Reorganize system modules (#8419)

# Objective

Follow-up to #8377.

As the system module has been refactored, there are many types that no
longer make sense to live in the files that they do:
- The `IntoSystem` trait is in `function_system.rs`, even though this
trait is relevant to all kinds of systems. Same for the `In<T>` type.
- `PipeSystem` is now just an implementation of `CombinatorSystem`, so
`system_piping.rs` no longer needs its own file.

## Solution

- Move `IntoSystem`, `In<T>`, and system piping combinators & tests into
the top-level `mod.rs` file for `bevy_ecs::system`.
- Move `PipeSystem` into `combinator.rs`.
This commit is contained in:
JoJoJet 2023-04-17 17:10:57 -04:00 committed by GitHub
parent 764961be22
commit ce252f8cf7
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 455 additions and 464 deletions

View file

@ -237,3 +237,65 @@ where
B: ReadOnlySystem, B: ReadOnlySystem,
{ {
} }
/// A [`System`] created by piping the output of the first system into the input of the second.
///
/// This can be repeated indefinitely, but system pipes cannot branch: the output is consumed by the receiving system.
///
/// Given two systems `A` and `B`, A may be piped into `B` as `A.pipe(B)` if the output type of `A` is
/// equal to the input type of `B`.
///
/// Note that for [`FunctionSystem`](crate::system::FunctionSystem)s the output is the return value
/// of the function and the input is the first [`SystemParam`](crate::system::SystemParam) if it is
/// tagged with [`In`](crate::system::In) or `()` if the function has no designated input parameter.
///
/// # Examples
///
/// ```
/// use std::num::ParseIntError;
///
/// use bevy_ecs::prelude::*;
///
/// fn main() {
/// let mut world = World::default();
/// world.insert_resource(Message("42".to_string()));
///
/// // pipe the `parse_message_system`'s output into the `filter_system`s input
/// let mut piped_system = parse_message_system.pipe(filter_system);
/// piped_system.initialize(&mut world);
/// assert_eq!(piped_system.run((), &mut world), Some(42));
/// }
///
/// #[derive(Resource)]
/// struct Message(String);
///
/// fn parse_message_system(message: Res<Message>) -> Result<usize, ParseIntError> {
/// message.0.parse::<usize>()
/// }
///
/// fn filter_system(In(result): In<Result<usize, ParseIntError>>) -> Option<usize> {
/// result.ok().filter(|&n| n < 100)
/// }
/// ```
pub type PipeSystem<SystemA, SystemB> = CombinatorSystem<Pipe, SystemA, SystemB>;
#[doc(hidden)]
pub struct Pipe;
impl<A, B> Combine<A, B> for Pipe
where
A: System,
B: System<In = A::Out>,
{
type In = A::In;
type Out = B::Out;
fn combine(
input: Self::In,
a: impl FnOnce(A::In) -> A::Out,
b: impl FnOnce(B::In) -> B::Out,
) -> Self::Out {
let value = a(input);
b(value)
}
}

