Normalise matrix naming (#13489)

# Objective
- Fixes #10909
- Fixes #8492

## Solution
- Name all matrices `x_from_y`, for example `world_from_view`.

## Testing
- I've tested most of the 3D examples. The `lighting` example
particularly should hit a lot of the changes and appears to run fine.

---

## Changelog
- Renamed matrices across the engine to follow a `y_from_x` naming,
making the space conversion more obvious.

## Migration Guide
- `Frustum`'s `from_view_projection`, `from_view_projection_custom_far`
and `from_view_projection_no_far` were renamed to
`from_clip_from_world`, `from_clip_from_world_custom_far` and
`from_clip_from_world_no_far`.
- `ComputedCameraValues::projection_matrix` was renamed to
`clip_from_view`.
- `CameraProjection::get_projection_matrix` was renamed to
`get_clip_from_view` (this affects implementations on `Projection`,
`PerspectiveProjection` and `OrthographicProjection`).
- `ViewRangefinder3d::from_view_matrix` was renamed to
`from_world_from_view`.
- `PreviousViewData`'s members were renamed to `view_from_world` and
`clip_from_world`.
- `ExtractedView`'s `projection`, `transform` and `view_projection` were
renamed to `clip_from_view`, `world_from_view` and `clip_from_world`.
- `ViewUniform`'s `view_proj`, `unjittered_view_proj`,
`inverse_view_proj`, `view`, `inverse_view`, `projection` and
`inverse_projection` were renamed to `clip_from_world`,
`unjittered_clip_from_world`, `world_from_clip`, `world_from_view`,
`view_from_world`, `clip_from_view` and `view_from_clip`.
- `GpuDirectionalCascade::view_projection` was renamed to
`clip_from_world`.
- `MeshTransforms`' `transform` and `previous_transform` were renamed to
`world_from_local` and `previous_world_from_local`.
- `MeshUniform`'s `transform`, `previous_transform`,
`inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed
to `world_from_local`, `previous_world_from_local`,
`local_from_world_transpose_a` and `local_from_world_transpose_b` (the
`Mesh` type in WGSL mirrors this, however `transform` and
`previous_transform` were named `model` and `previous_model`).
- `Mesh2dTransforms::transform` was renamed to `world_from_local`.
- `Mesh2dUniform`'s `transform`, `inverse_transpose_model_a` and
`inverse_transpose_model_b` were renamed to `world_from_local`,
`local_from_world_transpose_a` and `local_from_world_transpose_b` (the
`Mesh2d` type in WGSL mirrors this).
- In WGSL, in `bevy_pbr::mesh_functions`, `get_model_matrix` and
`get_previous_model_matrix` were renamed to `get_world_from_local` and
`get_previous_world_from_local`.
- In WGSL, `bevy_sprite::mesh2d_functions::get_model_matrix` was renamed
to `get_world_from_local`.
This commit is contained in:
Ricky Taylor 2024-06-03 17:56:53 +01:00 committed by GitHub
parent 5ca7ba2c18
commit 9b9d3d81cb
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
59 changed files with 476 additions and 472 deletions

View file

@ -36,7 +36,7 @@ fn fragment(
is_front,
);
pbr_input.is_orthographic = view.projection[3].w == 1.0;
pbr_input.is_orthographic = view.clip_from_view[3].w == 1.0;
pbr_input.N = normalize(pbr_input.world_normal);

View file

@ -1,6 +1,6 @@
#import bevy_sprite::{
mesh2d_view_bindings::globals,
mesh2d_functions::{get_model_matrix, mesh2d_position_local_to_clip},
mesh2d_functions::{get_world_from_local, mesh2d_position_local_to_clip},
}
struct Vertex {
@ -19,8 +19,8 @@ struct VertexOutput {
@vertex
fn vertex(vertex: Vertex) -> VertexOutput {
var out: VertexOutput;
let model = get_model_matrix(vertex.instance_index);
out.clip_position = mesh2d_position_local_to_clip(model, vec4<f32>(vertex.position, 1.0));
let world_from_local = get_world_from_local(vertex.instance_index);
out.clip_position = mesh2d_position_local_to_clip(world_from_local, vec4<f32>(vertex.position, 1.0));
out.color = vertex.color;
out.barycentric = vertex.barycentric;
return out;

