bevy_pbr2: Fix clustering for orthographic projections (#3316)

# Objective

PBR lighting was broken in the new renderer when using orthographic projections due to the way the depth slicing works for the clusters. Fix it.

## Solution

- The default orthographic projection near plane is 0.0. The perspective projection depth slicing does a division by the near plane which gives a floating point NaN and the clustering all breaks down.
- Orthographic projections have a linear depth mapping, so it made intuitive sense to me to do depth slicing with a linear mapping too. The alternative I saw was to try to handle the near plane being at 0.0 and using the exponential depth slicing, but that felt like a hack that didn't make sense.
- As such, I have added code that detects whether the projection is orthographic based on `projection[3][3] == 1.0` and then implemented the orthographic mapping case throughout (when computing cluster AABBs, and when mapping a view space position (or light) to a cluster id in both the rust and shader code).

## Screenshots
Before:
![before](https://user-images.githubusercontent.com/302146/145847278-5b1bca74-fbad-4cc5-8b49-384f6a377fdc.png)
After:
<img width="1392" alt="Screenshot 2021-12-13 at 16 36 53" src="https://user-images.githubusercontent.com/302146/145847314-6f3a2035-5d87-4896-8032-0c3e35e15b7d.png">
Old renderer (slightly lighter due to slight difference in configured intensity):
<img width="1392" alt="Screenshot 2021-12-13 at 16 42 23" src="https://user-images.githubusercontent.com/302146/145847391-6a5e6fe0-22da-4fc1-a6c7-440543689a63.png">
This commit is contained in:
Robert Swain 2021-12-14 23:42:35 +00:00
parent c825fda74a
commit c061ec33c8
5 changed files with 165 additions and 75 deletions