View file

@ -10,7 +10,7 @@ use crate::{
use bevy_utils::all_tuples; use bevy_utils::all_tuples;
use std::{any::TypeId, borrow::Cow, marker::PhantomData}; use std::{any::TypeId, borrow::Cow, marker::PhantomData};
use super::{PipeSystem, ReadOnlySystem}; use super::{In, IntoSystem, ReadOnlySystem};
/// The metadata of a [`System`]. /// The metadata of a [`System`].
#[derive(Clone)] #[derive(Clone)]
@ -308,79 +308,6 @@ impl<Param: SystemParam> FromWorld for SystemState<Param> {
} }
} }
/// Conversion trait to turn something into a [`System`].
///
/// Use this to get a system from a function. Also note that every system implements this trait as
/// well.
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// fn my_system_function(a_usize_local: Local<usize>) {}
///
/// let system = IntoSystem::into_system(my_system_function);
/// ```
// This trait has to be generic because we have potentially overlapping impls, in particular
// because Rust thinks a type could impl multiple different `FnMut` combinations
// even though none can currently
pub trait IntoSystem<In, Out, Marker>: Sized {
type System: System<In = In, Out = Out>;
/// Turns this value into its corresponding [`System`].
fn into_system(this: Self) -> Self::System;
/// Pass the output of this system `A` into a second system `B`, creating a new compound system.
///
/// The second system must have `In<T>` as its first parameter, where `T`
/// is the return type of the first system.
fn pipe<B, Final, MarkerB>(self, system: B) -> PipeSystem<Self::System, B::System>
where
B: IntoSystem<Out, Final, MarkerB>,
{
let system_a = IntoSystem::into_system(self);
let system_b = IntoSystem::into_system(system);
let name = format!("Pipe({}, {})", system_a.name(), system_b.name());
PipeSystem::new(system_a, system_b, Cow::Owned(name))
}
}
// Systems implicitly implement IntoSystem
impl<In, Out, Sys: System<In = In, Out = Out>> IntoSystem<In, Out, ()> for Sys {
type System = Sys;
fn into_system(this: Self) -> Sys {
this
}
}
/// Wrapper type to mark a [`SystemParam`] as an input.
///
/// [`System`]s may take an optional input which they require to be passed to them when they
/// are being [`run`](System::run). For [`FunctionSystems`](FunctionSystem) the input may be marked
/// with this `In` type, but only the first param of a function may be tagged as an input. This also
/// means a system can only have one or zero input parameters.
///
/// # Examples
///
/// Here is a simple example of a system that takes a [`usize`] returning the square of it.
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// fn main() {
/// let mut square_system = IntoSystem::into_system(square);
///
/// let mut world = World::default();
/// square_system.initialize(&mut world);
/// assert_eq!(square_system.run(12, &mut world), 144);
/// }
///
/// fn square(In(input): In<usize>) -> usize {
/// input * input
/// }
/// ```
pub struct In<In>(pub In);
/// The [`System`] counter part of an ordinary function. /// The [`System`] counter part of an ordinary function.
/// ///
/// You get this by calling [`IntoSystem::into_system`] on a function that only accepts /// You get this by calling [`IntoSystem::into_system`] on a function that only accepts

