# Objective
Related to #10612.
Enable the
[`clippy::manual_let_else`](https://rust-lang.github.io/rust-clippy/master/#manual_let_else)
lint as a warning. The `let else` form seems more idiomatic to me than a
`match`/`if else` that either match a pattern or diverge, and from the
clippy doc, the lint doesn't seem to have any possible false positive.
## Solution
Add the lint as warning in `Cargo.toml`, refactor places where the lint
triggers.
# Objective
Fixes#10688
There were a number of issues at play:
1. The GLTF loader was not registering Scene dependencies properly. They
were being registered at the root instead of on the scene assets. This
made `LoadedWithDependencies` fire immediately on load.
2. Recursive labeled assets _inside_ of labeled assets were not being
loaded. This only became relevant for scenes after fixing (1) because we
now add labeled assets to the nested scene `LoadContext` instead of the
root load context. I'm surprised nobody has hit this yet. I'm glad I
caught it before somebody hit it.
3. Accessing "loaded with dependencies" state on the Asset Server is
boilerplatey + error prone (because you need to manually query two
states).
## Solution
1. In GltfLoader, use a nested LoadContext for scenes and load
dependencies through that context.
2. In the `AssetServer`, load labeled assets recursively.
3. Added a simple `asset_server.is_loaded_with_dependencies(id)`
I also added some docs to `LoadContext` to help prevent this problem in
the future.
---
## Changelog
- Added `AssetServer::is_loaded_with_dependencies`
- Fixed GLTF Scene dependencies
- Fixed nested labeled assets not being loaded
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Fixes#10157
## Solution
Add `AssetMetaCheck` resource which can configure when/if asset meta
files will be read:
```rust
app
// Never attempts to look up meta files. The default meta configuration will be used for each asset.
.insert_resource(AssetMetaCheck::Never)
.add_plugins(DefaultPlugins)
```
This serves as a band-aid fix for the issue with wasm's
`HttpWasmAssetReader` creating a bunch of requests for non-existent
meta, which can slow down asset loading (by waiting for the 404
response) and creates a bunch of noise in the logs. This also provides a
band-aid fix for the more serious issue of itch.io deployments returning
403 responses, which results in full failure of asset loads.
If users don't want to include meta files for all deployed assets for
web builds, and they aren't using meta files at all, they should set
this to `AssetMetaCheck::Never`.
If users do want to include meta files for specific assets, they can use
`AssetMetaCheck::Paths`, which will only look up meta for those paths.
Currently, this defaults to `AssetMetaCheck::Always`, which makes this
fully non-breaking for the `0.12.1` release. _**However it _is_ worth
discussing making this `AssetMetaCheck::Never` by default**_, given that
I doubt most people are using meta files without the Asset Processor
enabled. This would be a breaking change, but it would make WASM / Itch
deployments work by default, which is a pretty big win imo. The downside
is that people using meta files _without_ processing would need to
manually enable `AssetMetaCheck::Always`, which is also suboptimal.
When in `AssetMetaCheck::Processed`, the meta check resource is ignored,
as processing requires asset meta files to function.
In general, I don't love adding this knob as things should ideally "just
work" in all cases. But this is the reality of the current situation.
---
## Changelog
- Added `AssetMetaCheck` resource, which can configure when/if asset
meta files will be read
# Objective
- Fixes#10695
## Solution
Fixed obvious blunder in `PartialEq` implementation for
`UntypedAssetId`'s where the `TypeId` was not included in the
comparison. This was not picked up in the unit tests I added because
they only tested over a single asset type.
# Objective
- Fixes#10629
- `UntypedAssetId` and `AssetId` (along with `UntypedHandle` and
`Handle`) do not hash to the same values when pointing to the same
`Asset`. Additionally, comparison and conversion between these types
does not follow idiomatic Rust standards.
## Solution
- Added new unit tests to validate/document expected behaviour
- Added trait implementations to make working with Un/Typed values more
ergonomic
- Ensured hashing and comparison between Un/Typed values is consistent
- Removed `From` trait implementations that panic, and replaced them
with `TryFrom`
---
## Changelog
- Ensured `Handle::<A>::hash` and `UntypedHandle::hash` will produce the
same value for the same `Asset`
- Added non-panicing `Handle::<A>::try_typed`
- Added `PartialOrd` to `UntypedHandle` to match `Handle<A>` (this will
return `None` for `UntypedHandles` for differing `Asset` types)
- Added `TryFrom<UntypedHandle>` for `Handle<A>`
- Added `From<Handle<A>>` for `UntypedHandle`
- Removed panicing `From<Untyped...>` implementations. These are
currently unused within the Bevy codebase, and shouldn't be used
externally, hence removal.