View file

@ -12,7 +12,8 @@ use bevy_transform::components::GlobalTransform;
use bevy_window::Windows;
use crate::{
CubeMapFace, CubemapVisibleEntities, ViewClusterBindings, CUBE_MAP_FACES, POINT_LIGHT_NEAR_Z,
calculate_cluster_factors, CubeMapFace, CubemapVisibleEntities, ViewClusterBindings,
CUBE_MAP_FACES, POINT_LIGHT_NEAR_Z,
};
/// A light that emits light in all directions from a central point.
@ -265,12 +266,14 @@ fn line_intersection_to_z_plane(origin: Vec3, p: Vec3, z: f32) -> Vec3 {
origin + t * v
}
#[allow(clippy::too_many_arguments)]
fn compute_aabb_for_cluster(
z_near: f32,
z_far: f32,
tile_size: Vec2,
screen_size: Vec2,
inverse_projection: Mat4,
is_orthographic: bool,
cluster_dimensions: UVec3,
ijk: UVec3,
) -> Aabb {
@ -280,25 +283,52 @@ fn compute_aabb_for_cluster(
let p_min = ijk.xy() * tile_size;
let p_max = p_min + tile_size;
// Convert to view space at the near plane
// NOTE: 1.0 is the near plane due to using reverse z projections
let p_min = screen_to_view(screen_size, inverse_projection, p_min, 1.0);
let p_max = screen_to_view(screen_size, inverse_projection, p_max, 1.0);
let cluster_min;
let cluster_max;
if is_orthographic {
// Use linear depth slicing for orthographic
let z_far_over_z_near = -z_far / -z_near;
let cluster_near = -z_near * z_far_over_z_near.powf(ijk.z / cluster_dimensions.z as f32);
// NOTE: This could be simplified to:
// let cluster_far = cluster_near * z_far_over_z_near;
let cluster_far = -z_near * z_far_over_z_near.powf((ijk.z + 1.0) / cluster_dimensions.z as f32);
// Convert to view space at the cluster near and far planes
// NOTE: 1.0 is the near plane due to using reverse z projections
let p_min = screen_to_view(
screen_size,
inverse_projection,
p_min,
1.0 - (ijk.z / cluster_dimensions.z as f32),
)
.xyz();
let p_max = screen_to_view(
screen_size,
inverse_projection,
p_max,
1.0 - ((ijk.z + 1.0) / cluster_dimensions.z as f32),
)
.xyz();
// Calculate the four intersection points of the min and max points with the cluster near and far planes
let p_min_near = line_intersection_to_z_plane(Vec3::ZERO, p_min.xyz(), cluster_near);
let p_min_far = line_intersection_to_z_plane(Vec3::ZERO, p_min.xyz(), cluster_far);
let p_max_near = line_intersection_to_z_plane(Vec3::ZERO, p_max.xyz(), cluster_near);
let p_max_far = line_intersection_to_z_plane(Vec3::ZERO, p_max.xyz(), cluster_far);
cluster_min = p_min.min(p_max);
cluster_max = p_min.max(p_max);
} else {
// Convert to view space at the near plane
// NOTE: 1.0 is the near plane due to using reverse z projections
let p_min = screen_to_view(screen_size, inverse_projection, p_min, 1.0);
let p_max = screen_to_view(screen_size, inverse_projection, p_max, 1.0);
let cluster_min = p_min_near.min(p_min_far).min(p_max_near.min(p_max_far));
let cluster_max = p_min_near.max(p_min_far).max(p_max_near.max(p_max_far));
let z_far_over_z_near = -z_far / -z_near;
let cluster_near = -z_near * z_far_over_z_near.powf(ijk.z / cluster_dimensions.z as f32);
// NOTE: This could be simplified to:
// cluster_far = cluster_near * z_far_over_z_near;
let cluster_far =
-z_near * z_far_over_z_near.powf((ijk.z + 1.0) / cluster_dimensions.z as f32);
// Calculate the four intersection points of the min and max points with the cluster near and far planes
let p_min_near = line_intersection_to_z_plane(Vec3::ZERO, p_min.xyz(), cluster_near);