View file

@ -111,7 +111,8 @@ mod query;
#[allow(clippy::module_inception)] #[allow(clippy::module_inception)]
mod system; mod system;
mod system_param; mod system_param;
mod system_piping;
use std::borrow::Cow;
pub use combinator::*; pub use combinator::*;
pub use commands::*; pub use commands::*;
@ -121,7 +122,6 @@ pub use function_system::*;
pub use query::*; pub use query::*;
pub use system::*; pub use system::*;
pub use system_param::*; pub use system_param::*;
pub use system_piping::*;
use crate::world::World; use crate::world::World;
@ -190,10 +190,297 @@ where
assert_is_system(system); assert_is_system(system);
} }
/// Conversion trait to turn something into a [`System`].
///
/// Use this to get a system from a function. Also note that every system implements this trait as
/// well.
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// fn my_system_function(a_usize_local: Local<usize>) {}
///
/// let system = IntoSystem::into_system(my_system_function);
/// ```
// This trait has to be generic because we have potentially overlapping impls, in particular
// because Rust thinks a type could impl multiple different `FnMut` combinations
// even though none can currently
pub trait IntoSystem<In, Out, Marker>: Sized {
type System: System<In = In, Out = Out>;
/// Turns this value into its corresponding [`System`].
fn into_system(this: Self) -> Self::System;
/// Pass the output of this system `A` into a second system `B`, creating a new compound system.
///
/// The second system must have `In<T>` as its first parameter, where `T`
/// is the return type of the first system.
fn pipe<B, Final, MarkerB>(self, system: B) -> PipeSystem<Self::System, B::System>
where
B: IntoSystem<Out, Final, MarkerB>,
{
let system_a = IntoSystem::into_system(self);
let system_b = IntoSystem::into_system(system);
let name = format!("Pipe({}, {})", system_a.name(), system_b.name());
PipeSystem::new(system_a, system_b, Cow::Owned(name))
}
}
// All systems implicitly implement IntoSystem.
impl<T: System> IntoSystem<T::In, T::Out, ()> for T {
type System = T;
fn into_system(this: Self) -> Self {
this
}
}
/// Wrapper type to mark a [`SystemParam`] as an input.
///
/// [`System`]s may take an optional input which they require to be passed to them when they
/// are being [`run`](System::run). For [`FunctionSystems`](FunctionSystem) the input may be marked
/// with this `In` type, but only the first param of a function may be tagged as an input. This also
/// means a system can only have one or zero input parameters.
///
/// # Examples
///
/// Here is a simple example of a system that takes a [`usize`] returning the square of it.
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// fn main() {
/// let mut square_system = IntoSystem::into_system(square);
///
/// let mut world = World::default();
/// square_system.initialize(&mut world);
/// assert_eq!(square_system.run(12, &mut world), 144);
/// }
///
/// fn square(In(input): In<usize>) -> usize {
/// input * input
/// }
/// ```
pub struct In<In>(pub In);
/// A collection of common adapters for [piping](crate::system::PipeSystem) the result of a system.
pub mod adapter {
use crate::system::In;
use bevy_utils::tracing;
use std::fmt::Debug;
/// Converts a regular function into a system adapter.
///
/// # Examples
/// ```
/// use bevy_ecs::prelude::*;
///
/// fn return1() -> u64 { 1 }
///
/// return1
/// .pipe(system_adapter::new(u32::try_from))
/// .pipe(system_adapter::unwrap)
/// .pipe(print);
///
/// fn print(In(x): In<impl std::fmt::Debug>) {
/// println!("{x:?}");
/// }
/// ```
pub fn new<T, U>(mut f: impl FnMut(T) -> U) -> impl FnMut(In<T>) -> U {
move |In(x)| f(x)
}
/// System adapter that unwraps the `Ok` variant of a [`Result`].
/// This is useful for fallible systems that should panic in the case of an error.
///
