mirror of
https://github.com/bevyengine/bevy
synced 2024-11-28 15:40:21 +00:00
Stable interpolation and smooth following (#13741)
# Objective Partially address #13408 Rework of #13613 Unify the very nice forms of interpolation specifically present in `bevy_math` under a shared trait upon which further behavior can be based. The ideas in this PR were prompted by [Lerp smoothing is broken by Freya Holmer](https://www.youtube.com/watch?v=LSNQuFEDOyQ). ## Solution There is a new trait `StableInterpolate` in `bevy_math::common_traits` which enshrines a quite-specific notion of interpolation with a lot of guarantees: ```rust /// A type with a natural interpolation that provides strong subdivision guarantees. /// /// Although the only required method is `interpolate_stable`, many things are expected of it: /// /// 1. The notion of interpolation should follow naturally from the semantics of the type, so /// that inferring the interpolation mode from the type alone is sensible. /// /// 2. The interpolation recovers something equivalent to the starting value at `t = 0.0` /// and likewise with the ending value at `t = 1.0`. /// /// 3. Importantly, the interpolation must be *subdivision-stable*: for any interpolation curve /// between two (unnamed) values and any parameter-value pairs `(t0, p)` and `(t1, q)`, the /// interpolation curve between `p` and `q` must be the *linear* reparametrization of the original /// interpolation curve restricted to the interval `[t0, t1]`. /// /// The last of these conditions is very strong and indicates something like constant speed. It /// is called "subdivision stability" because it guarantees that breaking up the interpolation /// into segments and joining them back together has no effect. /// /// Here is a diagram depicting it: /// ```text /// top curve = u.interpolate_stable(v, t) /// /// t0 => p t1 => q /// |-------------|---------|-------------| /// 0 => u / \ 1 => v /// / \ /// / \ /// / linear \ /// / reparametrization \ /// / t = t0 * (1 - s) + t1 * s \ /// / \ /// |-------------------------------------| /// 0 => p 1 => q /// /// bottom curve = p.interpolate_stable(q, s) /// ``` /// /// Note that some common forms of interpolation do not satisfy this criterion. For example, /// [`Quat::lerp`] and [`Rot2::nlerp`] are not subdivision-stable. /// /// Furthermore, this is not to be used as a general trait for abstract interpolation. /// Consumers rely on the strong guarantees in order for behavior based on this trait to be /// well-behaved. /// /// [`Quat::lerp`]: crate::Quat::lerp /// [`Rot2::nlerp`]: crate::Rot2::nlerp pub trait StableInterpolate: Clone { /// Interpolate between this value and the `other` given value using the parameter `t`. /// Note that the parameter `t` is not necessarily clamped to lie between `0` and `1`. /// When `t = 0.0`, `self` is recovered, while `other` is recovered at `t = 1.0`, /// with intermediate values lying between the two. fn interpolate_stable(&self, other: &Self, t: f32) -> Self; } ``` This trait has a blanket implementation over `NormedVectorSpace`, where `lerp` is used, along with implementations for `Rot2`, `Quat`, and the direction types using variants of `slerp`. Other areas may choose to implement this trait in order to hook into its functionality, but the stringent requirements must actually be met. This trait bears no direct relationship with `bevy_animation`'s `Animatable` trait, although they may choose to use `interpolate_stable` in their trait implementations if they wish, as both traits involve type-inferred interpolations of the same kind. `StableInterpolate` is not a supertrait of `Animatable` for a couple reasons: 1. Notions of interpolation in animation are generally going to be much more general than those allowed under these constraints. 