StandardMaterial` flag to enable fog; (`fog_enabled`)
- Adds convenience methods for easier artistic control when creating non-linear fog types;
- Adds documentation around fog.

---

## Changelog

### Added

- Added support for distance-based fog effects for PBR materials, controllable per-camera via the new `FogSettings` component;
- Added `FogFalloff` enum for selecting between three widely used “traditional” fog falloff modes: `Linear`, `Exponential` and `ExponentialSquared`, as well as a more advanced `Atmospheric` fog;
2023-01-29 15:28:56 +00:00
IceSentry
b3224e135b Add depth and normal prepass (#6284)
# Objective

- Add a configurable prepass
- A depth prepass is useful for various shader effects and to reduce overdraw. It can be expansive depending on the scene so it's important to be able to disable it if you don't need any effects that uses it or don't suffer from excessive overdraw.
- The goal is to eventually use it for things like TAA, Ambient Occlusion, SSR and various other techniques that can benefit from having a prepass.

## Solution

The prepass node is inserted before the main pass. It runs for each `Camera3d` with a prepass component (`DepthPrepass`, `NormalPrepass`). The presence of one of those components is used to determine which textures are generated in the prepass. When any prepass is enabled, the depth buffer generated will be used by the main pass to reduce overdraw.

The prepass runs for each `Material` created with the `MaterialPlugin::prepass_enabled` option set to `true`. You can overload the shader used by the prepass by using `Material::prepass_vertex_shader()` and/or `Material::prepass_fragment_shader()`. It will also use the `Material::specialize()` for more advanced use cases. It is enabled by default on all materials.

The prepass works on opaque materials and materials using an alpha mask. Transparent materials are ignored.

The `StandardMaterial` overloads the prepass fragment shader to support alpha mask and normal maps.

---

## Changelog

- Add a new `PrepassNode` that runs before the main pass
- Add a `PrepassPlugin` to extract/prepare/queue the necessary data
- Add a `DepthPrepass` and `NormalPrepass` component to control which textures will be created by the prepass and available in later passes.
- Add a new `prepass_enabled` flag to the `MaterialPlugin` that will control if a material uses the prepass or not.
- Add a new `prepass_enabled` flag to the `PbrPlugin` to control if the StandardMaterial uses the prepass. Currently defaults to false.
- Add `Material::prepass_vertex_shader()` and `Material::prepass_fragment_shader()` to control the prepass from the `Material`

## Notes

In bevy's sample 3d scene, the performance is actually worse when enabling the prepass, but on more complex scenes the performance is generally better. I would like more testing on this, but @DGriffin91 has reported a very noticeable improvements in some scenes.

The prepass is also used by @JMS55 for TAA and GTAO

discord thread: <https://discord.com/channels/691052431525675048/1011624228627419187>

This PR was built on top of the work of multiple people

Co-Authored-By: @superdump 
Co-Authored-By: @robtfm 
Co-Authored-By: @JMS55 

Co-authored-by: Charles <IceSentry@users.noreply.github.com>
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
2023-01-19 22:11:13 +00:00
François
d44e86507f Shader defs can now have a value (#5900)
# Objective

- shaders defs can now have a `bool` or `int` value
- `#if SHADER_DEF <operator> 3`
  - ok if `SHADER_DEF` is defined, has the correct type and pass the comparison
  - `==`, `!=`, `>=`, `>`, `<`, `<=` supported
- `#SHADER_DEF` or `#{SHADER_DEF}`
  - will be replaced by the value in the shader code
---

## Migration Guide

- replace `shader_defs.push(String::from("NAME"));` by `shader_defs.push("NAME".into());`
- if you used shader def `NO_STORAGE_BUFFERS_SUPPORT`, check how `AVAILABLE_STORAGE_BUFFER_BINDINGS` is now used in Bevy default shaders
2022-11-21 22:38:29 +00:00
Charles
8073362039 add globals to mesh view bind group (#5409)
# Objective

- It's often really useful to have access to the time when writing shaders.