/// There is no equivalent adapter for [`Option`]. Instead, it's best to provide
/// an error message and convert to a `Result` using `ok_or{_else}`.
///
/// # Examples
///
/// Panicking on error
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// // Building a new schedule/app...
/// let mut sched = Schedule::default();
/// sched.add_systems(
/// // Panic if the load system returns an error.
/// load_save_system.pipe(system_adapter::unwrap)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system which may fail irreparably.
/// fn load_save_system() -> Result<(), std::io::Error> {
/// let save_file = open_file("my_save.json")?;
/// dbg!(save_file);
/// Ok(())
/// }
/// # fn open_file(name: &str) -> Result<&'static str, std::io::Error>
/// # { Ok("hello world") }
/// ```
pub fn unwrap<T, E: Debug>(In(res): In<Result<T, E>>) -> T {
res.unwrap()
}
/// System adapter that utilizes the [`bevy_utils::tracing::info!`] macro to print system information.
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// // Building a new schedule/app...
/// let mut sched = Schedule::default();
/// sched.add_systems(
/// // Prints system information.
/// data_pipe_system.pipe(system_adapter::info)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system that returns a String output.
/// fn data_pipe_system() -> String {
/// "42".to_string()
/// }
/// ```
pub fn info<T: Debug>(In(data): In<T>) {
tracing::info!("{:?}", data);
}
/// System adapter that utilizes the [`bevy_utils::tracing::debug!`] macro to print the output of a system.
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// // Building a new schedule/app...
/// let mut sched = Schedule::default();
/// sched.add_systems(
/// // Prints debug data from system.
/// parse_message_system.pipe(system_adapter::dbg)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system that returns a Result<usize, String> output.
/// fn parse_message_system() -> Result<usize, std::num::ParseIntError> {
/// Ok("42".parse()?)
/// }
/// ```
pub fn dbg<T: Debug>(In(data): In<T>) {
tracing::debug!("{:?}", data);
}
/// System adapter that utilizes the [`bevy_utils::tracing::warn!`] macro to print the output of a system.
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// // Building a new schedule/app...
/// # let mut sched = Schedule::default();
/// sched.add_systems(
/// // Prints system warning if system returns an error.
/// warning_pipe_system.pipe(system_adapter::warn)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system that returns a Result<(), String> output.
/// fn warning_pipe_system() -> Result<(), String> {
/// Err("Got to rusty?".to_string())
/// }
/// ```
pub fn warn<E: Debug>(In(res): In<Result<(), E>>) {
if let Err(warn) = res {
tracing::warn!("{:?}", warn);
}
}
/// System adapter that utilizes the [`bevy_utils::tracing::error!`] macro to print the output of a system.
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
/// // Building a new schedule/app...
/// let mut sched = Schedule::default();
/// sched.add_systems(
/// // Prints system error if system fails.
/// parse_error_message_system.pipe(system_adapter::error)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system that returns a Result<())> output.
/// fn parse_error_message_system() -> Result<(), String> {
/// Err("Some error".to_owned())
/// }
/// ```
pub fn error<E: Debug>(In(res): In<Result<(), E>>) {
if let Err(error) = res {
tracing::error!("{:?}", error);
}
}
/// System adapter that ignores the output of the previous system in a pipe.
/// This is useful for fallible systems that should simply return early in case of an `Err`/`None`.
///
/// # Examples
///
/// Returning early
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// // Marker component for an enemy entity.
/// #[derive(Component)]
/// struct Monster;
///