2. Laying out these generalized interpolation notions is the domain of `bevy_animation` rather than of `bevy_math`. (Consider also that inferring interpolation from types is not universally desirable.) Similarly, this is not implemented on `bevy_color`'s color types, although their current mixing behavior does meet the conditions of the trait. As an aside, the subdivision-stability condition is of interest specifically for the [Curve RFC](https://github.com/bevyengine/rfcs/pull/80), where it also ensures a kind of stability for subsampling. Importantly, this trait ensures that the "smooth following" behavior defined in this PR behaves predictably: ```rust /// Smoothly nudge this value towards the `target` at a given decay rate. The `decay_rate` /// parameter controls how fast the distance between `self` and `target` decays relative to /// the units of `delta`; the intended usage is for `decay_rate` to generally remain fixed, /// while `delta` is something like `delta_time` from an updating system. This produces a /// smooth following of the target that is independent of framerate. /// /// More specifically, when this is called repeatedly, the result is that the distance between /// `self` and a fixed `target` attenuates exponentially, with the rate of this exponential /// decay given by `decay_rate`. /// /// For example, at `decay_rate = 0.0`, this has no effect. /// At `decay_rate = f32::INFINITY`, `self` immediately snaps to `target`. /// In general, higher rates mean that `self` moves more quickly towards `target`. /// /// # Example /// ``` /// # use bevy_math::{Vec3, StableInterpolate}; /// # let delta_time: f32 = 1.0 / 60.0; /// let mut object_position: Vec3 = Vec3::ZERO; /// let target_position: Vec3 = Vec3::new(2.0, 3.0, 5.0); /// // Decay rate of ln(10) => after 1 second, remaining distance is 1/10th /// let decay_rate = f32::ln(10.0); /// // Calling this repeatedly will move `object_position` towards `target_position`: /// object_position.smooth_nudge(&target_position, decay_rate, delta_time); /// ``` fn smooth_nudge(&mut self, target: &Self, decay_rate: f32, delta: f32) { self.interpolate_stable_assign(target, 1.0 - f32::exp(-decay_rate * delta)); } ``` As the documentation indicates, the intention is for this to be called in game update systems, and `delta` would be something like `Time::delta_seconds` in Bevy, allowing positions, orientations, and so on to smoothly follow a target. A new example, `smooth_follow`, demonstrates a basic implementation of this, with a sphere smoothly following a sharply moving target: https://github.com/bevyengine/bevy/assets/2975848/7124b28b-6361-47e3-acf7-d1578ebd0347 ## Testing Tested by running the example with various parameters.
This commit is contained in:
parent
1196186257
commit
a569b35c18
5 changed files with 301 additions and 3 deletions
11
Cargo.toml
11
Cargo.toml
|
@ -3035,6 +3035,17 @@ description = "Demonstrates how to sample random points from mathematical primit
|
||||||
category = "Math"
|
category = "Math"
|
||||||
wasm = true
|
wasm = true
|
||||||
|
|
||||||
|
[[example]]
|
||||||
|
name = "smooth_follow"
|
||||||
|
path = "examples/math/smooth_follow.rs"
|
||||||
|
doc-scrape-examples = true
|
||||||
|
|
||||||
|
[package.metadata.example.smooth_follow]
|
||||||
|
name = "Smooth Follow"
|
||||||
|
description = "Demonstrates how to make an entity smoothly follow another using interpolation"
|
||||||
|
category = "Math"
|
||||||
|
wasm = true
|
||||||
|
|
||||||
# Gizmos
|
# Gizmos
|
||||||
[[example]]
|
[[example]]
|
||||||
name = "2d_gizmos"
|
name = "2d_gizmos"
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
use glam::{Vec2, Vec3, Vec3A, Vec4};
|
use crate::{Dir2, Dir3, Dir3A, Quat, Rot2, Vec2, Vec3, Vec3A, Vec4};
|
||||||
use std::fmt::Debug;
|
use std::fmt::Debug;
|
||||||
use std::ops::{Add, Div, Mul, Neg, Sub};
|
use std::ops::{Add, Div, Mul, Neg, Sub};
|
||||||
|
|
||||||
|
@ -161,3 +161,147 @@ impl NormedVectorSpace for f32 {
|
||||||
self * self
|
self * self
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// A type with a natural interpolation that provides strong subdivision guarantees.
|
||||||
|
///
|
||||||
|
/// Although the only required method is `interpolate_stable`, many things are expected of it:
|
||||||
|
///
|
||||||
|
/// 1. The notion of interpolation should follow naturally from the semantics of the type, so
|
||||||
|
/// that inferring the interpolation mode from the type alone is sensible.
