many_cubes: Add a cube pattern suitable for benchmarking culling changes (#4126)

# Objective

- Add a cube pattern to `many_cubes` suitable for benchmarking culling changes

## Solution

- Use a 'golden spiral' mapped to a sphere with the strategy of optimising for average nearest neighbour distance, as per: http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
This commit is contained in:
Robert Swain 2022-03-08 04:39:52 +00:00
parent 4add96b1be
commit a188babce2

View file

@ -1,8 +1,8 @@
use bevy::{ use bevy::{
diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin}, diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
math::{DVec2, DVec3},
prelude::*, prelude::*,
}; };
fn main() { fn main() {
App::new() App::new()
.add_plugins(DefaultPlugins) .add_plugins(DefaultPlugins)
@ -26,41 +26,75 @@ fn setup(
base_color: Color::PINK, base_color: Color::PINK,
..default() ..default()
}); });
for x in 0..WIDTH {
for y in 0..HEIGHT { match std::env::args().nth(1).as_deref() {
// introduce spaces to break any kind of moiré pattern Some("sphere") => {
if x % 10 == 0 || y % 10 == 0 { // NOTE: This pattern is good for testing performance of culling as it provides roughly
continue; // the same number of visible meshes regardless of the viewing angle.
const N_POINTS: usize = WIDTH * HEIGHT * 4;
// NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution
let radius = WIDTH as f64 * 2.5;
let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt());
for i in 0..N_POINTS {
let spherical_polar_theta_phi =
fibonacci_spiral_on_sphere(golden_ratio, i, N_POINTS);
let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi);
commands.spawn_bundle(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_translation((radius * unit_sphere_p).as_vec3()),
..default()
});
} }
// cube
commands.spawn_bundle(PbrBundle { // camera
mesh: mesh.clone_weak(), commands.spawn_bundle(PerspectiveCameraBundle::default());
material: material.clone_weak(), }
transform: Transform::from_xyz((x as f32) * 2.5, (y as f32) * 2.5, 0.0), _ => {
// NOTE: This pattern is good for demonstrating that frustum culling is working correctly
// as the number of visible meshes rises and falls depending on the viewing angle.
for x in 0..WIDTH {
for y in 0..HEIGHT {
// introduce spaces to break any kind of moiré pattern
if x % 10 == 0 || y % 10 == 0 {
continue;
}
// cube
commands.spawn_bundle(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz((x as f32) * 2.5, (y as f32) * 2.5, 0.0),
..default()
});
commands.spawn_bundle(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz(
(x as f32) * 2.5,
HEIGHT as f32 * 2.5,
(y as f32) * 2.5,
),
..default()
});
commands.spawn_bundle(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz((x as f32) * 2.5, 0.0, (y as f32) * 2.5),
..default()
});
commands.spawn_bundle(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz(0.0, (x as f32) * 2.5, (y as f32) * 2.5),
..default()
});
}
}
// camera
commands.spawn_bundle(PerspectiveCameraBundle {
transform: Transform::from_xyz(WIDTH as f32, HEIGHT as f32, WIDTH as f32),
..default() ..default()
}); });
commands.spawn_bundle(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz(
(x as f32) * 2.5,
HEIGHT as f32 * 2.5,
(y as f32) * 2.5,
),
..Default::default()
});
commands.spawn_bundle(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz((x as f32) * 2.5, 0.0, (y as f32) * 2.5),
..Default::default()
});
commands.spawn_bundle(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz(0.0, (x as f32) * 2.5, (y as f32) * 2.5),
..Default::default()
});
} }
} }
@ -72,20 +106,30 @@ fn setup(
transform: Transform { transform: Transform {
translation: Vec3::new(0.0, HEIGHT as f32 * 2.5, 0.0), translation: Vec3::new(0.0, HEIGHT as f32 * 2.5, 0.0),
scale: Vec3::splat(5.0), scale: Vec3::splat(5.0),
..Default::default() ..default()
}, },
..Default::default()
});
// camera
commands.spawn_bundle(PerspectiveCameraBundle {
transform: Transform::from_xyz(WIDTH as f32, HEIGHT as f32, WIDTH as f32),
..default() ..default()
}); });
commands.spawn_bundle(DirectionalLightBundle { commands.spawn_bundle(DirectionalLightBundle { ..default() });
..Default::default() }
});
// NOTE: This epsilon value is apparently optimal for optimizing for the average
// nearest-neighbor distance. See:
// http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
// for details.
const EPSILON: f64 = 0.36;
fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 {
DVec2::new(
2.0 * std::f64::consts::PI * (i as f64 / golden_ratio),
(1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)).acos(),
)
}
fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 {
let (sin_theta, cos_theta) = p.x.sin_cos();
let (sin_phi, cos_phi) = p.y.sin_cos();
DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi)
} }
// System for rotating the camera // System for rotating the camera