/// // Building a new schedule/app...
/// # let mut sched = Schedule::default(); sched
/// .add_systems(
/// // If the system fails, just move on and try again next frame.
/// fallible_system.pipe(system_adapter::ignore)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system which may return early. It's more convenient to use the `?` operator for this.
/// fn fallible_system(
/// q: Query<Entity, With<Monster>>
/// ) -> Option<()> {
/// let monster_id = q.iter().next()?;
/// println!("Monster entity is {monster_id:?}");
/// Some(())
/// }
/// ```
pub fn ignore<T>(In(_): In<T>) {}
}
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use std::any::TypeId; use std::any::TypeId;
use bevy_utils::default;
use crate::{ use crate::{
self as bevy_ecs, self as bevy_ecs,
archetype::{ArchetypeComponentId, Archetypes}, archetype::{ArchetypeComponentId, Archetypes},
@ -206,8 +493,8 @@ mod tests {
removal_detection::RemovedComponents, removal_detection::RemovedComponents,
schedule::{apply_system_buffers, IntoSystemConfigs, Schedule}, schedule::{apply_system_buffers, IntoSystemConfigs, Schedule},
system::{ system::{
Commands, IntoSystem, Local, NonSend, NonSendMut, ParamSet, Query, QueryComponentError, adapter::new, Commands, In, IntoSystem, Local, NonSend, NonSendMut, ParamSet, Query,
Res, ResMut, Resource, System, SystemState, QueryComponentError, Res, ResMut, Resource, System, SystemState,
}, },
world::{FromWorld, World}, world::{FromWorld, World},
}; };
@ -1445,4 +1732,105 @@ mod tests {
let mut world = World::new(); let mut world = World::new();
run_system(&mut world, || panic!("this system panics")); run_system(&mut world, || panic!("this system panics"));
} }
#[test]
fn assert_systems() {
use std::str::FromStr;
use crate::{prelude::*, system::assert_is_system};
/// Mocks a system that returns a value of type `T`.
fn returning<T>() -> T {
unimplemented!()
}
/// Mocks an exclusive system that takes an input and returns an output.
fn exclusive_in_out<A, B>(_: In<A>, _: &mut World) -> B {
unimplemented!()
}
fn not(In(val): In<bool>) -> bool {
!val
}
assert_is_system(returning::<Result<u32, std::io::Error>>.pipe(unwrap));
assert_is_system(returning::<Option<()>>.pipe(ignore));
assert_is_system(returning::<&str>.pipe(new(u64::from_str)).pipe(unwrap));
assert_is_system(exclusive_in_out::<(), Result<(), std::io::Error>>.pipe(error));
assert_is_system(returning::<bool>.pipe(exclusive_in_out::<bool, ()>));
returning::<()>.run_if(returning::<bool>.pipe(not));
}
#[test]
fn pipe_change_detection() {
#[derive(Resource, Default)]
struct Flag;
#[derive(Default)]
struct Info {
// If true, the respective system will mutate `Flag`.
do_first: bool,
do_second: bool,
// Will be set to true if the respective system saw that `Flag` changed.
first_flag: bool,
second_flag: bool,
}
fn first(In(mut info): In<Info>, mut flag: ResMut<Flag>) -> Info {
if flag.is_changed() {
info.first_flag = true;
}
if info.do_first {
*flag = Flag;
}
info
}
fn second(In(mut info): In<Info>, mut flag: ResMut<Flag>) -> Info {
if flag.is_changed() {
info.second_flag = true;
}
if info.do_second {
*flag = Flag;
}
info
}
let mut world = World::new();
world.init_resource::<Flag>();
let mut sys = first.pipe(second);
sys.initialize(&mut world);
sys.run(default(), &mut world);
// The second system should observe a change made in the first system.
let info = sys.run(
Info {
do_first: true,
..default()
},
&mut world,
);
assert!(!info.first_flag);
assert!(info.second_flag);
// When a change is made in the second system, the first system
// should observe it the next time they are run.
let info1 = sys.run(
Info {
do_second: true,
..default()
},
&mut world,
);
let info2 = sys.run(default(), &mut world);
assert!(!info1.first_flag);
assert!(!info1.second_flag);
assert!(info2.first_flag);
assert!(!info2.second_flag);
}
} }