- Added cross-implementations of `PartialEq` and `PartialOrd` for
`UntypedHandle` and `Handle<A>` allowing direct comparison when
`TypeId`'s match.
- Near-identical changes to `AssetId` and `UntypedAssetId`
## Migration Guide
If you relied on any of the panicing `From<Untyped...>` implementations,
simply call the existing `typed` methods instead. Alternatively, use the
new `TryFrom` implementation instead to directly expose possible
mistakes.
## Notes
I've made these changes since `Handle` is such a fundamental type to the
entire `Asset` ecosystem within Bevy, and yet it had pretty unclear
behaviour with no direct testing. The fact that hashing untyped vs typed
versions of the same handle would produce different values is something
I expect to cause a very subtle bug for someone else one day.
I haven't included it in this PR to avoid any controversy, but I also
believe the `typed_unchecked` methods should be removed from these
types, or marked as `unsafe`. The `texture_atlas` example currently uses
it, and I believe it is a bad choice. The performance gained by not
type-checking before conversion would be entirely dwarfed by the act of
actually loading an asset and creating its handle anyway. If an end user
is in a tight loop repeatedly calling `typed_unchecked` on an
`UntypedHandle` for the entire runtime of their application, I think the
small performance drop caused by that safety check is ~~a form of cosmic
justice~~ reasonable.
# Objective
Fix the `bevy_asset/file_watcher` feature in practice depending on
multithreading, while not informing the user of it.
**As I understand it** (I didn't check it), the file watcher feature
depends on spawning a concurrent thread to receive file update events
from the `notify-debouncer-full` crate. But if multithreading is
disabled, that thread will never have time to read the events and
consume them.
- Fixes#10573
## Solution
Add a `compile_error!` causing compilation failure if `file_watcher` is
enabled while `multi-threaded` is disabled.
This is considered better than adding a dependency on `multi-threaded`
on the `file_watcher`, as (according to @mockersf) toggling on/off
`multi-threaded` has a non-zero chance of changing behavior. And we
shouldn't implicitly change behavior. A compilation failure prevents
compilation of code that is invalid, while informing the user of the
steps needed to fix it.
# Objective
- Fix adding `#![allow(clippy::type_complexity)]` everywhere. like #9796
## Solution
- Use the new [lints] table that will land in 1.74
(https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints)
- inherit lint to the workspace, crates and examples.
```
[lints]
workspace = true
```
## Changelog
- Bump rust version to 1.74
- Enable lints table for the workspace
```toml
[workspace.lints.clippy]
type_complexity = "allow"
```
- Allow type complexity for all crates and examples
```toml
[lints]
workspace = true
```
---------
Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com>
# Objective
- Allow bevy applications that does not have any assets folder to start
from a read-only directory. (typically installed to a systems folder)
Fixes#10613
## Solution
- warn instead of panic when assets folder creation fails.
# Objective
- Currently, in 0.12 there is an issue that it is not possible to build
bevy for Wasm with feature "file_watcher" enabled. It still would not
compile, but now with proper explanation.
- Fixes https://github.com/bevyengine/bevy/issues/10507
## Solution
- Remove `notify-debouncer-full` dependency on WASM platform entirely.
- Compile with "file_watcher" feature now on platform `wasm32` gives
meaningful compile error.
---
## Changelog
### Fixed
- Compile with "file_watcher" feature now on platform `wasm32` gives
meaningful compile error.
# Objective
- Fixes#10518
## Solution
I've added a method to `LoadContext`, `load_direct_with_reader`, which
mirrors the behaviour of `load_direct` with a single key difference: it
is provided with the `Reader` by the caller, rather than getting it from
the contained `AssetServer`. This allows for an `AssetLoader` to process
its `Reader` stream, and then directly hand the results off to the
`LoadContext` to handle further loading. The outer `AssetLoader` can
control how the `Reader` is interpreted by providing a relevant
`AssetPath`.
For example, a Gzip decompression loader could process the asset
`images/my_image.png.gz` by decompressing the bytes, then handing the
decompressed result to the `LoadContext` with the new path
`images/my_image.png.gz/my_image.png`. This intuitively reflects the
nature of contained assets, whilst avoiding unintended behaviour, since
the generated path cannot be a real file path (a file and folder of the
same name cannot coexist in most file-systems).
