mirror of
https://github.com/bevyengine/bevy
synced 2024-11-22 04:33:37 +00:00
Add sprite and mesh alteration examples (#15298)
# Objective Add examples for manipulating sprites and meshes by either mutating the handle or direct manipulation of the asset, as described in #15056. Closes #3130. (The previous PR suffered a Git-tastrophe, and was unceremoniously closed, sry! 😅 ) --------- Co-authored-by: Jan Hohenheim <jan@hohenheim.ch>
This commit is contained in:
parent
02a9ed4b0b
commit
e3b6b125a0
4 changed files with 425 additions and 0 deletions
22
Cargo.toml
22
Cargo.toml
|
@ -1354,6 +1354,28 @@ category = "Application"
|
|||
wasm = false
|
||||
|
||||
# Assets
|
||||
[[example]]
|
||||
name = "alter_mesh"
|
||||
path = "examples/asset/alter_mesh.rs"
|
||||
doc-scrape-examples = true
|
||||
|
||||
[package.metadata.example.alter_mesh]
|
||||
name = "Alter Mesh"
|
||||
description = "Shows how to modify the underlying asset of a Mesh after spawning."
|
||||
category = "Assets"
|
||||
wasm = false
|
||||
|
||||
[[example]]
|
||||
name = "alter_sprite"
|
||||
path = "examples/asset/alter_sprite.rs"
|
||||
doc-scrape-examples = true
|
||||
|
||||
[package.metadata.example.alter_sprite]
|
||||
name = "Alter Sprite"
|
||||
description = "Shows how to modify texture assets after spawning."
|
||||
category = "Assets"
|
||||
wasm = false
|
||||
|
||||
[[example]]
|
||||
name = "asset_loading"
|
||||
path = "examples/asset/asset_loading.rs"
|
||||
|
|
|
@ -219,6 +219,8 @@ Example | Description
|
|||
|
||||
Example | Description
|
||||
--- | ---
|
||||
[Alter Mesh](../examples/asset/alter_mesh.rs) | Shows how to modify the underlying asset of a Mesh after spawning.
|
||||
[Alter Sprite](../examples/asset/alter_sprite.rs) | Shows how to modify texture assets after spawning.
|
||||
[Asset Decompression](../examples/asset/asset_decompression.rs) | Demonstrates loading a compressed asset
|
||||
[Asset Loading](../examples/asset/asset_loading.rs) | Demonstrates various methods to load assets
|
||||
[Asset Processing](../examples/asset/processing/asset_processing.rs) | Demonstrates how to process and load custom assets
|
||||
|
|
237
examples/asset/alter_mesh.rs
Normal file
237
examples/asset/alter_mesh.rs
Normal file
|
@ -0,0 +1,237 @@
|
|||
//! Shows how to modify mesh assets after spawning.
|
||||
|
||||
use bevy::{
|
||||
gltf::GltfLoaderSettings, input::common_conditions::input_just_pressed, prelude::*,
|
||||
render::mesh::VertexAttributeValues, render::render_asset::RenderAssetUsages,
|
||||
};
|
||||
|
||||
fn main() {
|
||||
App::new()
|
||||
.add_plugins(DefaultPlugins)
|
||||
.add_systems(Startup, (setup, spawn_text))
|
||||
.add_systems(
|
||||
Update,
|
||||
alter_handle.run_if(input_just_pressed(KeyCode::Space)),
|
||||
)
|
||||
.add_systems(
|
||||
Update,
|
||||
alter_mesh.run_if(input_just_pressed(KeyCode::Enter)),
|
||||
)
|
||||
.run();
|
||||
}
|
||||
|
||||
#[derive(Component, Debug)]
|
||||
enum Shape {
|
||||
Cube,
|
||||
Sphere,
|
||||
}
|
||||
|
||||
impl Shape {
|
||||
fn get_model_path(&self) -> String {
|
||||
match self {
|
||||
Shape::Cube => "models/cube/cube.gltf".into(),
|
||||
Shape::Sphere => "models/sphere/sphere.gltf".into(),
|
||||
}
|
||||
}
|
||||
|
||||
fn set_next_variant(&mut self) {
|
||||
*self = match self {
|
||||
Shape::Cube => Shape::Sphere,
|
||||
Shape::Sphere => Shape::Cube,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Component, Debug)]
|
||||
struct Left;
|
||||
|
||||
fn setup(
|
||||
mut commands: Commands,
|
||||
asset_server: Res<AssetServer>,
|
||||
mut materials: ResMut<Assets<StandardMaterial>>,
|
||||
) {
|
||||
let left_shape = Shape::Cube;
|
||||
let right_shape = Shape::Cube;
|
||||
|
||||
// In normal use, you can call `asset_server.load`, however see below for an explanation of
|
||||
// `RenderAssetUsages`.
