# Objective
- Fixes#16152
## Solution
- Put `bevy_window` and `bevy_a11y` behind the `bevy_window` feature.
they were the only difference
- Add `ScheduleRunnerPlugin` to the `DefaultPlugins` when `bevy_window`
is disabled
- Remove `HeadlessPlugins`
- Update the `headless` example
# Objective
To capture the performance impact of removing and adding UI nodes add a
`respawn` commandline argument to the `many_buttons` stress test example
that despawns the existing UI layout and then spawns a new layout to
replace it every frame.
## Testing
To run the example with the new changes use:
```cargo run --example many_buttons --release -- --respawn```
# Objective
UI Anti-aliasing is incorrectly implemented. It always uses an edge
radius of 0.25 logical pixels, and ignores the physical resolution. For
low dpi screens 0.25 is is too low and on higher dpi screens the
physical edge radius is much too large, resulting in visual artifacts.
## Solution
Multiply the distance by the scale factor in the `antialias` function so
that the edge radius stays constant in physical pixels.
## Testing
To see the problem really clearly run the button example with `UiScale`
set really high. With `UiScale(25.)` on main if you examine the button's
border you can see a thick gradient fading away from the edges:
<img width="127" alt="edgg"
src="https://github.com/user-attachments/assets/7c852030-c0e8-4aef-8d3e-768cb2464cab">
With this PR the edges are sharp and smooth at all scale factors:
<img width="127" alt="edge"
src="https://github.com/user-attachments/assets/b3231140-1bbc-4a4f-a1d3-dde21f287988">
# Objective
We currently use special "floating" constructors for `EasingCurve`,
`FunctionCurve`, and `ConstantCurve` (ex: `easing_curve`). This erases
the type being created (and in general "what is happening"
structurally), for very minimal ergonomics improvements. With rare
exceptions, we prefer normal `X::new()` constructors over floating `x()`
constructors in Bevy. I don't think this use case merits special casing
here.
## Solution
Add `EasingCurve::new()`, use normal constructors everywhere, and remove
the floating constructors.
I think this should land in 0.15 in the interest of not breaking people
later.
# Objective
_If I understand it correctly_, we were checking mesh visibility, as
well as re-rendering point and spot light shadow maps for each view.
This makes it so that M views and N lights produce M x N complexity.
This PR aims to fix that, as well as introduce a stress test for this
specific scenario.
## Solution
- Keep track of what lights have already had mesh visibility calculated
and do not calculate it again;
- Reuse shadow depth textures and attachments across all views, and only
render shadow maps for the _first_ time a light is encountered on a
view;
- Directional lights remain unaltered, since their shadow map cascades
are view-dependent;
- Add a new `many_cameras_lights` stress test example to verify the
solution
## Showcase
110% speed up on the stress test
83% reduction of memory usage in stress test
### Before (5.35 FPS on stress test)
<img width="1392" alt="Screenshot 2024-09-11 at 12 25 57"
src="https://github.com/user-attachments/assets/136b0785-e9a4-44df-9a22-f99cc465e126">
### After (11.34 FPS on stress test)
<img width="1392" alt="Screenshot 2024-09-11 at 12 24 35"
src="https://github.com/user-attachments/assets/b8dd858f-5e19-467f-8344-2b46ca039630">
## Testing
- Did you test these changes? If so, how?
- On my game project where I have two cameras, and many shadow casting
lights I managed to get pretty much double the FPS.
- Also included a stress test, see the comparison above
- Are there any parts that need more testing?
- Yes, I would like help verifying that this fix is indeed correct, and
that we were really re-rendering the shadow maps by mistake and it's
indeed okay to not do that
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Run the `many_cameras_lights` example
- On the `main` branch, cherry pick the commit with the example (`git
cherry-pick --no-commit 1ed4ace01`) and run it
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
- macOS
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
Glam has some common and useful types and helpers that are not in the
prelude of `bevy_math`. This includes shorthand constructors like
`vec3`, or even `Vec3A`, the aligned version of `Vec3`.