```rust
#[derive(Asset, TypePath)]
pub struct GzAsset {
pub uncompressed: ErasedLoadedAsset,
}
#[derive(Default)]
pub struct GzAssetLoader;
impl AssetLoader for GzAssetLoader {
type Asset = GzAsset;
type Settings = ();
type Error = GzAssetLoaderError;
fn load<'a>(
&'a self,
reader: &'a mut Reader,
_settings: &'a (),
load_context: &'a mut LoadContext,
) -> BoxedFuture<'a, Result<Self::Asset, Self::Error>> {
Box::pin(async move {
let compressed_path = load_context.path();
let file_name = compressed_path
.file_name()
.ok_or(GzAssetLoaderError::IndeterminateFilePath)?
.to_string_lossy();
let uncompressed_file_name = file_name
.strip_suffix(".gz")
.ok_or(GzAssetLoaderError::IndeterminateFilePath)?;
let contained_path = compressed_path.join(uncompressed_file_name);
let mut bytes_compressed = Vec::new();
reader.read_to_end(&mut bytes_compressed).await?;
let mut decoder = GzDecoder::new(bytes_compressed.as_slice());
let mut bytes_uncompressed = Vec::new();
decoder.read_to_end(&mut bytes_uncompressed)?;
// Now that we have decompressed the asset, let's pass it back to the
// context to continue loading
let mut reader = VecReader::new(bytes_uncompressed);
let uncompressed = load_context
.load_direct_with_reader(&mut reader, contained_path)
.await?;
Ok(GzAsset { uncompressed })
})
}
fn extensions(&self) -> &[&str] {
&["gz"]
}
}
```
Because this example is so prudent, I've included an
`asset_decompression` example which implements this exact behaviour:
```rust
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.init_asset::<GzAsset>()
.init_asset_loader::<GzAssetLoader>()
.add_systems(Startup, setup)
.add_systems(Update, decompress::<Image>)
.run();
}
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
commands.spawn(Camera2dBundle::default());
commands.spawn((
Compressed::<Image> {
compressed: asset_server.load("data/compressed_image.png.gz"),
..default()
},
Sprite::default(),
TransformBundle::default(),
VisibilityBundle::default(),
));
}
fn decompress<A: Asset>(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut compressed_assets: ResMut<Assets<GzAsset>>,
query: Query<(Entity, &Compressed<A>)>,
) {
for (entity, Compressed { compressed, .. }) in query.iter() {
let Some(GzAsset { uncompressed }) = compressed_assets.remove(compressed) else {
continue;
};
let uncompressed = uncompressed.take::<A>().unwrap();
commands
.entity(entity)
.remove::<Compressed<A>>()
.insert(asset_server.add(uncompressed));
}
}
```
A key limitation to this design is how to type the internally loaded
asset, since the example `GzAssetLoader` is unaware of the internal
asset type `A`. As such, in this example I store the contained asset as
an `ErasedLoadedAsset`, and leave it up to the consumer of the `GzAsset`
to handle typing the final result, which is the purpose of the
`decompress` system. This limitation can be worked around by providing
type information to the `GzAssetLoader`, such as `GzAssetLoader<Image,
ImageAssetLoader>`, but this would require registering the asset loader
for every possible decompression target.
Aside from this limitation, nested asset containerisation works as an
end user would expect; if the user registers a `TarAssetLoader`, and a
`GzAssetLoader`, then they can load assets with compound
containerisation, such as `images.tar.gz`.
---
## Changelog
- Added `LoadContext::load_direct_with_reader`
- Added `asset_decompression` example
## Notes
- While I believe my implementation of a Gzip asset loader is
reasonable, I haven't included it as a public feature of `bevy_asset` to
keep the scope of this PR as focussed as possible.
- I have included `flate2` as a `dev-dependency` for the example; it is
not included in the main dependency graph.
# Objective
Addresses #[10438](https://github.com/bevyengine/bevy/issues/10438)
The objective was to include the failing path in the error for the user
to see.
## Solution
Add a `path` field to the `ReadAssetBytesError::Io` variant to expose
the failing path in the error message.
## Migration Guide
- The `ReadAssetBytesError::Io` variant now contains two named fields
instead of converting from `std::io::Error`.
1. `path`: The requested (failing) path (`PathBuf`)
2. `source`: The source `std::io::Error`
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Give us the ability to load untyped assets in AssetLoaders.
## Solution
Basically just copied the code from `load`, but used
`asset_server.load_untyped` instead internally.