|
||||||
|
///
|
||||||
|
/// 2. The interpolation recovers something equivalent to the starting value at `t = 0.0`
|
||||||
|
/// and likewise with the ending value at `t = 1.0`. They do not have to be data-identical, but
|
||||||
|
/// they should be semantically identical. For example, [`Quat::slerp`] doesn't always yield its
|
||||||
|
/// second rotation input exactly at `t = 1.0`, but it always returns an equivalent rotation.
|
||||||
|
///
|
||||||
|
/// 3. Importantly, the interpolation must be *subdivision-stable*: for any interpolation curve
|
||||||
|
/// between two (unnamed) values and any parameter-value pairs `(t0, p)` and `(t1, q)`, the
|
||||||
|
/// interpolation curve between `p` and `q` must be the *linear* reparametrization of the original
|
||||||
|
/// interpolation curve restricted to the interval `[t0, t1]`.
|
||||||
|
///
|
||||||
|
/// The last of these conditions is very strong and indicates something like constant speed. It
|
||||||
|
/// is called "subdivision stability" because it guarantees that breaking up the interpolation
|
||||||
|
/// into segments and joining them back together has no effect.
|
||||||
|
///
|
||||||
|
/// Here is a diagram depicting it:
|
||||||
|
/// ```text
|
||||||
|
/// top curve = u.interpolate_stable(v, t)
|
||||||
|
///
|
||||||
|
/// t0 => p t1 => q
|
||||||
|
/// |-------------|---------|-------------|
|
||||||
|
/// 0 => u / \ 1 => v
|
||||||
|
/// / \
|
||||||
|
/// / \
|
||||||
|
/// / linear \
|
||||||
|
/// / reparametrization \
|
||||||
|
/// / t = t0 * (1 - s) + t1 * s \
|
||||||
|
/// / \
|
||||||
|
/// |-------------------------------------|
|
||||||
|
/// 0 => p 1 => q
|
||||||
|
///
|
||||||
|
/// bottom curve = p.interpolate_stable(q, s)
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// Note that some common forms of interpolation do not satisfy this criterion. For example,
|
||||||
|
/// [`Quat::lerp`] and [`Rot2::nlerp`] are not subdivision-stable.
|
||||||
|
///
|
||||||
|
/// Furthermore, this is not to be used as a general trait for abstract interpolation.
|
||||||
|
/// Consumers rely on the strong guarantees in order for behavior based on this trait to be
|
||||||
|
/// well-behaved.
|
||||||
|
///
|
||||||
|
/// [`Quat::slerp`]: crate::Quat::slerp
|
||||||
|
/// [`Quat::lerp`]: crate::Quat::lerp
|
||||||
|
/// [`Rot2::nlerp`]: crate::Rot2::nlerp
|
||||||
|
pub trait StableInterpolate: Clone {
|
||||||
|
/// Interpolate between this value and the `other` given value using the parameter `t`. At
|
||||||
|
/// `t = 0.0`, a value equivalent to `self` is recovered, while `t = 1.0` recovers a value
|
||||||
|
/// equivalent to `other`, with intermediate values interpolating between the two.
|
||||||
|
/// See the [trait-level documentation] for details.
|
||||||
|
///
|
||||||
|
/// [trait-level documentation]: StableInterpolate
|
||||||
|
fn interpolate_stable(&self, other: &Self, t: f32) -> Self;
|
||||||
|
|
||||||
|
/// A version of [`interpolate_stable`] that assigns the result to `self` for convenience.
|
||||||
|
///
|
||||||
|
/// [`interpolate_stable`]: StableInterpolate::interpolate_stable
|
||||||
|
fn interpolate_stable_assign(&mut self, other: &Self, t: f32) {
|
||||||
|
*self = self.interpolate_stable(other, t);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Smoothly nudge this value towards the `target` at a given decay rate. The `decay_rate`
|
||||||
|
/// parameter controls how fast the distance between `self` and `target` decays relative to
|
||||||
|
/// the units of `delta`; the intended usage is for `decay_rate` to generally remain fixed,
|
||||||
|
/// while `delta` is something like `delta_time` from an updating system. This produces a
|
||||||
|
/// smooth following of the target that is independent of framerate.