```rust
// The "normal" way to create a 3D vector
let vec = Vec3::new(2.0, 1.0, -3.0);
// Shorthand version
let vec = vec3(2.0, 1.0, -3.0);
```
## Solution
Add the following types and methods to the prelude:
- `vec2`, `vec3`, `vec3a`, `vec4`
- `uvec2`, `uvec3`, `uvec4`
- `ivec2`, `ivec3`, `ivec4`
- `bvec2`, `bvec3`, `bvec3a`, `bvec4`, `bvec4a`
- `mat2`, `mat3`, `mat3a`, `mat4`
- `quat` (not sure if anyone uses this, but for consistency)
- `Vec3A`
- `BVec3A`, `BVec4A`
- `Mat3A`
I did not add the u16, i16, or f64 variants like `dvec2`, since there
are currently no existing types like those in the prelude.
The shorthand constructors are currently used a lot in some places in
Bevy, and not at all in others. In a follow-up, we might want to
consider if we have a preference for the shorthand, and make a PR to
change the codebase to use it more consistently.
# Objective
Fixes#15940
## Solution
Remove the `pub use` and fix the compile errors.
Make `bevy_image` available as `bevy::image`.
## Testing
Feature Frenzy would be good here! Maybe I'll learn how to use it if I
have some time this weekend, or maybe a reviewer can use it.
## Migration Guide
Use `bevy_image` instead of `bevy_render::texture` items.
---------
Co-authored-by: chompaa <antony.m.3012@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Fixes#16292
## Solution
- Renames the `ColorText` marker to `AnimatedText`, which is more
distinct from the `TextColor` Bevy component.
- Changes the comment language from `A unit struct` to `Marker struct`
for better consistency with other Bevy docs.
## Testing
- Locally, example still runs just fine
# Objective
- wgpu 0.20 made workgroup vars stop being zero-init by default. this
broke some applications (cough foresight cough) and now we workaround
it. wgpu exposes a compilation option that zero initializes workgroup
memory by default, but bevy does not expose it.
## Solution
- expose the compilation option wgpu gives us
## Testing
- ran examples: 3d_scene, compute_shader_game_of_life, gpu_readback,
lines, specialized_mesh_pipeline. they all work
- confirmed fix for our own problems
---
</details>
## Migration Guide
- add `zero_initialize_workgroup_memory: false,` to
`ComputePipelineDescriptor` or `RenderPipelineDescriptor` structs to
preserve 0.14 functionality, add `zero_initialize_workgroup_memory:
true,` to restore bevy 0.13 functionality.
# Objective
- Fixes#16235
## Solution
- Both Bevy and AccessKit export a `Node` struct, to reduce confusion
Bevy will no longer re-export `AccessKit` from `bevy_a11y`
## Testing
- Tested locally
## Migration Guide
```diff
# main.rs
-- use bevy_a11y::{
-- accesskit::{Node, Rect, Role},
-- AccessibilityNode,
-- };
++ use bevy_a11y::AccessibilityNode;
++ use accesskit::{Node, Rect, Role};
# Cargo.toml
++ accesskit = "0.17"
```
- Users will need to add `accesskit = "0.17"` to the dependencies
section of their `Cargo.toml` file and update their `accesskit` use
statements to come directly from the external crate instead of
`bevy_a11y`.
- Make sure to keep the versions of `accesskit` aligned with the
versions Bevy uses.
# Objective
`AudioPlayer::<AudioSource>(assets.load("audio.mp3"))` is awkward and
complicated to type because the `AudioSource` generic type cannot be
elided. This is especially annoying because `AudioSource` is used in the
majority of cases. Most users don't need to think about it.
## Solution
Add an `AudioPlayer::new()` function that is hard-coded to
`AudioSource`, allowing `AudioPlayer::new(assets.load("audio.mp3"))`.