let p_min_far = line_intersection_to_z_plane(Vec3::ZERO, p_min.xyz(), cluster_far);
let p_max_near = line_intersection_to_z_plane(Vec3::ZERO, p_max.xyz(), cluster_near);
let p_max_far = line_intersection_to_z_plane(Vec3::ZERO, p_max.xyz(), cluster_far);
cluster_min = p_min_near.min(p_min_far).min(p_max_near.min(p_max_far));
cluster_max = p_min_near.max(p_min_far).max(p_max_near.max(p_max_far));
}
Aabb::from_min_max(cluster_min, cluster_max)
}
@ -322,6 +352,7 @@ pub fn add_clusters(
pub fn update_clusters(windows: Res<Windows>, mut views: Query<(&Camera, &mut Clusters)>) {
for (camera, mut clusters) in views.iter_mut() {
let is_orthographic = camera.projection_matrix.w_axis.w == 1.0;
let inverse_projection = camera.projection_matrix.inverse();
let window = windows.get(camera.window).unwrap();
let screen_size_u32 = UVec2::new(window.physical_width(), window.physical_height());
@ -348,6 +379,7 @@ pub fn update_clusters(windows: Res<Windows>, mut views: Query<(&Camera, &mut Cl
tile_size,
screen_size,
inverse_projection,
is_orthographic,
clusters.axis_slices,
UVec3::new(x, y, z),
));
@ -383,14 +415,20 @@ impl VisiblePointLights {
}
}
fn view_z_to_z_slice(cluster_factors: Vec2, view_z: f32) -> u32 {
// NOTE: had to use -view_z to make it positive else log(negative) is nan
((-view_z).ln() * cluster_factors.x - cluster_factors.y).floor() as u32
fn view_z_to_z_slice(cluster_factors: Vec2, view_z: f32, is_orthographic: bool) -> u32 {
if is_orthographic {
// NOTE: view_z is correct in the orthographic case
((view_z - cluster_factors.x) * cluster_factors.y).floor() as u32
} else {
// NOTE: had to use -view_z to make it positive else log(negative) is nan
((-view_z).ln() * cluster_factors.x - cluster_factors.y).floor() as u32
}
}
fn ndc_position_to_cluster(
cluster_dimensions: UVec3,
cluster_factors: Vec2,
is_orthographic: bool,
ndc_p: Vec3,
view_z: f32,
) -> UVec3 {
@ -398,7 +436,7 @@ fn ndc_position_to_cluster(
let frag_coord =
(ndc_p.xy() * Vec2::new(0.5, -0.5) + Vec2::splat(0.5)).clamp(Vec2::ZERO, Vec2::ONE);
let xy = (frag_coord * cluster_dimensions_f32.xy()).floor();
let z_slice = view_z_to_z_slice(cluster_factors, view_z);
let z_slice = view_z_to_z_slice(cluster_factors, view_z, is_orthographic);
xy.as_uvec2()
.extend(z_slice)
.clamp(UVec3::ZERO, cluster_dimensions - UVec3::ONE)
@ -421,11 +459,12 @@ pub fn assign_lights_to_clusters(
let view_transform = view_transform.compute_matrix();
let inverse_view_transform = view_transform.inverse();
let cluster_count = clusters.aabbs.len();
let z_slices_of_ln_zfar_over_znear =
clusters.axis_slices.z as f32 / (camera.far / camera.near).ln();
let cluster_factors = Vec2::new(
z_slices_of_ln_zfar_over_znear,
camera.near.ln() * z_slices_of_ln_zfar_over_znear,
let is_orthographic = camera.projection_matrix.w_axis.w == 1.0;
let cluster_factors = calculate_cluster_factors(
camera.near,
camera.far,
clusters.axis_slices.z as f32,
is_orthographic,
);
let mut clusters_lights =
@ -501,12 +540,14 @@ pub fn assign_lights_to_clusters(
let min_cluster = ndc_position_to_cluster(
clusters.axis_slices,
cluster_factors,
is_orthographic,
light_aabb_ndc_min,
light_aabb_view_min.z,
);
let max_cluster = ndc_position_to_cluster(
clusters.axis_slices,
cluster_factors,
is_orthographic,
light_aabb_ndc_max,
light_aabb_view_max.z,
);