## Changelog
Added `load_untyped` method to `LoadContext`
# Objective
Close#10504. Improve the development experience for working with scenes
by not requiring the user to specify a matching version of `ron` in
their `Cargo.toml`
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Fixes#10436
Alternative to #10465
## Solution
`load_untyped_async` / `load_internal` currently has a bug. In
`load_untyped_async`, we pass None into `load_internal` for the
`UntypedHandle` of the labeled asset path. This results in a call to
`get_or_create_path_handle_untyped` with `loader.asset_type_id()`
This is a new code path that wasn't hit prior to the newly added
`load_untyped` because `load_untyped_async` was a private method only
used in the context of the `load_folder` impl (which doesn't have
labels)
The fix required some refactoring to catch that case and defer handle
retrieval. I have also made `load_untyped_async` public as it is now
"ready for public use" and unlocks new scenarios.
# Objective
Fixes an issue where Bevy will look for `.meta` files in the root of the
server instead of `imported_assets/Default` on the web.
## Solution
`self.root_path.join` was seemingly forgotten in the `read_meta`
function on `HttpWasmAssetReader`, though it was included in the `read`
function. This PR simply adds the missing function call.
# Objective
* In Bevy 0.11 asset loaders used `anyhow::Error` for returning errors.
In Bevy 0.12 `AssetLoader` (and `AssetSaver`) have associated `Error`
type. Unfortunately it's type bounds does not allow `anyhow::Error` to
be used despite migration guide claiming otherwise. This makes migration
to 0.12 more challenging. Solve this by changing type bounds for
associated `Error` type.
* Fix#10350
## Solution
Change associated `Error` type bounds to require `Into<Box<dyn
std::error::Error + Send + Sync + 'static>>` to be implemented instead
of `std::error::Error + Send + Sync + 'static`. Both `anyhow::Error` and
errors generated by `thiserror` seems to be fine with such type bound.
---
## Changelog
### Fixed
* Fixed compatibility with `anyhow::Error` in `AssetLoader` and
`AssetSaver` associated `Error` type
# Objective
- The docs on `AssetPath::try_parse` say that it will return an error
when the string is malformed, but it actually just `.unwrap()`s the
result.
## Solution
- Use `?` instead of unwrapping the result.
# Objective
- Fixes#10209
- Assets should work in single threaded
## Solution
- In single threaded mode, don't use `async_fs` but fallback on
`std::fs` with a thin layer to mimic the async API
- file `file_asset.rs` is the async imps from `mod.rs`
- file `sync_file_asset.rs` is the same with `async_fs` APIs replaced by
`std::fs`
- which module is used depends on the `multi-threaded` feature
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Folder handles are not shared. Loading the same folder multiple times
will result in different handles.
- Once folder handles are shared, they can no longer be manually
reloaded, so we should add support for hot-reloading them
## Solution
- Reuse folder handles based on their path
- Trigger a reload of a folder if a file contained in it (or a sub
folder) is added or removed
- This also covers adding/removing/moving sub folders containing files
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Assets v2 does not currently offer a public API to load untyped assets
## Solution
- Wrap the untyped handle in a `LoadedUntypedAsset` asset to offer a
non-blocking load for untyped assets. The user does not need to know the
actual asset type.
- Handles to `LoadedUntypedAsset` have the same path as the wrapped
asset, but their handles are shared using a label.
The user side of `load_untyped` looks like this:
```rust
use bevy::prelude::*;
use bevy_internal::asset::LoadedUntypedAsset;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(Update, check)
.run();
}
#[derive(Resource)]
struct UntypedAsset {
handle: Handle<LoadedUntypedAsset>,
}
fn setup(
mut commands: Commands,
asset_server: Res<AssetServer>,
) {
let handle = asset_server.load_untyped("branding/banner.png");
commands.insert_resource(UntypedAsset { handle });
commands.spawn(Camera2dBundle::default());
}
fn check(
mut commands: Commands,
res: Option<Res<UntypedAsset>>,
assets: Res<Assets<LoadedUntypedAsset>>,
) {
if let Some(untyped_asset) = res {
if let Some(asset) = assets.get(&untyped_asset.handle) {
commands.spawn(SpriteBundle {
texture: asset.handle.clone().typed(),
..default()
});
commands.remove_resource::<UntypedAsset>();
}
}
}
```
---
## Changelog
- `load_untyped` on the asset server now returns a handle to a
`LoadedUntypedAsset` instead of an untyped handle to the asset at the
given path. The untyped handle for the given path can be retrieved from
the `LoadedUntypedAsset` once it is done loading.