Prefer using that in the relevant places.
# Objective
In the existing implementation, additive blending effectively treats the
node with least index specially by basically forcing its weight to be
`1.0` regardless of what its computed weight would be (based on the
weights in the `AnimationGraph` and `AnimationPlayer`).
Arguably this makes some amount of sense, because the "base" animation
is often one which was not authored to be used additively, meaning that
its sampled values are interpreted absolutely rather than as deltas.
However, this also leads to strange behavior with respect to animation
masks: if the "base" animation is masked out on some target, then the
next node is treated as the "base" animation, despite the fact that it
would normally be interpreted additively, and the weight of that
animation is thrown away as a result.
This is all kind of weird and revolves around special treatment (if the
behavior is even really intentional in the first place). From a
mathematical standpoint, there is nothing special about how the "base"
animation must be treated other than having a weight of 1.0 under an
`Add` node, which is something that the user can do without relying on
some bizarre corner-case behavior of the animation system — this is the
only present situation under which weights are discarded.
This PR changes this behavior so that the weight of every node is
incorporated. In other words, for an animation graph that looks like
this:
```text
┌───────────────┐
│Base clip ┼──┐
│ 0.5 │ │
└───────────────┘ │
┌───────────────┐ │ ┌───────────────┐ ┌────┐
│Additive clip 1┼──┼─►┤Additive blend ┼────►│Root│
│ 0.1 │ │ │ 1.0 │ └────┘
└───────────────┘ │ └───────────────┘
┌───────────────┐ │
│Additive clip 2┼──┘
│ 0.2 │
└───────────────┘
```
Previously, the result would have been
```text
base_clip + 0.1 * additive_clip_1 + 0.2 * additive_clip_2
```
whereas now it would be
```text
0.5 * base_clip + 0.1 * additive_clip_1 + 0.2 * additive_clip_2
```
and in the scenario where `base_clip` is masked out:
```text
additive_clip_1 + 0.2 * additive_clip_2
```
vs.
```text
0.1 * additive_clip_1 + 0.2 * additive_clip_2
```
## Solution
For background, the way that the additive blending procedure works is
something like this:
- During graph traversal, the node values and weights of the children
are pushed onto the evaluator `stack`. The traversal order guarantees
that the item with least node index will be on top.
- Once we reach the `Add` node itself, we start popping off the `stack`
and into the evaluator's `blend_register`, which is an accumulator
holding up to one weight-value pair:
- If the `blend_register` is empty, it is filled using data from the top
of the `stack`.
- Otherwise, the `blend_register` is combined with data popped from the
`stack` and updated.
In the example above, the additive blending steps would look like this
(with the pre-existing implementation):
1. The `blend_register` is empty, so we pop `(base_clip, 0.5)` from the
top of the `stack` and put it in. Now the value of the `blend_register`
is `(base_clip, 0.5)`.
2. The `blend_register` is non-empty: we pop `(additive_clip_1, 0.1)`
from the top of the `stack` and combine it additively with the value in
the `blend_register`, forming `(base_clip + 0.1 * additive_clip_1, 0.6)`
in the `blend_register` (the carried weight value goes unused).
3. The `blend_register` is non-empty: we pop `(additive_clip_2, 0.2)`
from the top of the `stack` and combine it additively with the value in
the `blend_register`, forming `(base_clip + 0.1 * additive_clip_1 + 0.2
* additive_clip_2, 0.8)` in the `blend_register`.
The solution in this PR changes step 1: the `base_clip` is multiplied by
its weight as it is added to the `blend_register` in the first place,
yielding `0.5 * base_clip + 0.1 * additive_clip_1 + 0.2 *
additive_clip_2` as the final result.