View file

@ -10,7 +10,7 @@ use bevy_ecs::{
prelude::*,
system::{lifetimeless::*, SystemParamItem},
};
use bevy_math::{const_vec3, Mat4, UVec3, UVec4, Vec3, Vec4, Vec4Swizzles};
use bevy_math::{const_vec3, Mat4, UVec3, UVec4, Vec2, Vec3, Vec4, Vec4Swizzles};
use bevy_render::{
camera::{Camera, CameraProjection},
color::Color,
@ -540,6 +540,22 @@ pub enum LightEntity {
face_index: usize,
},
}
pub fn calculate_cluster_factors(
near: f32,
far: f32,
z_slices: f32,
is_orthographic: bool,
) -> Vec2 {
if is_orthographic {
Vec2::new(-near, z_slices / (-far - -near))
} else {
let z_slices_of_ln_zfar_over_znear = z_slices / (far / near).ln();
Vec2::new(
z_slices_of_ln_zfar_over_znear,
near.ln() * z_slices_of_ln_zfar_over_znear,
)
}
}
#[allow(clippy::too_many_arguments)]
pub fn prepare_lights(
@ -644,8 +660,14 @@ pub fn prepare_lights(
);
let mut view_lights = Vec::new();
let z_times_ln_far_over_near =
clusters.axis_slices.z as f32 / (extracted_view.far / extracted_view.near).ln();
let is_orthographic = extracted_view.projection.w_axis.w == 1.0;
let cluster_factors_zw = calculate_cluster_factors(
extracted_view.near,
extracted_view.far,
clusters.axis_slices.z as f32,
is_orthographic,
);
let mut gpu_lights = GpuLights {
directional_lights: [GpuDirectionalLight::default(); MAX_DIRECTIONAL_LIGHTS],
ambient_color: Vec4::from_slice(&ambient_light.color.as_linear_rgba_f32())
@ -653,8 +675,8 @@ pub fn prepare_lights(
cluster_factors: Vec4::new(
clusters.axis_slices.x as f32 / extracted_view.width as f32,
clusters.axis_slices.y as f32 / extracted_view.height as f32,
z_times_ln_far_over_near,
extracted_view.near.ln() * z_times_ln_far_over_near,
cluster_factors_zw.x,
cluster_factors_zw.y,
),
cluster_dimensions: clusters.axis_slices.extend(0),
n_directional_lights: directional_lights.iter().len() as u32,
@ -855,15 +877,16 @@ const CLUSTER_COUNT_MASK: u32 = (1 << 8) - 1;
const POINT_LIGHT_INDEX_MASK: u32 = (1 << 8) - 1;
// NOTE: With uniform buffer max binding size as 16384 bytes
// that means we can fit say 128 point lights in one uniform
// buffer, which means the count can be at most 128 so it
// needs 7 bits, use 8 for convenience.
// that means we can fit say 256 point lights in one uniform
// buffer, which means the count can be at most 256 so it
// needs 8 bits.
// The array of indices can also use u8 and that means the
// offset in to the array of indices needs to be able to address
// 16384 values. lod2(16384) = 21 bits.
// 16384 values. log2(16384) = 14 bits.
// This means we can pack the offset into the upper 24 bits of a u32
// and the count into the lower 8 bits.
// FIXME: Probably there are endianness concerns here????!!!!!
// NOTE: This assumes CPU and GPU endianness are the same which is true
// for all common and tested x86/ARM CPUs and AMD/NVIDIA/Intel/Apple/etc GPUs
fn pack_offset_and_count(offset: usize, count: usize) -> u32 {
((offset as u32 & CLUSTER_OFFSET_MASK) << CLUSTER_COUNT_SIZE)
| (count as u32 & CLUSTER_COUNT_MASK)

View file

@ -245,7 +245,7 @@ impl FromWorld for MeshPipeline {
ty: BufferBindingType::Uniform,
has_dynamic_offset: false,
// NOTE: Static size for uniform buffers. GpuPointLight has a padded
// size of 128 bytes, so 16384 / 128 = 128 point lights max
// size of 64 bytes, so 16384 / 64 = 256 point lights max
min_binding_size: BufferSize::new(16384),
},
count: None,
@ -257,8 +257,7 @@ impl FromWorld for MeshPipeline {
ty: BindingType::Buffer {
ty: BufferBindingType::Uniform,
has_dynamic_offset: false,
// NOTE: With 128 point lights max, indices need 7 bits. Use u8 for
// convenience.
// NOTE: With 256 point lights max, indices need 8 bits so use u8
min_binding_size: BufferSize::new(16384),
},
count: None,
@ -270,10 +269,10 @@ impl FromWorld for MeshPipeline {
ty: BindingType::Buffer {
ty: BufferBindingType::Uniform,
has_dynamic_offset: false,
// NOTE: The offset needs to address 16384 indices, which needs 21 bits.
// The count can be at most all 128 lights so 7 bits.
// NOTE: The offset needs to address 16384 indices, which needs 14 bits.
// The count can be at most all 256 lights so 8 bits.
// Pack the offset into the upper 24 bits and the count into the
// lower 8 bits for convenience.
// lower 8 bits.
min_binding_size: BufferSize::new(16384),
},
count: None,