## Solution

- Add a UnifformBuffer in the mesh view bind group
- This buffer contains the time, delta time and a wrapping frame count

https://user-images.githubusercontent.com/8348954/180130314-97948c2a-2d11-423d-a9c4-fb5c9d1892c7.mp4

---

## Changelog

- Added a `GlobalsUniform` at position 9 of the mesh view bind group

## Notes

The implementation is currently split between bevy_render and bevy_pbr because I was basing my implementation on the `ViewPlugin`. I'm not sure if that's the right way to structure it.

I named this `globals` instead of just time because we could potentially add more things to it.

## References in other engines

- Godot: <https://docs.godotengine.org/en/stable/tutorials/shaders/shader_reference/canvas_item_shader.html#global-built-ins>
    - Global time since startup, in seconds, by default resets to 0 after 3600 seconds
    - Doesn't seem to have anything else
- Unreal: <https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/Materials/ExpressionReference/Constant/>
    - Generic time value that updates every frame. Can be paused or scaled.
    - Frame count node, doesn't seem to be an equivalent for shaders: <https://docs.unrealengine.com/4.26/en-US/BlueprintAPI/Utilities/GetFrameCount/>
- Unity: <https://docs.unity3d.com/Manual/SL-UnityShaderVariables.html>
    - time since startup in seconds. No mention of time wrapping. Stored as a `vec4(t/20, t, t*2, t*3)` where `t` is the value in seconds
    - Also has delta time, sin time and cos time
- ShaderToy: <https://www.shadertoy.com/howto>
    - iTime is the time since startup in seconds.
    - iFrameRate
    - iTimeDelta
    - iFrame frame counter

Co-authored-by: Charles <IceSentry@users.noreply.github.com>
2022-09-28 04:20:27 +00:00
François
814f8d1635 update wgpu to 0.13 (#5168)
# Objective

- Update wgpu to 0.13
- ~~Wait, is wgpu 0.13 released? No, but I had most of the changes already ready since playing with webgpu~~ well it has been released now
- Also update parking_lot to 0.12 and naga to 0.9

## Solution

- Update syntax for wgsl shaders https://github.com/gfx-rs/wgpu/blob/master/CHANGELOG.md#wgsl-syntax
- Add a few options, remove some references: https://github.com/gfx-rs/wgpu/blob/master/CHANGELOG.md#other-breaking-changes
- fragment inputs should now exactly match vertex outputs for locations, so I added exports for those to be able to reuse them https://github.com/gfx-rs/wgpu/pull/2704
2022-07-14 21:17:16 +00:00
Robert Swain
cc4062ec43 Split mesh shader files (#4867)
# Objective

- Split PBR and 2D mesh shaders into types and bindings to prepare the shaders to be more reusable.
- See #3969 for details. I'm doing this in multiple steps to make review easier.

---

## Changelog

- Changed: 2D and PBR mesh shaders are now split into types and bindings, the following shader imports are available: `bevy_pbr::mesh_view_types`, `bevy_pbr::mesh_view_bindings`, `bevy_pbr::mesh_types`, `bevy_pbr::mesh_bindings`, `bevy_sprite::mesh2d_view_types`, `bevy_sprite::mesh2d_view_bindings`, `bevy_sprite::mesh2d_types`, `bevy_sprite::mesh2d_bindings`

## Migration Guide

- In shaders for 3D meshes:
  - `#import bevy_pbr::mesh_view_bind_group` -> `#import bevy_pbr::mesh_view_bindings`
  - `#import bevy_pbr::mesh_struct` -> `#import bevy_pbr::mesh_types`
    - NOTE: If you are using the mesh bind group at bind group index 2, you can remove those binding statements in your shader and just use `#import bevy_pbr::mesh_bindings` which itself imports the mesh types needed for the bindings.
- In shaders for 2D meshes:
  - `#import bevy_sprite::mesh2d_view_bind_group` -> `#import bevy_sprite::mesh2d_view_bindings`
  - `#import bevy_sprite::mesh2d_struct` -> `#import bevy_sprite::mesh2d_types`
    - NOTE: If you are using the mesh2d bind group at bind group index 2, you can remove those binding statements in your shader and just use `#import bevy_sprite::mesh2d_bindings` which itself imports the mesh2d types needed for the bindings.
2022-05-31 23:23:25 +00:00