## Migration Guide
Whenever possible use the typed API in order to directly get a handle to
your asset. If you do not know the type or need to use `load_untyped`
for a different reason, Bevy 0.12 introduces an additional layer of
indirection. The asset server will return a handle to a
`LoadedUntypedAsset`, which will load in the background. Once it is
loaded, the untyped handle to the asset file can be retrieved from the
`LoadedUntypedAsset`s field `handle`.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Hot reloading doesn't work the first time it is used
## Solution
- Currently, Bevy processor:
1. Create the `imported_assets` folder
2. Setup a watcher on it
3. Clear empty folders, so the `imported_assets` folder is deleted
4. Recreate the `imported_assets` folder and add all the imported assets
- On a first run without an existing `imported_assets` with some
content, hot reloading won't work as step 3 breaks the file watcher
- This PR stops the empty root folder from being deleted
- Also don't setup the processor internal asset server for file
watching, freeing up a thread
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Fixes#9473
## Solution
Added `resolve()` method to AssetPath. This method accepts a relative
asset path string and returns a "full" path that has been resolved
relative to the current (self) path.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Replace md5 by another hasher, as suggested in
https://github.com/bevyengine/bevy/pull/8624#discussion_r1359291028
- md5 is not secure, and is slow. use something more secure and faster
## Solution
- Replace md5 by blake3
Putting this PR in the 0.12 as once it's released, changing the hash
algorithm will be a painful breaking change
# Objective
Users shouldn't need to change their source code between "development
workflows" and "releasing". Currently, Bevy Asset V2 has two "processed"
asset modes `Processed` (assumes assets are already processed) and
`ProcessedDev` (starts an asset processor and processes assets). This
means that the mode must be changed _in code_ when switching from "app
dev" to "release". Very suboptimal.
We have already removed "runtime opt-in" for hot-reloading. Enabling the
`file_watcher` feature _automatically_ enables file watching in code.
This means deploying a game (without hot reloading enabled) just means
calling `cargo build --release` instead of `cargo run --features
bevy/file_watcher`.
We should adopt this pattern for asset processing.
## Solution
This adds the `asset_processor` feature, which will start the
`AssetProcessor` when an `AssetPlugin` runs in `AssetMode::Processed`.
The "asset processing workflow" is now:
1. Enable `AssetMode::Processed` on `AssetPlugin`
2. When developing, run with the `asset_processor` and `file_watcher`
features
3. When releasing, build without these features.
The `AssetMode::ProcessedDev` mode has been removed.
# Objective
I encountered a problem where I had a plugin `FooPlugin` which did
```rust
impl Plugin for FooPlugin {
fn build(&self, app: &mut App) {
app
.register_asset_source(...); // more stuff after
}
}
```
And when I tried using it, e.g.
```rust
asset_server.load("foo://data/asset.custom");
```
I got an error that `foo` was not recognized as a source.
I found that this is because asset sources must be registered _before_
`AssetPlugin` is added, and I had `FooPlugin` _after_.
## Solution
Add clarifying note about having to register sources before
`AssetPlugin` is added.
Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
# Objective
- Provides actionable feedback when users encounter the error in
https://github.com/bevyengine/bevy/issues/10162
- Complements https://github.com/bevyengine/bevy/pull/10186
## Solution
- Log an error when registering an AssetSource after the AssetPlugin has
been built (via DefaultPlugins). This will let users know that their
registration order needs changing
The outputted error message will look like this:
```rust
ERROR bevy_asset::server: 'AssetSourceId::Name(test)' must be registered before `AssetPlugin` (typically added as part of `DefaultPlugins`)
```
---------
Co-authored-by: 66OJ66 <hi0obxud@anonaddy.me>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Calling `asset_server.load("scene.gltf#SomeLabel")` will silently fail
if `SomeLabel` does not exist.
Referenced in #9714
## Solution
We now detect this case and return an error. I also slightly refactored
`load_internal` to make the logic / dataflow much clearer.
---------
Co-authored-by: Pascal Hertleif <killercup@gmail.com>
# Objective
As called out in #9714, Bevy Asset V2 fails to hot-reload labeled assets
whose source asset has changed (in cases where the root asset is not
alive).
## Solution
Track alive labeled assets for a given source asset and allow hot
reloads in cases where a labeled asset is still alive.
# Objective
- Since #9885, running on an iOS device crashes trying to create the
processed folder
- This only happens on real device, not on the simulator
## Solution
- Setup processed assets only if needed
# Objective
Currently, the asset loader outputs
```
2023-10-14T15:11:09.328850Z WARN bevy_asset::asset_server: no `AssetLoader` found
```
when user forgets to add an extension to a file. This is very confusing
behaviour, it sounds like there aren't any asset loaders existing.