View file

@ -43,8 +43,15 @@ struct Lights {
// x/y/z dimensions
cluster_dimensions: vec4<u32>;
// xy are vec2<f32>(cluster_dimensions.xy) / vec2<f32>(view.width, view.height)
//
// For perspective projections:
// z is cluster_dimensions.z / log(far / near)
// w is cluster_dimensions.z * log(near) / log(far / near)
//
// For orthographic projections:
// NOTE: near and far are +ve but -z is infront of the camera
// z is -near
// w is cluster_dimensions.z / (-far - -near)
cluster_factors: vec4<f32>;
n_directional_lights: u32;
};

View file

@ -239,14 +239,19 @@ fn reinhard_extended_luminance(color: vec3<f32>, max_white_l: f32) -> vec3<f32>
return change_luminance(color, l_new);
}
fn view_z_to_z_slice(view_z: f32) -> u32 {
// NOTE: had to use -view_z to make it positive else log(negative) is nan
return u32(floor(log(-view_z) * lights.cluster_factors.z - lights.cluster_factors.w));
fn view_z_to_z_slice(view_z: f32, is_orthographic: bool) -> u32 {
if (is_orthographic) {
// NOTE: view_z is correct in the orthographic case
return u32(floor((view_z - lights.cluster_factors.z) * lights.cluster_factors.w));
} else {
// NOTE: had to use -view_z to make it positive else log(negative) is nan
return u32(floor(log(-view_z) * lights.cluster_factors.z - lights.cluster_factors.w));
}
}
fn fragment_cluster_index(frag_coord: vec2<f32>, view_z: f32) -> u32 {
fn fragment_cluster_index(frag_coord: vec2<f32>, view_z: f32, is_orthographic: bool) -> u32 {
let xy = vec2<u32>(floor(frag_coord * lights.cluster_factors.xy));
let z_slice = view_z_to_z_slice(view_z);
let z_slice = view_z_to_z_slice(view_z, is_orthographic);
return (xy.y * lights.cluster_dimensions.x + xy.x) * lights.cluster_dimensions.z + z_slice;
}
@ -423,6 +428,10 @@ fn hsv2rgb(hue: f32, saturation: f32, value: f32) -> vec3<f32> {
return value * mix( vec3<f32>(1.0), rgb, vec3<f32>(saturation));
}
fn random1D(s: f32) -> f32 {
return fract(sin(s * 12.9898) * 43758.5453123);
}
struct FragmentInput {
[[builtin(front_facing)]] is_front: bool;
[[builtin(position)]] frag_coord: vec4<f32>;
@ -508,12 +517,14 @@ fn fragment(in: FragmentInput) -> [[location(0)]] vec4<f32> {
}
var V: vec3<f32>;
if (view.projection[3].w != 1.0) { // If the projection is not orthographic
// If the projection is not orthographic
let is_orthographic = view.projection[3].w == 1.0;
if (is_orthographic) {
// Orthographic view vector
V = normalize(vec3<f32>(view.view_proj[0].z, view.view_proj[1].z, view.view_proj[2].z));
} else {
// Only valid for a perpective projection
V = normalize(view.world_position.xyz - in.world_position.xyz);
} else {
// Ortho view vec
V = normalize(vec3<f32>(view.view_proj[0].z, view.view_proj[1].z, view.view_proj[2].z));
}
// Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886"
@ -538,7 +549,7 @@ fn fragment(in: FragmentInput) -> [[location(0)]] vec4<f32> {
view.inverse_view[2].z,
view.inverse_view[3].z
), in.world_position);
let cluster_index = fragment_cluster_index(in.frag_coord.xy, view_z);
let cluster_index = fragment_cluster_index(in.frag_coord.xy, view_z, is_orthographic);
let offset_and_count = unpack_offset_and_count(cluster_index);
