Implement Arc3D for Gizmos (#11540)

# Objective

- Implement an arc3d API for gizmos
- Solves #11536

## Solution

### `arc_3d`

- The current `arc3d` method on gizmos only takes an angle
- It draws an "standard arc" by default, this is an arc starting at
`Vec3::X`, in the XZ plane, in counter clockwise direction with a normal
that is facing up
- The "standard arc" can be customized with the usual gizmo builder
pattern. This way you'll be able to draw arbitrary arcs

### `short/long_arc_3d_between`

- Given `center`, `from`, `to` draws an arc between `from` and `to`

---

## Changelog

> This section is optional. If this was a trivial fix, or has no
externally-visible impact, you can delete this section.

- Added: `Gizmos::arc3d(&mut self, angle)` method
- Added: `Gizmos::long_arc_3d_between(&mut self, center, from, to)`
method
- Added: `Gizmos::short_arc_3d_between(&mut self, center, from, to)`
method

---

This PR factors out an orthogonal part of another PR as mentioned in
[this
comment](https://github.com/bevyengine/bevy/pull/11072#issuecomment-1883859573)
This commit is contained in:
Robert Walter 2024-01-28 02:13:17 +00:00 committed by GitHub
parent 9fcf862114
commit bcae8e9a8b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 300 additions and 11 deletions