|
||||
let left_shape_model = asset_server.load_with_settings(
|
||||
GltfAssetLabel::Primitive {
|
||||
mesh: 0,
|
||||
// This field stores an index to this primitive in its parent mesh. In this case, we
|
||||
// want the first one. You might also have seen the syntax:
|
||||
//
|
||||
// models/cube/cube.gltf#Scene0
|
||||
//
|
||||
// which accomplishes the same thing.
|
||||
primitive: 0,
|
||||
}
|
||||
.from_asset(left_shape.get_model_path()),
|
||||
// `RenderAssetUsages::all()` is already the default, so the line below could be omitted.
|
||||
// It's helpful to know it exists, however.
|
||||
//
|
||||
// `RenderAssetUsages` tell Bevy whether to keep the data around:
|
||||
// - for the GPU (`RenderAssetUsages::RENDER_WORLD`),
|
||||
// - for the CPU (`RenderAssetUsages::MAIN_WORLD`),
|
||||
// - or both.
|
||||
// `RENDER_WORLD` is necessary to render the mesh, `MAIN_WORLD` is necessary to inspect
|
||||
// and modify the mesh (via `ResMut<Assets<Mesh>>`).
|
||||
//
|
||||
// Since most games will not need to modify meshes at runtime, many developers opt to pass
|
||||
// only `RENDER_WORLD`. This is more memory efficient, as we don't need to keep the mesh in
|
||||
// RAM. For this example however, this would not work, as we need to inspect and modify the
|
||||
// mesh at runtime.
|
||||
|settings: &mut GltfLoaderSettings| settings.load_meshes = RenderAssetUsages::all(),
|
||||
);
|
||||
|
||||
// Here, we rely on the default loader settings to achieve a similar result to the above.
|
||||
let right_shape_model = asset_server.load(
|
||||
GltfAssetLabel::Primitive {
|
||||
mesh: 0,
|
||||
primitive: 0,
|
||||
}
|
||||
.from_asset(right_shape.get_model_path()),
|
||||
);
|
||||
|
||||
// Add a material asset directly to the materials storage
|
||||
let material_handle = materials.add(StandardMaterial {
|
||||
base_color: Color::srgb(0.6, 0.8, 0.6),
|
||||
..default()
|
||||
});
|
||||
|
||||
commands.spawn((
|
||||
Left,
|
||||
Name::new("Left Shape"),
|
||||
PbrBundle {
|
||||
mesh: left_shape_model,
|
||||
material: material_handle.clone(),
|
||||
transform: Transform::from_xyz(-3.0, 0.0, 0.0),
|
||||
..default()
|
||||
},
|
||||
left_shape,
|
||||
));
|
||||
|
||||
commands.spawn((
|
||||
Name::new("Right Shape"),
|
||||
PbrBundle {
|
||||
mesh: right_shape_model,
|
||||
material: material_handle,
|
||||
transform: Transform::from_xyz(3.0, 0.0, 0.0),
|
||||
..default()
|
||||
},
|
||||
right_shape,
|
||||
));
|
||||
|
||||
commands.spawn((
|
||||
Name::new("Point Light"),
|
||||
PointLightBundle {
|
||||
transform: Transform::from_xyz(4.0, 5.0, 4.0),
|
||||
..default()
|
||||
},
|
||||
));
|
||||
|
||||
commands.spawn((
|
||||
Name::new("Camera"),
|
||||
Camera3dBundle {
|
||||
transform: Transform::from_xyz(0.0, 3.0, 20.0).looking_at(Vec3::ZERO, Vec3::Y),
|
||||
..default()
|
||||
},
|
||||
));
|
||||
}
|
||||
|
||||