### Note for reviewers
It might be tempting to look at the code, which contains a segment that
looks like this:
```rust
if additive {
current_value = A::blend(
[
BlendInput {
weight: 1.0, // <--
value: current_value,
additive: true,
},
BlendInput {
weight: weight_to_blend,
value: value_to_blend,
additive: true,
},
]
.into_iter(),
);
}
```
and conclude that the explicit value of `1.0` is responsible for
overwriting the weight of the base animation. This is incorrect.
Rather, this additive blend has to be written this way because it is
multiplying the *existing value in the blend register* by 1 (i.e. not
doing anything) before adding the next value to it. Changing this to
another quantity (e.g. the existing weight) would cause the value in the
blend register to be spuriously multiplied down.
## Testing
Tested on `animation_masks` example. Checked `morph_weights` example as
well.
## Migration Guide
I will write a migration guide later if this change is not included in
0.15.
# Objective
Addressing a suggestion I made in Discord: store gamepad name as a
`Name` component.
Advantages:
- Will be nicely displayed in inspector / editor.
- Easier to spawn in tests, just `world.spawn(Gamepad::default())`.
## Solution
`Gamepad` component now stores only vendor and product IDs and `Name`
stores the gamepad name.
Since `GamepadInfo` is no longer necessary, I removed it and merged its
fields into the connection event.
## Testing
- Run unit tests.
---
## Migration Guide
- `GamepadInfo` no longer exists:
- Name now accesible via `Name` component.
- Other information available on `Gamepad` component directly.
- `GamepadConnection::Connected` now stores all info fields directly.
# Objective
- Bumps accesskit and accesskit_winit dependencies
## Solution
- Fixes several breaking API changes introduced in accesskit 0.23.
## Testing
- Tested with the ui example and seems to work comparably
# Objective
Closes#16221.
## Solution
- Make `Gamepad` fields public and remove delegates / getters.
- Move `impl Into` to `Axis` methods (delegates for `Axis` used `impl
Into` to allow passing both `GamepadAxis` and `GamepadButton`).
- Improve docs.
## Testing
- I run tests.
Not sure if the migration guide is needed, since it's a feature from RC,
but I wrote it just in case.
---
## Migration Guide
- `Gamepad` fields are now public.
- Instead of using `Gamepad` delegates like `Gamepad::just_pressed`,
call these methods directly on the fields.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Expand the `ui` example to show off more of the features and make it
more useful for debugging.
# Solution
Added some extra elements to the `ui` example demonstrating outlines,
border-radius, rotation, image sizing and image flipping.
## Showcase
<img width="961" alt="uiexample"
src="https://github.com/user-attachments/assets/fb0cfb57-9102-4c6c-bc8e-03d3fa6e0bf6">
# Objective
- Choose LOD based on normal simplification error in addition to
position error
- Update meshoptimizer to 0.22, which has a bunch of simplifier
improvements
## Testing
- Did you test these changes? If so, how?
- Visualize normals, and compare LOD changes before and after. Normals
no longer visibly change as the LOD cut changes.
- Are there any parts that need more testing?
- No
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Run the meshlet example in this PR and on main and move around to
change the LOD cut. Before running each example, in
meshlet_mesh_material.wgsl, replace `let color = vec3(rand_f(&rng),
rand_f(&rng), rand_f(&rng));` with `let color =
(vertex_output.world_normal + 1.0) / 2.0;`. Make sure to download the
appropriate bunny asset for each branch!
# Objective
1. UI texture slicing chops and scales an image to fit the size of a
node and isn't meant to place any constraints on the size of the node
itself, but because the required components changes required `ImageSize`
and `ContentSize` for nodes with `UiImage`, texture sliced nodes are
laid out using an `ImageMeasure`.
2. In 0.14 users could spawn a `(UiImage, NodeBundle)` which would
display an image stretched to fill the UI node's bounds ignoring the
image's instrinsic size. Now that `UiImage` requires `ContentSize`,
there's no option to display an image without its size placing
constrains on the UI layout (unless you force the `Node` to a fixed
size, but that's not a solution).