View file

@ -5,10 +5,12 @@
use crate::circles::DEFAULT_CIRCLE_SEGMENTS;
use crate::prelude::{GizmoConfigGroup, Gizmos};
use bevy_math::Vec2;
use bevy_math::{Quat, Vec2, Vec3};
use bevy_render::color::Color;
use std::f32::consts::TAU;
// === 2D ===
impl<'w, 's, T: GizmoConfigGroup> Gizmos<'w, 's, T> {
/// Draw an arc, which is a part of the circumference of a circle, in 2D.
///
@ -73,7 +75,7 @@ pub struct Arc2dBuilder<'a, 'w, 's, T: GizmoConfigGroup> {
impl<T: GizmoConfigGroup> Arc2dBuilder<'_, '_, '_, T> {
/// Set the number of line-segments for this arc.
pub fn segments(mut self, segments: usize) -> Self {
self.segments = Some(segments);
self.segments.replace(segments);
self
}
}
@ -83,20 +85,18 @@ impl<T: GizmoConfigGroup> Drop for Arc2dBuilder<'_, '_, '_, T> {
if !self.gizmos.enabled {
return;
}
let segments = match self.segments {
Some(segments) => segments,
// Do a linear interpolation between 1 and `DEFAULT_CIRCLE_SEGMENTS`
// using the arc angle as scalar.
None => ((self.arc_angle.abs() / TAU) * DEFAULT_CIRCLE_SEGMENTS as f32).ceil() as usize,
};
let positions = arc_inner(self.direction_angle, self.arc_angle, self.radius, segments)
.map(|vec2| vec2 + self.position);
let segments = self
.segments
.unwrap_or_else(|| segments_from_angle(self.arc_angle));
let positions = arc_2d_inner(self.direction_angle, self.arc_angle, self.radius, segments)
.map(|vec2| (vec2 + self.position));
self.gizmos.linestrip_2d(positions, self.color);
}
}
fn arc_inner(
fn arc_2d_inner(
direction_angle: f32,
arc_angle: f32,
radius: f32,
@ -109,3 +109,282 @@ fn arc_inner(
Vec2::from(angle.sin_cos()) * radius
})
}
// === 3D ===
impl<'w, 's, T: GizmoConfigGroup> Gizmos<'w, 's, T> {
/// Draw an arc, which is a part of the circumference of a circle, in 3D. For default values
/// this is drawing a standard arc. A standard arc is defined as
///
/// - an arc with a center at `Vec3::ZERO`
/// - starting at `Vec3::X`
/// - embedded in the XZ plane
/// - rotates counterclockwise
///
/// This should be called for each frame the arc needs to be rendered.
///
/// # Arguments
/// - `angle`: sets how much of a circle circumference is passed, e.g. PI is half a circle. This
/// value should be in the range (-2 * PI..=2 * PI)
/// - `radius`: distance between the arc and it's center point
/// - `position`: position of the arcs center point
/// - `rotation`: defines orientation of the arc, by default we assume the arc is contained in a
/// plane parallel to the XZ plane and the default starting point is (`position + Vec3::X`)
/// - `color`: color of the arc
///
/// # Builder methods
/// The number of segments of the arc (i.e. the level of detail) can be adjusted with the
/// `.segements(...)` method.
///
/// # Example
/// ```
/// # use bevy_gizmos::prelude::*;
/// # use bevy_render::prelude::*;
/// # use bevy_math::prelude::*;
/// # use std::f32::consts::PI;
/// fn system(mut gizmos: Gizmos) {
/// // rotation rotates normal to point in the direction of `Vec3::NEG_ONE`
/// let rotation = Quat::from_rotation_arc(Vec3::Y, Vec3::NEG_ONE.normalize());
///
/// gizmos
/// .arc_3d(
/// 270.0_f32.to_radians(),
/// 0.25,
/// Vec3::ONE,
/// rotation,
/// Color::ORANGE
/// )
/// .segments(100);
/// }
/// # bevy_ecs::system::assert_is_system(system);
/// ```
#[inline]
pub fn arc_3d(
&mut self,
angle: f32,
radius: f32,
position: Vec3,
rotation: Quat,
color: Color,
) -> Arc3dBuilder<'_, 'w, 's, T> {
Arc3dBuilder {
gizmos: self,
start_vertex: Vec3::X,
center: position,
rotation,
angle,
radius,
color,
segments: None,
}
}
/// Draws the shortest arc between two points (`from` and `to`) relative to a specified `center` point.
///
/// # Arguments
///
/// - `center`: The center point around which the arc is drawn.
/// - `from`: The starting point of the arc.
/// - `to`: The ending point of the arc.
/// - `color`: color of the arc
///
/// # Builder methods
/// The number of segments of the arc (i.e. the level of detail) can be adjusted with the
/// `.segements(...)` method.
///
/// # Examples
/// ```
/// # use bevy_gizmos::prelude::*;
/// # use bevy_render::prelude::*;
/// # use bevy_math::prelude::*;
/// fn system(mut gizmos: Gizmos) {
/// gizmos.short_arc_3d_between(
/// Vec3::ONE,
/// Vec3::ONE + Vec3::NEG_ONE,
/// Vec3::ZERO,
/// Color::ORANGE
/// )
/// .segments(100);
/// }
/// # bevy_ecs::system::assert_is_system(system);
/// ```
///
/// # Notes
/// - This method assumes that the points `from` and `to` are distinct from `center`. If one of
/// the points is coincident with `center`, nothing is rendered.
/// - The arc is drawn as a portion of a circle with a radius equal to the distance from the
/// `center` to `from`. If the distance from `center` to `to` is not equal to the radius, then
/// the results will behave as if this were the case
#[inline]
pub fn short_arc_3d_between(
&mut self,
center: Vec3,
from: Vec3,
to: Vec3,
color: Color,