View file

@ -1,386 +0,0 @@
use crate::system::System;
use super::{CombinatorSystem, Combine};
/// A [`System`] created by piping the output of the first system into the input of the second.
///
/// This can be repeated indefinitely, but system pipes cannot branch: the output is consumed by the receiving system.
///
/// Given two systems `A` and `B`, A may be piped into `B` as `A.pipe(B)` if the output type of `A` is
/// equal to the input type of `B`.
///
/// Note that for [`FunctionSystem`](crate::system::FunctionSystem)s the output is the return value
/// of the function and the input is the first [`SystemParam`](crate::system::SystemParam) if it is
/// tagged with [`In`](crate::system::In) or `()` if the function has no designated input parameter.
///
/// # Examples
///
/// ```
/// use std::num::ParseIntError;
///
/// use bevy_ecs::prelude::*;
///
/// fn main() {
/// let mut world = World::default();
/// world.insert_resource(Message("42".to_string()));
///
/// // pipe the `parse_message_system`'s output into the `filter_system`s input
/// let mut piped_system = parse_message_system.pipe(filter_system);
/// piped_system.initialize(&mut world);
/// assert_eq!(piped_system.run((), &mut world), Some(42));
/// }
///
/// #[derive(Resource)]
/// struct Message(String);
///
/// fn parse_message_system(message: Res<Message>) -> Result<usize, ParseIntError> {
/// message.0.parse::<usize>()
/// }
///
/// fn filter_system(In(result): In<Result<usize, ParseIntError>>) -> Option<usize> {
/// result.ok().filter(|&n| n < 100)
/// }
/// ```
pub type PipeSystem<SystemA, SystemB> = CombinatorSystem<Pipe, SystemA, SystemB>;
#[doc(hidden)]
pub struct Pipe;
impl<A, B> Combine<A, B> for Pipe
where
A: System,
B: System<In = A::Out>,
{
type In = A::In;
type Out = B::Out;
fn combine(
input: Self::In,
a: impl FnOnce(<A as System>::In) -> <A as System>::Out,
b: impl FnOnce(<B as System>::In) -> <B as System>::Out,
) -> Self::Out {
let value = a(input);
b(value)
}
}
/// A collection of common adapters for [piping](super::PipeSystem) the result of a system.
pub mod adapter {
use crate::system::In;
use bevy_utils::tracing;
use std::fmt::Debug;
/// Converts a regular function into a system adapter.
///
/// # Examples
/// ```
/// use bevy_ecs::prelude::*;
///
/// fn return1() -> u64 { 1 }
///
/// return1
/// .pipe(system_adapter::new(u32::try_from))
/// .pipe(system_adapter::unwrap)
/// .pipe(print);
///
/// fn print(In(x): In<impl std::fmt::Debug>) {
/// println!("{x:?}");
/// }
/// ```
pub fn new<T, U>(mut f: impl FnMut(T) -> U) -> impl FnMut(In<T>) -> U {
move |In(x)| f(x)
}
/// System adapter that unwraps the `Ok` variant of a [`Result`].
/// This is useful for fallible systems that should panic in the case of an error.
///
/// There is no equivalent adapter for [`Option`]. Instead, it's best to provide
/// an error message and convert to a `Result` using `ok_or{_else}`.
///
/// # Examples
///
/// Panicking on error
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// // Building a new schedule/app...
/// let mut sched = Schedule::default();
/// sched.add_systems(
/// // Panic if the load system returns an error.
/// load_save_system.pipe(system_adapter::unwrap)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system which may fail irreparably.
/// fn load_save_system() -> Result<(), std::io::Error> {
/// let save_file = open_file("my_save.json")?;
/// dbg!(save_file);
/// Ok(())
/// }
/// # fn open_file(name: &str) -> Result<&'static str, std::io::Error>
/// # { Ok("hello world") }
/// ```
pub fn unwrap<T, E: Debug>(In(res): In<Result<T, E>>) -> T {
res.unwrap()
}
/// System adapter that utilizes the [`bevy_utils::tracing::info!`] macro to print system information.
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// // Building a new schedule/app...
/// let mut sched = Schedule::default();
/// sched.add_systems(
/// // Prints system information.
/// data_pipe_system.pipe(system_adapter::info)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system that returns a String output.
/// fn data_pipe_system() -> String {
/// "42".to_string()
/// }
/// ```
pub fn info<T: Debug>(In(data): In<T>) {
tracing::info!("{:?}", data);
}
/// System adapter that utilizes the [`bevy_utils::tracing::debug!`] macro to print the output of a system.
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// // Building a new schedule/app...
/// let mut sched = Schedule::default();
/// sched.add_systems(
/// // Prints debug data from system.
/// parse_message_system.pipe(system_adapter::dbg)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system that returns a Result<usize, String> output.
/// fn parse_message_system() -> Result<usize, std::num::ParseIntError> {