for (var i: u32 = offset_and_count.offset; i < offset_and_count.offset + offset_and_count.count; i = i + 1u) {
let light_id = get_light_id(i);
@ -573,31 +584,40 @@ fn fragment(in: FragmentInput) -> [[location(0)]] vec4<f32> {
emissive.rgb * output_color.a,
output_color.a);
#ifdef CLUSTERED_FORWARD_DEBUG
// Cluster allocation debug (using 'over' alpha blending)
let cluster_debug_mode = 1;
let cluster_overlay_alpha = 1.0;
if (cluster_debug_mode == 0) {
// NOTE: This debug mode visualises the z-slices
var z_slice: u32 = view_z_to_z_slice(view_z);
// A hack to make the colors alternate a bit more
if ((z_slice & 1u) == 1u) {
z_slice = z_slice + lights.cluster_dimensions.z / 2u;
}
let slice_color = hsv2rgb(f32(z_slice) / f32(lights.cluster_dimensions.z + 1u), 1.0, 0.5);
output_color = vec4<f32>(
(1.0 - cluster_overlay_alpha) * output_color.rgb + cluster_overlay_alpha * slice_color,
output_color.a
);
} elseif (cluster_debug_mode == 1) {
// NOTE: This debug mode visualises the number of lights within the cluster that contains
// the fragment. It shows a sort of lighting complexity measure.
output_color.r = (1.0 - cluster_overlay_alpha) * output_color.r
+ cluster_overlay_alpha * smoothStep(0.0, 16.0, f32(offset_and_count.count));
output_color.g = (1.0 - cluster_overlay_alpha) * output_color.g
+ cluster_overlay_alpha * (1.0 - smoothStep(0.0, 16.0, f32(offset_and_count.count)));
#ifdef CLUSTERED_FORWARD_DEBUG_Z_SLICES
// NOTE: This debug mode visualises the z-slices
let cluster_overlay_alpha = 0.1;
var z_slice: u32 = view_z_to_z_slice(view_z, is_orthographic);
// A hack to make the colors alternate a bit more
if ((z_slice & 1u) == 1u) {
z_slice = z_slice + lights.cluster_dimensions.z / 2u;
}
#endif
let slice_color = hsv2rgb(f32(z_slice) / f32(lights.cluster_dimensions.z + 1u), 1.0, 0.5);
output_color = vec4<f32>(
(1.0 - cluster_overlay_alpha) * output_color.rgb + cluster_overlay_alpha * slice_color,
output_color.a
);
#endif // CLUSTERED_FORWARD_DEBUG_Z_SLICES
#ifdef CLUSTERED_FORWARD_DEBUG_CLUSTER_LIGHT_COMPLEXITY
// NOTE: This debug mode visualises the number of lights within the cluster that contains
// the fragment. It shows a sort of lighting complexity measure.
let cluster_overlay_alpha = 0.1;
let max_light_complexity_per_cluster = 64.0;
output_color.r = (1.0 - cluster_overlay_alpha) * output_color.r
+ cluster_overlay_alpha * smoothStep(0.0, max_light_complexity_per_cluster, f32(offset_and_count.count));
output_color.g = (1.0 - cluster_overlay_alpha) * output_color.g
+ cluster_overlay_alpha * (1.0 - smoothStep(0.0, max_light_complexity_per_cluster, f32(offset_and_count.count)));
#endif // CLUSTERED_FORWARD_DEBUG_CLUSTER_LIGHT_COMPLEXITY
#ifdef CLUSTERED_FORWARD_DEBUG_CLUSTER_COHERENCY
// NOTE: Visualizes the cluster to which the fragment belongs
let cluster_overlay_alpha = 0.1;
let cluster_color = hsv2rgb(random1D(f32(cluster_index)), 1.0, 0.5);
output_color = vec4<f32>(
(1.0 - cluster_overlay_alpha) * output_color.rgb + cluster_overlay_alpha * cluster_color,
output_color.a
);
#endif // CLUSTERED_FORWARD_DEBUG_CLUSTER_COHERENCY
// tone_mapping
output_color = vec4<f32>(reinhard_luminance(output_color.rgb), output_color.a);