3. It's desirable that the `Sprite` and `UiImage` share similar APIs.
Fixes#16109
## Solution
* Remove the `Component` impl from `ImageScaleMode`.
* Add a `Stretch` variant to `ImageScaleMode`.
* Add a field `scale_mode: ImageScaleMode` to `Sprite`.
* Add a field `mode: UiImageMode` to `UiImage`.
* Add an enum `UiImageMode` similar to `ImageScaleMode` but with
additional UI specific variants.
* Remove the queries for `ImageScaleMode` from Sprite and UI extraction,
and refer to the new fields instead.
* Change `ui_layout_system` to update measure funcs on any change to
`ContentSize`s to enable manual clearing without removing the component.
* Don't add a measure unless `UiImageMode::Auto` is set in
`update_image_content_size_system`. Mutably deref the `Mut<ContentSize>`
if the `UiImage` is changed to force removal of any existing measure
func.
## Testing
Remove all the constraints from the ui_texture_slice example:
```rust
//! This example illustrates how to create buttons with their textures sliced
//! and kept in proportion instead of being stretched by the button dimensions
use bevy::{
color::palettes::css::{GOLD, ORANGE},
prelude::*,
winit::WinitSettings,
};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
// Only run the app when there is user input. This will significantly reduce CPU/GPU use.
.insert_resource(WinitSettings::desktop_app())
.add_systems(Startup, setup)
.add_systems(Update, button_system)
.run();
}
fn button_system(
mut interaction_query: Query<
(&Interaction, &Children, &mut UiImage),
(Changed<Interaction>, With<Button>),
>,
mut text_query: Query<&mut Text>,
) {
for (interaction, children, mut image) in &mut interaction_query {
let mut text = text_query.get_mut(children[0]).unwrap();
match *interaction {
Interaction::Pressed => {
**text = "Press".to_string();
image.color = GOLD.into();
}
Interaction::Hovered => {
**text = "Hover".to_string();
image.color = ORANGE.into();
}
Interaction::None => {
**text = "Button".to_string();
image.color = Color::WHITE;
}
}
}
}
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
let image = asset_server.load("textures/fantasy_ui_borders/panel-border-010.png");
let slicer = TextureSlicer {
border: BorderRect::square(22.0),
center_scale_mode: SliceScaleMode::Stretch,
sides_scale_mode: SliceScaleMode::Stretch,
max_corner_scale: 1.0,
};
// ui camera
commands.spawn(Camera2d);
commands
.spawn(Node {
width: Val::Percent(100.0),
height: Val::Percent(100.0),
align_items: AlignItems::Center,
justify_content: JustifyContent::Center,
..default()
})
.with_children(|parent| {
for [w, h] in [[150.0, 150.0], [300.0, 150.0], [150.0, 300.0]] {
parent
.spawn((
Button,
Node {
// width: Val::Px(w),
// height: Val::Px(h),
// horizontally center child text
justify_content: JustifyContent::Center,
// vertically center child text
align_items: AlignItems::Center,
margin: UiRect::all(Val::Px(20.0)),
..default()
},
UiImage::new(image.clone()),
ImageScaleMode::Sliced(slicer.clone()),
))
.with_children(|parent| {
// parent.spawn((
// Text::new("Button"),
// TextFont {
// font: asset_server.load("fonts/FiraSans-Bold.ttf"),
// font_size: 33.0,
// ..default()
// },
// TextColor(Color::srgb(0.9, 0.9, 0.9)),
// ));
});
}
});
}
```
This should result in a blank window, since without any constraints the
texture slice image nodes should be zero-sized. But in main the image
nodes are given the size of the underlying unsliced source image
`textures/fantasy_ui_borders/panel-border-010.png`:
<img width="321" alt="slicing"
src="https://github.com/user-attachments/assets/cbd74c9c-14cd-4b4d-93c6-7c0152bb05ee">
For this PR need to change the lines:
```
UiImage::new(image.clone()),
ImageScaleMode::Sliced(slicer.clone()),
```
to
```
UiImage::new(image.clone()).with_mode(UiImageMode::Sliced(slicer.clone()),
```
and then nothing should be rendered, as desired.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Currently there's no way to change the window's cursor icon with the
`custom_cursor` feature **disabled**. You should still be able to set
system cursor icons.