fn spawn_text(mut commands: Commands) {
|
||||
commands
|
||||
.spawn((
|
||||
Name::new("Instructions"),
|
||||
NodeBundle {
|
||||
style: Style {
|
||||
align_items: AlignItems::Start,
|
||||
flex_direction: FlexDirection::Column,
|
||||
justify_content: JustifyContent::Start,
|
||||
width: Val::Percent(100.),
|
||||
..default()
|
||||
},
|
||||
..default()
|
||||
},
|
||||
))
|
||||
.with_children(|parent| {
|
||||
parent.spawn(TextBundle::from_section(
|
||||
"Space: swap meshes by mutating a Handle<Mesh>",
|
||||
TextStyle::default(),
|
||||
));
|
||||
parent.spawn(TextBundle::from_section(
|
||||
"Return: mutate the mesh itself, changing all copies of it",
|
||||
TextStyle::default(),
|
||||
));
|
||||
});
|
||||
}
|
||||
|
||||
fn alter_handle(
|
||||
asset_server: Res<AssetServer>,
|
||||
mut right_shape: Query<(&mut Handle<Mesh>, &mut Shape), Without<Left>>,
|
||||
) {
|
||||
// Mesh handles, like other parts of the ECS, can be queried as mutable and modified at
|
||||
// runtime. We only spawned one shape without the `Left` marker component.
|
||||
let Ok((mut handle, mut shape)) = right_shape.get_single_mut() else {
|
||||
return;
|
||||
};
|
||||
|
||||
// Switch to a new Shape variant
|
||||
shape.set_next_variant();
|
||||
|
||||
// Modify the handle associated with the Shape on the right side. Note that we will only
|
||||
// have to load the same path from storage media once: repeated attempts will re-use the
|
||||
// asset.
|
||||
*handle = asset_server.load(
|
||||
GltfAssetLabel::Primitive {
|
||||
mesh: 0,
|
||||
primitive: 0,
|
||||
}
|
||||
.from_asset(shape.get_model_path()),
|
||||
);
|
||||
}
|
||||
|
||||
fn alter_mesh(
|
||||
mut is_mesh_scaled: Local<bool>,
|
||||
left_shape: Query<&Handle<Mesh>, With<Left>>,
|
||||
mut meshes: ResMut<Assets<Mesh>>,
|
||||
) {
|
||||
// It's convenient to retrieve the asset handle stored with the shape on the left. However,
|
||||
// we could just as easily have retained this in a resource or a dedicated component.
|
||||
let Ok(handle) = left_shape.get_single() else {
|
||||
return;
|
||||
};
|
||||
|
||||
// Obtain a mutable reference to the Mesh asset.
|
||||
let Some(mesh) = meshes.get_mut(handle) else {
|
||||
return;
|
||||
};
|
||||
|
||||
// Now we can directly manipulate vertices on the mesh. Here, we're just scaling in and out
|
||||
// for demonstration purposes. This will affect all entities currently using the asset.
|
||||
//
|
||||
// To do this, we need to grab the stored attributes of each vertex. `Float32x3` just describes
|
||||
// the format in which the attributes will be read: each position consists of an array of three
|
||||
// f32 corresponding to x, y, and z.
|
||||
//
|
||||
// `ATTRIBUTE_POSITION` is a constant indicating that we want to know where the vertex is
|
||||
// located in space (as opposed to which way its normal is facing, vertex color, or other
|
||||
// details).