|
||||||
|
///
|
||||||
|
/// More specifically, when this is called repeatedly, the result is that the distance between
|
||||||
|
/// `self` and a fixed `target` attenuates exponentially, with the rate of this exponential
|
||||||
|
/// decay given by `decay_rate`.
|
||||||
|
///
|
||||||
|
/// For example, at `decay_rate = 0.0`, this has no effect.
|
||||||
|
/// At `decay_rate = f32::INFINITY`, `self` immediately snaps to `target`.
|
||||||
|
/// In general, higher rates mean that `self` moves more quickly towards `target`.
|
||||||
|
///
|
||||||
|
/// # Example
|
||||||
|
/// ```
|
||||||
|
/// # use bevy_math::{Vec3, StableInterpolate};
|
||||||
|
/// # let delta_time: f32 = 1.0 / 60.0;
|
||||||
|
/// let mut object_position: Vec3 = Vec3::ZERO;
|
||||||
|
/// let target_position: Vec3 = Vec3::new(2.0, 3.0, 5.0);
|
||||||
|
/// // Decay rate of ln(10) => after 1 second, remaining distance is 1/10th
|
||||||
|
/// let decay_rate = f32::ln(10.0);
|
||||||
|
/// // Calling this repeatedly will move `object_position` towards `target_position`:
|
||||||
|
/// object_position.smooth_nudge(&target_position, decay_rate, delta_time);
|
||||||
|
/// ```
|
||||||
|
fn smooth_nudge(&mut self, target: &Self, decay_rate: f32, delta: f32) {
|
||||||
|
self.interpolate_stable_assign(target, 1.0 - f32::exp(-decay_rate * delta));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Conservatively, we presently only apply this for normed vector spaces, where the notion
|
||||||
|
// of being constant-speed is literally true. The technical axioms are satisfied for any
|
||||||
|
// VectorSpace type, but the "natural from the semantics" part is less clear in general.
|
||||||
|
impl<V> StableInterpolate for V
|
||||||
|
where
|
||||||
|
V: NormedVectorSpace,
|
||||||
|
{
|
||||||
|
#[inline]
|
||||||
|
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
|
||||||
|
self.lerp(*other, t)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl StableInterpolate for Rot2 {
|
||||||
|
#[inline]
|
||||||
|
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
|
||||||
|
self.slerp(*other, t)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl StableInterpolate for Quat {
|
||||||
|
#[inline]
|
||||||
|
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
|
||||||
|
self.slerp(*other, t)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl StableInterpolate for Dir2 {
|
||||||
|
#[inline]
|
||||||
|
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
|
||||||
|
self.slerp(*other, t)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl StableInterpolate for Dir3 {
|
||||||
|
#[inline]
|
||||||
|
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
|
||||||
|
self.slerp(*other, t)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl StableInterpolate for Dir3A {
|
||||||
|
#[inline]
|
||||||
|
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
|
||||||
|
self.slerp(*other, t)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
|
@ -53,8 +53,8 @@ pub mod prelude {
|
||||||
direction::{Dir2, Dir3, Dir3A},
|
direction::{Dir2, Dir3, Dir3A},
|
||||||
primitives::*,
|
primitives::*,
|
||||||
BVec2, BVec3, BVec4, EulerRot, FloatExt, IRect, IVec2, IVec3, IVec4, Mat2, Mat3, Mat4,
|
BVec2, BVec3, BVec4, EulerRot, FloatExt, IRect, IVec2, IVec3, IVec4, Mat2, Mat3, Mat4,
|
||||||
Quat, Ray2d, Ray3d, Rect, Rot2, URect, UVec2, UVec3, UVec4, Vec2, Vec2Swizzles, Vec3,
|
Quat, Ray2d, Ray3d, Rect, Rot2, StableInterpolate, URect, UVec2, UVec3, UVec4, Vec2,
|
||||||
Vec3Swizzles, Vec4, Vec4Swizzles,
|
Vec2Swizzles, Vec3, Vec3Swizzles, Vec4, Vec4Swizzles,
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -332,6 +332,7 @@ Example | Description
|
||||||
[Random Sampling](../examples/math/random_sampling.rs) | Demonstrates how to sample random points from mathematical primitives
|
[Random Sampling](../examples/math/random_sampling.rs) | Demonstrates how to sample random points from mathematical primitives
|
||||||
[Rendering Primitives](../examples/math/render_primitives.rs) | Shows off rendering for all math primitives as both Meshes and Gizmos
|
[Rendering Primitives](../examples/math/render_primitives.rs) | Shows off rendering for all math primitives as both Meshes and Gizmos
|
||||||
[Sampling Primitives](../examples/math/sampling_primitives.rs) | Demonstrates all the primitives which can be sampled.