Connections:
- https://github.com/bevyengine/bevy/pull/15649
## Solution
Move some `custom_cursor` feature gates around, as to expose the
`CursorIcon` type again.
Note this refactoring was mainly piloted by hunting after the compiler
warnings -- I shouldn't have missed anything, but FYI.
## Testing
Disabled the `custom_cursor` feature, ran the `window_settings` example.
# Objective
clean up example get_single method, make code clean;
## Solution
- replace `Query` with `Single` Query
- remove `get_single` or `get_single_mut` condition block
# Objective
- Fixes#15757
## Solution
- Add the platform specific property `prefers_home_indicator_hidden` to
bevy's Window configuration, and applying it by invoking
`with_prefers_home_indicator_hidden` in `winit`.
## Testing
- I have tested the `bevy_mobile_example` on the iOS platform.
## Showcase
- Currently, the `prefers_home_indicator_hidden` is enabled in the
bevy_mobile_example demo. You can test it with an iOS device. The home
indicator will disappear after several seconds of inactivity in the
bottom areas.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Cleanup pass to make the examples a bit more succinct, focusing on the
topic at hand.
- Added drag rotation to make the picking examples more interesting, and
to demonstrate a simple use case.
# Objective
In the animation example, there is the code `.add_systems(Update,
init_animations.before(animate_targets))`, where `animate_targets` is
added to the `PostUpdate` in the `AnimationPlugin`. Therefore, the
`.before(animate_targets)` here is ineffective and should be removed.
# Objective
The `headless_renderer` example is meant to showcase running bevy as a
headless renderer, but if run without a display server (for example,
over an SSH connection), a panic occurs in `bevy_winit` despite never
creating a window:
```rust
bevy_winit-0.14.1/src/lib.rs:132:14:
winit-0.30.5/src/platform_impl/linux/mod.rs:
neither WAYLAND_DISPLAY nor WAYLAND_SOCKET nor DISPLAY is set.
```
This example should run successfully in situations without an available
display server, as although the GPU is used for rendering, no window is
ever created.
## Solution
Disabling WinitPlugin, where the above panic occurs, allows the example
to run in a fully headless environment.
## Testing
- I tested this change in normal circumstances with a display server (on
macOS Sequoia and Asahi Linux) and behavior was normal.
- I tested with no display server by connecting via SSH, and running the
example (on Asahi Linux). Previously this panics, but with this change
it runs normally.
## Considerations
- One could argue that ultimately the user should not need to remove
`WinitPlugin`, and instead bevy should only throw the above panic when
the application first attempts to create a window.
# Objective
This example is really confusing to look at and tell at a glance whether
it's broken or not.
It's displaying a strange shape -- a cube with two vertices stretched in
a couple dimensions at an odd angle, and doing its vertex position
modification in a way where the intent isn't obvious.
## Solution
- Change the gltf geometry so that the object is a recognizable regular
shape
- Change the vertex modification so that the entire cube top is being
"lifted" from the cube
- Adjust colors, lighting, and camera location so we can see what's
going on
- Also remove some irrelevant shadow and environment map setup
## Before
![Image](https://github.com/user-attachments/assets/e5dd5075-0480-49d4-b1ed-cf1fe6106f3c)
## After
<img width="1280" alt="image"
src="https://github.com/user-attachments/assets/59cab60d-efbc-47c3-8688-e4544b462421">
# Objective
- Mesh picking is noisy when a non triangle list is used
- Mesh picking runs even when users don't need it
- Resolve#16065
## Solution
- Don't add the mesh picking plugin by default
- Remove error spam
# Objective
- `MeshPickingBackend` and `SpritePickingBackend` do not have the
`Plugin` suffix
- `DefaultPickingPlugins` is masquerading as a `Plugin` when in reality
it should be a `PluginGroup`
- Fixes#16081.