|
||||
if let Some(VertexAttributeValues::Float32x3(positions)) =
|
||||
mesh.attribute_mut(Mesh::ATTRIBUTE_POSITION)
|
||||
{
|
||||
// Check a Local value (which only this system can make use of) to determine if we're
|
||||
// currently scaled up or not.
|
||||
let scale_factor = if *is_mesh_scaled { 0.5 } else { 2.0 };
|
||||
|
||||
for position in positions.iter_mut() {
|
||||
// Apply the scale factor to each of x, y, and z.
|
||||
position[0] *= scale_factor;
|
||||
position[1] *= scale_factor;
|
||||
position[2] *= scale_factor;
|
||||
}
|
||||
|
||||
// Flip the local value to reverse the behaviour next time the key is pressed.
|
||||
*is_mesh_scaled = !*is_mesh_scaled;
|
||||
}
|
||||
}
|
164
examples/asset/alter_sprite.rs
Normal file
164
examples/asset/alter_sprite.rs
Normal file
|
@ -0,0 +1,164 @@
|
|||
//! Shows how to modify texture assets after spawning.
|
||||
|
||||
use bevy::{
|
||||
input::common_conditions::input_just_pressed,
|
||||
prelude::*,
|
||||
render::{render_asset::RenderAssetUsages, texture::ImageLoaderSettings},
|
||||
};
|
||||
|
||||
fn main() {
|
||||
App::new()
|
||||
.add_plugins(DefaultPlugins)
|
||||
.add_systems(Startup, (setup, spawn_text))
|
||||
.add_systems(
|
||||
Update,
|
||||
alter_handle.run_if(input_just_pressed(KeyCode::Space)),
|
||||
)
|
||||
.add_systems(
|
||||
Update,
|
||||
alter_asset.run_if(input_just_pressed(KeyCode::Enter)),
|
||||
)
|
||||
.run();
|
||||
}
|
||||
|
||||
#[derive(Component, Debug)]
|
||||
enum Bird {
|
||||
Normal,
|
||||
Logo,
|
||||
}
|
||||
|
||||
impl Bird {
|
||||
fn get_texture_path(&self) -> String {
|
||||
match self {
|
||||
Bird::Normal => "branding/bevy_bird_dark.png".into(),
|
||||
Bird::Logo => "branding/bevy_logo_dark.png".into(),
|
||||
}
|
||||
}
|
||||
|
||||
fn set_next_variant(&mut self) {
|
||||
*self = match self {
|
||||
Bird::Normal => Bird::Logo,
|
||||
Bird::Logo => Bird::Normal,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Component, Debug)]
|
||||
struct Left;
|
||||
|
||||
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
|
||||
let bird_left = Bird::Normal;
|
||||
let bird_right = Bird::Normal;
|
||||
commands.spawn(Camera2dBundle::default());
|
||||
|
||||
let texture_left = asset_server.load_with_settings(
|
||||
bird_left.get_texture_path(),
|
||||
// `RenderAssetUsages::all()` is already the default, so the line below could be omitted.
|
||||
// It's helpful to know it exists, however.
|
||||
//
|
||||
// `RenderAssetUsages` tell Bevy whether to keep the data around:
|
||||
// - for the GPU (`RenderAssetUsages::RENDER_WORLD`),
|
||||
// - for the CPU (`RenderAssetUsages::MAIN_WORLD`),
|
||||
// - or both.
|
||||
// `RENDER_WORLD` is necessary to render the image, `MAIN_WORLD` is necessary to inspect
|
||||
// and modify the image (via `ResMut<Assets<Image>>`).
|
||||
//
|
||||
// Since most games will not need to modify textures at runtime, many developers opt to pass
|
||||
// only `RENDER_WORLD`. This is more memory efficient, as we don't need to keep the image in
|
||||
// RAM. For this example however, this would not work, as we need to inspect and modify the
|
||||
// image at runtime.