## Solution
Add an extra message on the end when there are no file extensions.
This adds support for **Multiple Asset Sources**. You can now register a
named `AssetSource`, which you can load assets from like you normally
would:
```rust
let shader: Handle<Shader> = asset_server.load("custom_source://path/to/shader.wgsl");
```
Notice that `AssetPath` now supports `some_source://` syntax. This can
now be accessed through the `asset_path.source()` accessor.
Asset source names _are not required_. If one is not specified, the
default asset source will be used:
```rust
let shader: Handle<Shader> = asset_server.load("path/to/shader.wgsl");
```
The behavior of the default asset source has not changed. Ex: the
`assets` folder is still the default.
As referenced in #9714
## Why?
**Multiple Asset Sources** enables a number of often-asked-for
scenarios:
* **Loading some assets from other locations on disk**: you could create
a `config` asset source that reads from the OS-default config folder
(not implemented in this PR)
* **Loading some assets from a remote server**: you could register a new
`remote` asset source that reads some assets from a remote http server
(not implemented in this PR)
* **Improved "Binary Embedded" Assets**: we can use this system for
"embedded-in-binary assets", which allows us to replace the old
`load_internal_asset!` approach, which couldn't support asset
processing, didn't support hot-reloading _well_, and didn't make
embedded assets accessible to the `AssetServer` (implemented in this pr)
## Adding New Asset Sources
An `AssetSource` is "just" a collection of `AssetReader`, `AssetWriter`,
and `AssetWatcher` entries. You can configure new asset sources like
this:
```rust
app.register_asset_source(
"other",
AssetSource::build()
.with_reader(|| Box::new(FileAssetReader::new("other")))
)
)
```
Note that `AssetSource` construction _must_ be repeatable, which is why
a closure is accepted.
`AssetSourceBuilder` supports `with_reader`, `with_writer`,
`with_watcher`, `with_processed_reader`, `with_processed_writer`, and
`with_processed_watcher`.
Note that the "asset source" system replaces the old "asset providers"
system.
## Processing Multiple Sources
The `AssetProcessor` now supports multiple asset sources! Processed
assets can refer to assets in other sources and everything "just works".
Each `AssetSource` defines an unprocessed and processed `AssetReader` /
`AssetWriter`.
Currently this is all or nothing for a given `AssetSource`. A given
source is either processed or it is not. Later we might want to add
support for "lazy asset processing", where an `AssetSource` (such as a
remote server) can be configured to only process assets that are
directly referenced by local assets (in order to save local disk space
and avoid doing extra work).
## A new `AssetSource`: `embedded`
One of the big features motivating **Multiple Asset Sources** was
improving our "embedded-in-binary" asset loading. To prove out the
**Multiple Asset Sources** implementation, I chose to build a new
`embedded` `AssetSource`, which replaces the old `load_interal_asset!`
system.
The old `load_internal_asset!` approach had a number of issues:
* The `AssetServer` was not aware of (or capable of loading) internal
assets.
* Because internal assets weren't visible to the `AssetServer`, they
could not be processed (or used by assets that are processed). This
would prevent things "preprocessing shaders that depend on built in Bevy
shaders", which is something we desperately need to start doing.
* Each "internal asset" needed a UUID to be defined in-code to reference
it. This was very manual and toilsome.
The new `embedded` `AssetSource` enables the following pattern:
```rust
// Called in `crates/bevy_pbr/src/render/mesh.rs`
embedded_asset!(app, "mesh.wgsl");
// later in the app
let shader: Handle<Shader> = asset_server.load("embedded://bevy_pbr/render/mesh.wgsl");
```
Notice that this always treats the crate name as the "root path", and it
trims out the `src` path for brevity. This is generally predictable, but
if you need to debug you can use the new `embedded_path!` macro to get a
`PathBuf` that matches the one used by `embedded_asset`.
You can also reference embedded assets in arbitrary assets, such as WGSL
shaders:
```rust
#import "embedded://bevy_pbr/render/mesh.wgsl"
```
This also makes `embedded` assets go through the "normal" asset
lifecycle. They are only loaded when they are actually used!
We are also discussing implicitly converting asset paths to/from shader
modules, so in the future (not in this PR) you might be able to load it
like this:
```rust
#import bevy_pbr::render::mesh::Vertex
```
Compare that to the old system!
```rust
pub const MESH_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(3252377289100772450);
load_internal_asset!(app, MESH_SHADER_HANDLE, "mesh.wgsl", Shader::from_wgsl);
// The mesh asset is the _only_ accessible via MESH_SHADER_HANDLE and _cannot_ be loaded via the AssetServer.