/// Ok("42".parse()?)
/// }
/// ```
pub fn dbg<T: Debug>(In(data): In<T>) {
tracing::debug!("{:?}", data);
}
/// System adapter that utilizes the [`bevy_utils::tracing::warn!`] macro to print the output of a system.
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// // Building a new schedule/app...
/// # let mut sched = Schedule::default();
/// sched.add_systems(
/// // Prints system warning if system returns an error.
/// warning_pipe_system.pipe(system_adapter::warn)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system that returns a Result<(), String> output.
/// fn warning_pipe_system() -> Result<(), String> {
/// Err("Got to rusty?".to_string())
/// }
/// ```
pub fn warn<E: Debug>(In(res): In<Result<(), E>>) {
if let Err(warn) = res {
tracing::warn!("{:?}", warn);
}
}
/// System adapter that utilizes the [`bevy_utils::tracing::error!`] macro to print the output of a system.
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
/// // Building a new schedule/app...
/// let mut sched = Schedule::default();
/// sched.add_systems(
/// // Prints system error if system fails.
/// parse_error_message_system.pipe(system_adapter::error)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system that returns a Result<())> output.
/// fn parse_error_message_system() -> Result<(), String> {
/// Err("Some error".to_owned())
/// }
/// ```
pub fn error<E: Debug>(In(res): In<Result<(), E>>) {
if let Err(error) = res {
tracing::error!("{:?}", error);
}
}
/// System adapter that ignores the output of the previous system in a pipe.
/// This is useful for fallible systems that should simply return early in case of an `Err`/`None`.
///
/// # Examples
///
/// Returning early
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// // Marker component for an enemy entity.
/// #[derive(Component)]
/// struct Monster;
///
/// // Building a new schedule/app...
/// # let mut sched = Schedule::default(); sched
/// .add_systems(
/// // If the system fails, just move on and try again next frame.
/// fallible_system.pipe(system_adapter::ignore)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system which may return early. It's more convenient to use the `?` operator for this.
/// fn fallible_system(
/// q: Query<Entity, With<Monster>>
/// ) -> Option<()> {
/// let monster_id = q.iter().next()?;
/// println!("Monster entity is {monster_id:?}");
/// Some(())
/// }
/// ```
pub fn ignore<T>(In(_): In<T>) {}
}
#[cfg(test)]
mod tests {
use bevy_utils::default;
use super::adapter::*;
use crate::{self as bevy_ecs, prelude::*};
#[test]
fn assert_systems() {
use std::str::FromStr;
use crate::{prelude::*, system::assert_is_system};
/// Mocks a system that returns a value of type `T`.
fn returning<T>() -> T {
unimplemented!()
}
/// Mocks an exclusive system that takes an input and returns an output.
fn exclusive_in_out<A, B>(_: In<A>, _: &mut World) -> B {
unimplemented!()
}
fn not(In(val): In<bool>) -> bool {
!val
}
assert_is_system(returning::<Result<u32, std::io::Error>>.pipe(unwrap));
assert_is_system(returning::<Option<()>>.pipe(ignore));
assert_is_system(returning::<&str>.pipe(new(u64::from_str)).pipe(unwrap));
assert_is_system(exclusive_in_out::<(), Result<(), std::io::Error>>.pipe(error));
assert_is_system(returning::<bool>.pipe(exclusive_in_out::<bool, ()>));
returning::<()>.run_if(returning::<bool>.pipe(not));
}
#[test]
fn pipe_change_detection() {
#[derive(Resource, Default)]
struct Flag;
#[derive(Default)]
struct Info {
// If true, the respective system will mutate `Flag`.
do_first: bool,
do_second: bool,
// Will be set to true if the respective system saw that `Flag` changed.
first_flag: bool,
second_flag: bool,
}
fn first(In(mut info): In<Info>, mut flag: ResMut<Flag>) -> Info {
if flag.is_changed() {
info.first_flag = true;
}
if info.do_first {
*flag = Flag;
}
info
}
fn second(In(mut info): In<Info>, mut flag: ResMut<Flag>) -> Info {
if flag.is_changed() {
info.second_flag = true;
}
if info.do_second {
*flag = Flag;
}
info
}
let mut world = World::new();
world.init_resource::<Flag>();
let mut sys = first.pipe(second);
sys.initialize(&mut world);
sys.run(default(), &mut world);
// The second system should observe a change made in the first system.
let info = sys.run(
Info {
do_first: true,
..default()
},
&mut world,
);
assert!(!info.first_flag);
assert!(info.second_flag);
// When a change is made in the second system, the first system
// should observe it the next time they are run.
let info1 = sys.run(
Info {
do_second: true,
..default()
},
&mut world,
);
let info2 = sys.run(default(), &mut world);
assert!(!info1.first_flag);
assert!(!info1.second_flag);
assert!(info2.first_flag);
assert!(!info2.second_flag);
}
}