|
||||
|settings: &mut ImageLoaderSettings| settings.asset_usage = RenderAssetUsages::all(),
|
||||
);
|
||||
|
||||
commands.spawn((
|
||||
Name::new("Bird Left"),
|
||||
// This marker component ensures we can easily find either of the Birds by using With and
|
||||
// Without query filters.
|
||||
Left,
|
||||
SpriteBundle {
|
||||
texture: texture_left,
|
||||
transform: Transform::from_xyz(-200.0, 0.0, 0.0),
|
||||
..default()
|
||||
},
|
||||
bird_left,
|
||||
));
|
||||
|
||||
commands.spawn((
|
||||
Name::new("Bird Right"),
|
||||
SpriteBundle {
|
||||
// In contrast to the above, here we rely on the default `RenderAssetUsages` loader
|
||||
// setting.
|
||||
texture: asset_server.load(bird_right.get_texture_path()),
|
||||
transform: Transform::from_xyz(200.0, 0.0, 0.0),
|
||||
..default()
|
||||
},
|
||||
bird_right,
|
||||
));
|
||||
}
|
||||
|
||||
fn spawn_text(mut commands: Commands) {
|
||||
commands
|
||||
.spawn((
|
||||
Name::new("Instructions"),
|
||||
NodeBundle {
|
||||
style: Style {
|
||||
align_items: AlignItems::Start,
|
||||
flex_direction: FlexDirection::Column,
|
||||
justify_content: JustifyContent::Start,
|
||||
width: Val::Percent(100.),
|
||||
..default()
|
||||
},
|
||||
..default()
|
||||
},
|
||||
))
|
||||
.with_children(|parent| {
|
||||
parent.spawn(TextBundle::from_section(
|
||||
"Space: swap image texture paths by mutating a Handle<Image>",
|
||||
TextStyle::default(),
|
||||
));
|
||||
parent.spawn(TextBundle::from_section(
|
||||
"Return: mutate the image Asset itself, changing all copies of it",
|
||||
TextStyle::default(),
|
||||
));
|
||||
});
|
||||
}
|
||||
|
||||
fn alter_handle(
|
||||
asset_server: Res<AssetServer>,
|
||||
mut right_bird: Query<(&mut Bird, &mut Handle<Image>), Without<Left>>,
|
||||
) {
|
||||
// Image handles, like other parts of the ECS, can be queried as mutable and modified at
|
||||
// runtime. We only spawned one bird without the `Left` marker component.
|
||||
let Ok((mut bird, mut handle)) = right_bird.get_single_mut() else {
|
||||
return;
|
||||
};
|
||||
|
||||
// Switch to a new Bird variant
|
||||
bird.set_next_variant();
|
||||
|
||||
// Modify the handle associated with the Bird on the right side. Note that we will only
|
||||
// have to load the same path from storage media once: repeated attempts will re-use the
|
||||
// asset.
|
||||
*handle = asset_server.load(bird.get_texture_path());
|
||||
}
|
||||
|
||||
fn alter_asset(mut images: ResMut<Assets<Image>>, left_bird: Query<&Handle<Image>, With<Left>>) {
|
||||
// It's convenient to retrieve the asset handle stored with the bird on the left. However,
|
||||
// we could just as easily have retained this in a resource or a dedicated component.
|
||||
let Ok(handle) = left_bird.get_single() else {
|
||||
return;
|
||||
};
|
||||
|
||||
// Obtain a mutable reference to the Image asset.
|
||||
let Some(image) = images.get_mut(handle) else {
|
||||
return;
|
||||
};
|
||||
|
||||
for pixel in &mut image.data {
|
||||
// Directly modify the asset data, which will affect all users of this asset. By
|
||||
// contrast, mutating the handle (as we did above) affects only one copy. In this case,
|
||||
// we'll just invert the colors, by way of demonstration. Notice that both uses of the
|
||||
// asset show the change, not just the one on the left.
|
||||
*pixel = 255 - *pixel;
|
||||
}
|
||||
}
|
Loading…
Reference in a new issue