```
## Hot Reloading `embedded`
You can enable `embedded` hot reloading by enabling the
`embedded_watcher` cargo feature:
```
cargo run --features=embedded_watcher
```
## Improved Hot Reloading Workflow
First: the `filesystem_watcher` cargo feature has been renamed to
`file_watcher` for brevity (and to match the `FileAssetReader` naming
convention).
More importantly, hot asset reloading is no longer configured in-code by
default. If you enable any asset watcher feature (such as `file_watcher`
or `rust_source_watcher`), asset watching will be automatically enabled.
This removes the need to _also_ enable hot reloading in your app code.
That means you can replace this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::default().watch_for_changes()))
```
with this:
```rust
app.add_plugins(DefaultPlugins)
```
If you want to hot reload assets in your app during development, just
run your app like this:
```
cargo run --features=file_watcher
```
This means you can use the same code for development and deployment! To
deploy an app, just don't include the watcher feature
```
cargo build --release
```
My intent is to move to this approach for pretty much all dev workflows.
In a future PR I would like to replace `AssetMode::ProcessedDev` with a
`runtime-processor` cargo feature. We could then group all common "dev"
cargo features under a single `dev` feature:
```sh
# this would enable file_watcher, embedded_watcher, runtime-processor, and more
cargo run --features=dev
```
## AssetMode
`AssetPlugin::Unprocessed`, `AssetPlugin::Processed`, and
`AssetPlugin::ProcessedDev` have been replaced with an `AssetMode` field
on `AssetPlugin`.
```rust
// before
app.add_plugins(DefaultPlugins.set(AssetPlugin::Processed { /* fields here */ })
// after
app.add_plugins(DefaultPlugins.set(AssetPlugin { mode: AssetMode::Processed, ..default() })
```
This aligns `AssetPlugin` with our other struct-like plugins. The old
"source" and "destination" `AssetProvider` fields in the enum variants
have been replaced by the "asset source" system. You no longer need to
configure the AssetPlugin to "point" to custom asset providers.
## AssetServerMode
To improve the implementation of **Multiple Asset Sources**,
`AssetServer` was made aware of whether or not it is using "processed"
or "unprocessed" assets. You can check that like this:
```rust
if asset_server.mode() == AssetServerMode::Processed {
/* do something */
}
```
Note that this refactor should also prepare the way for building "one to
many processed output files", as it makes the server aware of whether it
is loading from processed or unprocessed sources. Meaning we can store
and read processed and unprocessed assets differently!
## AssetPath can now refer to folders
The "file only" restriction has been removed from `AssetPath`. The
`AssetServer::load_folder` API now accepts an `AssetPath` instead of a
`Path`, meaning you can load folders from other asset sources!
## Improved AssetPath Parsing
AssetPath parsing was reworked to support sources, improve error
messages, and to enable parsing with a single pass over the string.
`AssetPath::new` was replaced by `AssetPath::parse` and
`AssetPath::try_parse`.
## AssetWatcher broken out from AssetReader
`AssetReader` is no longer responsible for constructing `AssetWatcher`.
This has been moved to `AssetSourceBuilder`.
## Duplicate Event Debouncing
Asset V2 already debounced duplicate filesystem events, but this was
_input_ events. Multiple input event types can produce the same _output_
`AssetSourceEvent`. Now that we have `embedded_watcher`, which does
expensive file io on events, it made sense to debounce output events
too, so I added that! This will also benefit the AssetProcessor by
preventing integrity checks for duplicate events (and helps keep the
noise down in trace logs).
## Next Steps
* **Port Built-in Shaders**: Currently the primary (and essentially
only) user of `load_interal_asset` in Bevy's source code is "built-in
shaders". I chose not to do that in this PR for a few reasons:
1. We need to add the ability to pass shader defs in to shaders via meta
files. Some shaders (such as MESH_VIEW_TYPES) need to pass shader def
values in that are defined in code.
2. We need to revisit the current shader module naming system. I think
we _probably_ want to imply modules from source structure (at least by
default). Ideally in a way that can losslessly convert asset paths
to/from shader modules (to enable the asset system to resolve modules
using the asset server).