## Solution
- Rename some structures:
|Original Name|New Name|
|-|-|
|`MeshPickingBackend`|`MeshPickingPlugin`|
|`MeshPickingBackendSettings`|`MeshPickingSettings`|
|`SpritePickingBackend`|`SpritePickingPlugin`|
|`UiPickingBackendPlugin`|`UiPickingPlugin`|
- Make `DefaultPickingPlugins` a `PluginGroup`.
- Because `DefaultPickingPlugins` is within the `DefaultPlugins` plugin
group, I also added support for nested plugin groups to the
`plugin_group!` macro.
## Testing
- I used ripgrep to ensure all references were properly renamed.
- For the `plugin_group!` macro, I used `cargo expand` to manually
inspect the expansion of `DefaultPlugins`.
---
## Migration Guide
> [!NOTE]
>
> All 3 of the changed structures were added after 0.14, so this does
not need to be included in the 0.14 to 0.15 migration guide.
- `MeshPickingBackend` is now named `MeshPickingPlugin`.
- `MeshPickingBackendSettings` is now named `MeshPickingSettings`.
- `SpritePickingBackend` is now named `SpritePickingPlugin`.
- `UiPickingBackendPlugin` is now named `UiPickingPlugin`.
- `DefaultPickingPlugins` is now a a `PluginGroup` instead of a
`Plugin`.
The two additional linear texture samplers that PCSS added caused us to
blow past the limit on Apple Silicon macOS and WebGL. To fix the issue,
this commit adds a `--feature pbr_pcss` feature gate that disables PCSS
if not present.
Closes#15345.
Closes#15525.
Closes#15821.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
# Objective
1. Nodes with `Display::None` set are removed from the layout and have
no position or size. Outlines should not be drawn for a node with
`Display::None` set.
2. The outline and border colors are checked for transparency together.
If only one of the two is transparent, both will get queued.
3. The `node.is_empty()` check is insufficient to check if a border is
present since a non-zero sized node can have a zero width border.
## Solution
1. Add a check to `extract_uinode_borders` and ignore the node if
`Display::None` is set.
2. Filter the border and outline optional components by
`is_fully_transparent`.
3. Check if all the border widths are zero instead.
## Testing
I added dark cyan outlines around the left and right sections in the
`display_and_visibility` example. If you run the example and set the
outermost node to `Display::None` on the right, then you'll see the that
the outline on the left disappears.
Take a bunch more improvements from @zeux's nanite.cpp code.
* Use position-only vertices (discard other attributes) to determine
meshlet connectivity for grouping
* Rather than using the lock borders flag when simplifying meshlet
groups, provide the locked vertices ourselves. The lock borders flag
locks the entire border of the meshlet group, but really we only want to
lock the edges between meshlet groups - outwards facing edges are fine
to unlock. This gives a really significant increase to the DAG quality.
* Add back stuck meshlets (group has only a single meshlet,
simplification failed) to the simplification queue to allow them to get
used later on and have another attempt at simplifying
* Target 8 meshlets per group instead of 4 (second biggest improvement
after manual locks)
* Provide a seed to metis for deterministic meshlet building
* Misc other improvements
We can remove the usage of unsafe after the next upstream meshopt
release, but for now we need to use the ffi function directly. I'll do
another round of improvements later, mainly attribute-aware
simplification and using spatial weights for meshlet grouping.
Need to merge https://github.com/bevyengine/bevy/pull/15846 first.
# Objective
Bevy seems to want to standardize on "American English" spellings. Not
sure if this is laid out anywhere in writing, but see also #15947.