) -> Arc3dBuilder<'_, 'w, 's, T> {
self.arc_from_to(center, from, to, color, |x| x)
}
/// Draws the longest arc between two points (`from` and `to`) relative to a specified `center` point.
///
/// # Arguments
/// - `center`: The center point around which the arc is drawn.
/// - `from`: The starting point of the arc.
/// - `to`: The ending point of the arc.
/// - `color`: color of the arc
///
/// # Builder methods
/// The number of segments of the arc (i.e. the level of detail) can be adjusted with the
/// `.segements(...)` method.
///
/// # Examples
/// ```
/// # use bevy_gizmos::prelude::*;
/// # use bevy_render::prelude::*;
/// # use bevy_math::prelude::*;
/// fn system(mut gizmos: Gizmos) {
/// gizmos.long_arc_3d_between(
/// Vec3::ONE,
/// Vec3::ONE + Vec3::NEG_ONE,
/// Vec3::ZERO,
/// Color::ORANGE
/// )
/// .segments(100);
/// }
/// # bevy_ecs::system::assert_is_system(system);
/// ```
///
/// # Notes
/// - This method assumes that the points `from` and `to` are distinct from `center`. If one of
/// the points is coincident with `center`, nothing is rendered.
/// - The arc is drawn as a portion of a circle with a radius equal to the distance from the
/// `center` to `from`. If the distance from `center` to `to` is not equal to the radius, then
/// the results will behave as if this were the case.
#[inline]
pub fn long_arc_3d_between(
&mut self,
center: Vec3,
from: Vec3,
to: Vec3,
color: Color,
) -> Arc3dBuilder<'_, 'w, 's, T> {
self.arc_from_to(center, from, to, color, |angle| {
if angle > 0.0 {
TAU - angle
} else if angle < 0.0 {
-TAU - angle
} else {
0.0
}
})
}
#[inline]
fn arc_from_to(
&mut self,
center: Vec3,
from: Vec3,
to: Vec3,
color: Color,
angle_fn: impl Fn(f32) -> f32,
) -> Arc3dBuilder<'_, 'w, 's, T> {
// `from` and `to` can be the same here since in either case nothing gets rendered and the
// orientation ambiguity of `up` doesn't matter
let from_axis = (from - center).normalize_or_zero();
let to_axis = (to - center).normalize_or_zero();
let (up, angle) = Quat::from_rotation_arc(from_axis, to_axis).to_axis_angle();
let angle = angle_fn(angle);
let radius = center.distance(from);
let rotation = Quat::from_rotation_arc(Vec3::Y, up);
let start_vertex = rotation.inverse() * from_axis;
Arc3dBuilder {
gizmos: self,
start_vertex,
center,
rotation,
angle,
radius,
color,
segments: None,
}
}
}
/// A builder returned by [`Gizmos::arc_2d`].
pub struct Arc3dBuilder<'a, 'w, 's, T: GizmoConfigGroup> {
gizmos: &'a mut Gizmos<'w, 's, T>,
// this is the vertex the arc starts on in the XZ plane. For the normal arc_3d method this is
// always starting at Vec3::X. For the short/long arc methods we actually need a way to start
// at the from position and this is where this internal field comes into play. Some implicit
// assumptions:
//
// 1. This is always in the XZ plane
// 2. This is always normalized
//
// DO NOT expose this field to users as it is easy to mess this up
start_vertex: Vec3,
center: Vec3,
rotation: Quat,
angle: f32,
radius: f32,
color: Color,
segments: Option<usize>,
}
impl<T: GizmoConfigGroup> Arc3dBuilder<'_, '_, '_, T> {
/// Set the number of line-segments for this arc.
pub fn segments(mut self, segments: usize) -> Self {
self.segments.replace(segments);
self
}
}
impl<T: GizmoConfigGroup> Drop for Arc3dBuilder<'_, '_, '_, T> {
fn drop(&mut self) {
if !self.gizmos.enabled {
return;
}
let segments = self
.segments
.unwrap_or_else(|| segments_from_angle(self.angle));
let positions = arc_3d_inner(
self.start_vertex,
self.center,
self.rotation,
self.angle,
self.radius,
segments,
);
self.gizmos.linestrip(positions, self.color);
}
}
fn arc_3d_inner(
start_vertex: Vec3,
center: Vec3,
rotation: Quat,
angle: f32,
radius: f32,
segments: usize,
) -> impl Iterator<Item = Vec3> {
// drawing arcs bigger than TAU degrees or smaller than -TAU degrees makes no sense since
// we won't see the overlap and we would just decrease the level of details since the segments
// would be larger
let angle = angle.clamp(-TAU, TAU);
(0..=segments)
.map(move |frac| frac as f32 / segments as f32)
.map(move |percentage| angle * percentage)
.map(move |frac_angle| Quat::from_axis_angle(Vec3::Y, frac_angle) * start_vertex)
.map(move |p| rotation * (p * radius) + center)
}
// helper function for getting a default value for the segments parameter
fn segments_from_angle(angle: f32) -> usize {
((angle.abs() / TAU) * DEFAULT_CIRCLE_SEGMENTS as f32).ceil() as usize
}

View file

@ -96,6 +96,16 @@ fn system(mut gizmos: Gizmos, mut my_gizmos: Gizmos<MyRoundGizmos>, time: Res<Ti
);
}
my_gizmos
.arc_3d(
180.0_f32.to_radians(),
0.2,
Vec3::ONE,
Quat::from_rotation_arc(Vec3::Y, Vec3::ONE.normalize()),
Color::ORANGE,
)
.segments(10);
// Circles have 32 line-segments by default.
my_gizmos.circle(Vec3::ZERO, Direction3d::Y, 3., Color::BLACK);
// You may want to increase this for larger circles or spheres.