3. I want to keep this change set minimal / get this merged first.
* **Deprecate `load_internal_asset`**: we can't do that until we do (1)
and (2)
* **Relative Asset Paths**: This PR significantly increases the need for
relative asset paths (which was already pretty high). Currently when
loading dependencies, it is assumed to be an absolute path, which means
if in an `AssetLoader` you call `context.load("some/path/image.png")` it
will assume that is the "default" asset source, _even if the current
asset is in a different asset source_. This will cause breakage for
AssetLoaders that are not designed to add the current source to whatever
paths are being used. AssetLoaders should generally not need to be aware
of the name of their current asset source, or need to think about the
"current asset source" generally. We should build apis that support
relative asset paths and then encourage using relative paths as much as
possible (both via api design and docs). Relative paths are also
important because they will allow developers to move folders around
(even across providers) without reprocessing, provided there is no path
breakage.
# Objective
- Fixes#8140
## Solution
- Added Explicit Error Typing for `AssetLoader` and `AssetSaver`, which
were the last instances of `anyhow` in use across Bevy.
---
## Changelog
- Added an associated type `Error` to `AssetLoader` and `AssetSaver` for
use with the `load` and `save` methods respectively.
- Changed `ErasedAssetLoader` and `ErasedAssetSaver` `load` and `save`
methods to use `Box<dyn Error + Send + Sync + 'static>` to allow for
arbitrary `Error` types from the non-erased trait variants. Note the
strict requirements match the pre-existing requirements around
`anyhow::Error`.
## Migration Guide
- `anyhow` is no longer exported by `bevy_asset`; Add it to your own
project (if required).
- `AssetLoader` and `AssetSaver` have an associated type `Error`; Define
an appropriate error type (e.g., using `thiserror`), or use a pre-made
error type (e.g., `anyhow::Error`). Note that using `anyhow::Error` is a
drop-in replacement.
- `AssetLoaderError` has been removed; Define a new error type, or use
an alternative (e.g., `anyhow::Error`)
- All the first-party `AssetLoader`'s and `AssetSaver`'s now return
relevant (and narrow) error types instead of a single ambiguous type;
Match over the specific error type, or encapsulate (`Box<dyn>`,
`thiserror`, `anyhow`, etc.)
## Notes
A simpler PR to resolve this issue would simply define a Bevy `Error`
type defined as `Box<dyn std::error::Error + Send + Sync + 'static>`,
but I think this type of error handling should be discouraged when
possible. Since only 2 traits required the use of `anyhow`, it isn't a
substantive body of work to solidify these error types, and remove
`anyhow` entirely. End users are still encouraged to use `anyhow` if
that is their preferred error handling style. Arguably, adding the
`Error` associated type gives more freedom to end-users to decide
whether they want more or less explicit error handling (`anyhow` vs
`thiserror`).
As an aside, I didn't perform any testing on Android or WASM. CI passed
locally, but there may be mistakes for those platforms I missed.
# Objective
- Fixes#9884
- Add API for ignoring ambiguities on certain resource or components.
## Solution
- Add a `IgnoreSchedulingAmbiguitiy` resource to the world which holds
the `ComponentIds` to be ignored
- Filter out ambiguities with those component id's.
## Changelog
- add `allow_ambiguous_component` and `allow_ambiguous_resource` apis
for ignoring ambiguities
---------
Co-authored-by: Ryan Johnson <ryanj00a@gmail.com>
# Objective
- See fewer warnings when running `cargo clippy` locally.
## Solution
- allow `clippy::type_complexity` in more places, which also signals to
users they should do the same.
# Objective
Fixes#9625
## Solution
Adds `async-io` as an optional dependency of `bevy_tasks`. When enabled,
this causes calls to `futures_lite::future::block_on` to be replaced
with calls to `async_io::block_on`.
---
## Changelog
- Added a new `async-io` feature to `bevy_tasks`. When enabled, this
causes `bevy_tasks` to use `async-io`'s implemention of `block_on`
instead of `futures-lite`'s implementation. You should enable this if
you use `async-io` in your application.
# Objective
Replace instances of
```rust
for x in collection.iter{_mut}() {
```
with
```rust
for x in &{mut} collection {
```
This also changes CI to no longer suppress this lint. Note that since
this lint only shows up when using clippy in pedantic mode, it was
probably unnecessary to suppress this lint in the first place.
# Objective
Fix#9747
## Solution
Linkers don't like what we're doing with CowArc (I'm guessing it has
something to do with `?Sized`). Weirdly the `Reflect` derive on
`AssetPath` doesn't fail, despite `CowArc` not implementing `Reflect`.
To resolve this, we manually implement "reflect value" for
`AssetPath<'static>`. It sadly cannot use `impl_reflect_value` because
that macro doesn't support static lifetimes.
---------
Co-authored-by: Martin Dickopp <martin@zero-based.org>