While perusing the docs for `typos`, I noticed that it has a `locale`
config option and tried it out.
## Solution
Switch to `en-us` locale in the `typos` config and run `typos -w`
## Migration Guide
The following methods or fields have been renamed from `*dependants*` to
`*dependents*`.
- `ProcessorAssetInfo::dependants`
- `ProcessorAssetInfos::add_dependant`
- `ProcessorAssetInfos::non_existent_dependants`
- `AssetInfo::dependants_waiting_on_load`
- `AssetInfo::dependants_waiting_on_recursive_dep_load`
- `AssetInfos::loader_dependants`
- `AssetInfos::remove_dependants_and_labels`
# Objective
- Checks screenshots on Windows
- Progress towards #15918
## Solution
- Checks screenshots on Windows
- Also disable the helmet gltf scene in windows ci as it doesn't work
# Objective
- Progress towards #15918
- Add tests for 3d
## Solution
- Add tests that cover lights, bloom, gltf and animation
- Removed examples `contributors` and `load_gltf` as they don't
contribute additional checks to CI
## Testing
- `CI_TESTING_CONFIG=.github/example-run/testbed_3d.ron cargo run
--example testbed_3d --features "bevy_ci_testing"`
# Objective
Fixes#15995
## Solution
Corrects a mistake made during the example migration in #15591.
`AnimationControl` was meant to be on the parent, not the child. So the
query in `update_ui` was no longer matching.
## Testing
`cargo run --example animation_masks`
# Objective
Continue improving the user experience of our UI Node API in the
direction specified by [Bevy's Next Generation Scene / UI
System](https://github.com/bevyengine/bevy/discussions/14437)
## Solution
As specified in the document above, merge `Style` fields into `Node`,
and move "computed Node fields" into `ComputedNode` (I chose this name
over something like `ComputedNodeLayout` because it currently contains
more than just layout info. If we want to break this up / rename these
concepts, lets do that in a separate PR). `Style` has been removed.
This accomplishes a number of goals:
## Ergonomics wins
Specifying both `Node` and `Style` is now no longer required for
non-default styles
Before:
```rust
commands.spawn((
Node::default(),
Style {
width: Val::Px(100.),
..default()
},
));
```
After:
```rust
commands.spawn(Node {
width: Val::Px(100.),
..default()
});
```
## Conceptual clarity
`Style` was never a comprehensive "style sheet". It only defined "core"
style properties that all `Nodes` shared. Any "styled property" that
couldn't fit that mold had to be in a separate component. A "real" style
system would style properties _across_ components (`Node`, `Button`,
etc). We have plans to build a true style system (see the doc linked
above).
By moving the `Style` fields to `Node`, we fully embrace `Node` as the
driving concept and remove the "style system" confusion.
## Next Steps
* Consider identifying and splitting out "style properties that aren't
core to Node". This should not happen for Bevy 0.15.
---
## Migration Guide
Move any fields set on `Style` into `Node` and replace all `Style`
component usage with `Node`.
Before:
```rust
commands.spawn((
Node::default(),
Style {
width: Val::Px(100.),
..default()
},
));
```
After:
```rust
commands.spawn(Node {
width: Val::Px(100.),
..default()
});
```
For any usage of the "computed node properties" that used to live on
`Node`, use `ComputedNode` instead:
Before:
```rust
fn system(nodes: Query<&Node>) {
for node in &nodes {
let computed_size = node.size();
}
}
```
After:
```rust
fn system(computed_nodes: Query<&ComputedNode>) {
for computed_node in &computed_nodes {
let computed_size = computed_node.size();
}
}
```
# Objective
Fixes#15976
## Solution
I haven't been following the recent camera changes but on a whim I
inverted the scale and it restored the old behavior.
It seems that a similar inversion was done when migrating the
`pixel_grid_snap` example in #15976.
## Testing
`cargo run --example pbr`