|
[Sampling Primitives](../examples/math/sampling_primitives.rs) | Demonstrates all the primitives which can be sampled.
|
||||||
|
[Smooth Follow](../examples/math/smooth_follow.rs) | Demonstrates how to make an entity smoothly follow another using interpolation
|
||||||
|
|
||||||
## Reflection
|
## Reflection
|
||||||
|
|
||||||
|
|
142
examples/math/smooth_follow.rs
Normal file
142
examples/math/smooth_follow.rs
Normal file
|
@ -0,0 +1,142 @@
|
||||||
|
//! This example demonstrates how to use interpolation to make one entity smoothly follow another.
|
||||||
|
|
||||||
|
use bevy::math::{prelude::*, vec3, NormedVectorSpace};
|
||||||
|
use bevy::prelude::*;
|
||||||
|
use rand::SeedableRng;
|
||||||
|
use rand_chacha::ChaCha8Rng;
|
||||||
|
|
||||||
|
fn main() {
|
||||||
|
App::new()
|
||||||
|
.add_plugins(DefaultPlugins)
|
||||||
|
.add_systems(Startup, setup)
|
||||||
|
.add_systems(Update, (move_target, move_follower).chain())
|
||||||
|
.run();
|
||||||
|
}
|
||||||
|
|
||||||
|
// The sphere that the following sphere targets at all times:
|
||||||
|
#[derive(Component)]
|
||||||
|
struct TargetSphere;
|
||||||
|
|
||||||
|
// The speed of the target sphere moving to its next location:
|
||||||
|
#[derive(Resource)]
|
||||||
|
struct TargetSphereSpeed(f32);
|
||||||
|
|
||||||
|
// The position that the target sphere always moves linearly toward:
|
||||||
|
#[derive(Resource)]
|
||||||
|
struct TargetPosition(Vec3);
|
||||||
|
|
||||||
|
// The decay rate used by the smooth following:
|
||||||
|
#[derive(Resource)]
|
||||||
|
struct DecayRate(f32);
|
||||||
|
|
||||||
|
// The sphere that follows the target sphere by moving towards it with nudging:
|
||||||
|
#[derive(Component)]
|
||||||
|
struct FollowingSphere;
|
||||||
|
|
||||||
|
/// The source of randomness used by this example.
|
||||||
|
#[derive(Resource)]
|
||||||
|
struct RandomSource(ChaCha8Rng);
|
||||||
|
|
||||||
|
fn setup(
|
||||||
|
mut commands: Commands,
|
||||||
|
mut meshes: ResMut<Assets<Mesh>>,
|
||||||
|
mut materials: ResMut<Assets<StandardMaterial>>,
|
||||||
|
) {
|
||||||
|
// A plane:
|
||||||
|
commands.spawn(PbrBundle {
|
||||||
|
mesh: meshes.add(Plane3d::default().mesh().size(12.0, 12.0)),
|
||||||
|
material: materials.add(Color::srgb(0.3, 0.15, 0.3)),
|
||||||
|
transform: Transform::from_xyz(0.0, -2.5, 0.0),
|
||||||
|
..default()
|
||||||
|
});
|
||||||
|
|
||||||
|
// The target sphere:
|
||||||
|
commands.spawn((
|
||||||
|
PbrBundle {
|
||||||
|
mesh: meshes.add(Sphere::new(0.3)),
|
||||||
|
material: materials.add(Color::srgb(0.3, 0.15, 0.9)),
|
||||||
|
..default()
|
||||||
|
},
|
||||||
|
TargetSphere,
|
||||||
|
));
|
||||||
|
|
||||||
|
// The sphere that follows it:
|
||||||
|
commands.spawn((
|
||||||
|
PbrBundle {
|
||||||
|
mesh: meshes.add(Sphere::new(0.3)),
|
||||||
|
material: materials.add(Color::srgb(0.9, 0.3, 0.3)),
|
||||||
|
transform: Transform::from_translation(vec3(0.0, -2.0, 0.0)),
|
||||||
|
..default()
|
||||||
|
},
|
||||||
|
FollowingSphere,
|
||||||
|
));
|
||||||
|
|
||||||
|
// A light:
|
||||||
|
commands.spawn(PointLightBundle {
|
||||||
|
point_light: PointLight {
|
||||||
|
intensity: 15_000_000.0,
|
||||||
|
shadows_enabled: true,
|
||||||
|
..default()
|
||||||
|
},
|
||||||
|
transform: Transform::from_xyz(4.0, 8.0, 4.0),
|
||||||
|
..default()
|
||||||
|
});
|
||||||
|
|
||||||
|
// A camera:
|
||||||
|
commands.spawn(Camera3dBundle {
|
||||||
|
transform: Transform::from_xyz(-2.0, 3.0, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
|
||||||
|
..default()
|
||||||
|
});
|
||||||
|
|
||||||
|
// Set starting values for resources used by the systems:
|
||||||
|
commands.insert_resource(TargetSphereSpeed(5.0));
|
||||||
|
commands.insert_resource(DecayRate(2.0));
|
||||||
|
commands.insert_resource(TargetPosition(Vec3::ZERO));
|
||||||
|
commands.insert_resource(RandomSource(ChaCha8Rng::seed_from_u64(68941654987813521)));
|
||||||
|
}
|
||||||
|
|
||||||
|
fn move_target(
|
||||||
|
mut target: Query<&mut Transform, With<TargetSphere>>,
|
||||||
|
target_speed: Res<TargetSphereSpeed>,
|
||||||
|
mut target_pos: ResMut<TargetPosition>,
|
||||||
|
time: Res<Time>,
|
||||||
|
mut rng: ResMut<RandomSource>,
|
||||||
|
) {
|
||||||
|
let mut target = target.single_mut();
|
||||||
|
|
||||||
|
match Dir3::new(target_pos.0 - target.translation) {
|
||||||
|
// The target and the present position of the target sphere are far enough to have a well-
|
||||||
|
// defined direction between them, so let's move closer:
|
||||||
|
Ok(dir) => {
|
||||||
|
let delta_time = time.delta_seconds();
|
||||||
|
let abs_delta = (target_pos.0 - target.translation).norm();
|
||||||
|
|
||||||
|
// Avoid overshooting in case of high values of `delta_time`:
|
||||||
|
let magnitude = f32::min(abs_delta, delta_time * target_speed.0);
|
||||||
|
target.translation += dir * magnitude;
|
||||||
|
}
|
||||||
|
|
||||||
|
// The two are really close, so let's generate a new target position:
|
||||||
|
Err(_) => {
|
||||||
|
let legal_region = Cuboid::from_size(Vec3::splat(4.0));
|
||||||
|
*target_pos = TargetPosition(legal_region.sample_interior(&mut rng.0));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn move_follower(
|
||||||
|
mut following: Query<&mut Transform, With<FollowingSphere>>,
|
||||||
|
target: Query<&Transform, (With<TargetSphere>, Without<FollowingSphere>)>,
|
||||||
|
decay_rate: Res<DecayRate>,
|
||||||
|
time: Res<Time>,
|
||||||
|
) {
|
||||||
|
let target = target.single();
|
||||||
|
let mut following = following.single_mut();
|
||||||
|
let decay_rate = decay_rate.0;
|
||||||
|
let delta_time = time.delta_seconds();
|
||||||
|
|
||||||
|
// Calling `smooth_nudge` is what moves the following sphere smoothly toward the target.
|
||||||
|
following
|
||||||
|
.translation
|
||||||
|
.smooth_nudge(&target.translation, decay_rate, delta_time);
|
||||||
|
}
|
Loading…
Reference in a new issue