View file

@ -1,4 +1,4 @@
#import bevy_pbr::mesh_functions::{get_model_matrix, mesh_position_local_to_clip}
#import bevy_pbr::mesh_functions::{get_world_from_local, mesh_position_local_to_clip}
struct CustomMaterial {
color: vec4<f32>,
@ -20,7 +20,7 @@ struct VertexOutput {
fn vertex(vertex: Vertex) -> VertexOutput {
var out: VertexOutput;
out.clip_position = mesh_position_local_to_clip(
get_model_matrix(vertex.instance_index),
get_world_from_local(vertex.instance_index),
vec4<f32>(vertex.position, 1.0),
);
out.blend_color = vertex.blend_color;

View file

@ -1,4 +1,4 @@
#import bevy_pbr::mesh_functions::{get_model_matrix, mesh_position_local_to_clip}
#import bevy_pbr::mesh_functions::{get_world_from_local, mesh_position_local_to_clip}
struct Vertex {
@location(0) position: vec3<f32>,
@ -18,12 +18,12 @@ struct VertexOutput {
fn vertex(vertex: Vertex) -> VertexOutput {
let position = vertex.position * vertex.i_pos_scale.w + vertex.i_pos_scale.xyz;
var out: VertexOutput;
// NOTE: Passing 0 as the instance_index to get_model_matrix() is a hack
// NOTE: Passing 0 as the instance_index to get_world_from_local() is a hack
// for this example as the instance_index builtin would map to the wrong
// index in the Mesh array. This index could be passed in via another
// uniform instead but it's unnecessary for the example.
out.clip_position = mesh_position_local_to_clip(
get_model_matrix(0u),
get_world_from_local(0u),
vec4<f32>(position, 1.0)
);
out.color = vertex.i_color;

View file

@ -3,8 +3,8 @@
#import bevy_pbr::mesh_view_bindings
struct VoxelVisualizationIrradianceVolumeInfo {
transform: mat4x4<f32>,
inverse_transform: mat4x4<f32>,
world_from_voxel: mat4x4<f32>,
voxel_from_world: mat4x4<f32>,
resolution: vec3<u32>,
// A scale factor that's applied to the diffuse and specular light from the
// light probe. This is in units of cd/m² (candela per square meter).
@ -18,12 +18,12 @@ var<uniform> irradiance_volume_info: VoxelVisualizationIrradianceVolumeInfo;
fn fragment(mesh: VertexOutput) -> @location(0) vec4<f32> {
// Snap the world position we provide to `irradiance_volume_light()` to the
// middle of the nearest texel.
var unit_pos = (irradiance_volume_info.inverse_transform *
var unit_pos = (irradiance_volume_info.voxel_from_world *
vec4(mesh.world_position.xyz, 1.0f)).xyz;
let resolution = vec3<f32>(irradiance_volume_info.resolution);
let stp = clamp((unit_pos + 0.5) * resolution, vec3(0.5f), resolution - vec3(0.5f));
let stp_rounded = round(stp - 0.5f) + 0.5f;
let rounded_world_pos = (irradiance_volume_info.transform * vec4(stp_rounded, 1.0f)).xyz;
let rounded_world_pos = (irradiance_volume_info.world_from_voxel * vec4(stp_rounded, 1.0f)).xyz;
// `irradiance_volume_light()` multiplies by intensity, so cancel it out.
// If we take intensity into account, the cubes will be way too bright.

View file

@ -71,8 +71,8 @@ pub struct DeferredPrepass;
#[derive(Component, ShaderType, Clone)]
pub struct PreviousViewData {
pub inverse_view: Mat4,
pub view_proj: Mat4,
pub view_from_world: Mat4,
pub clip_from_world: Mat4,
}
#[derive(Resource, Default)]

View file

@ -24,7 +24,7 @@ fn coords_to_ray_direction(position: vec2<f32>, viewport: vec4<f32>) -> vec3<f32
// fragment position.
// Use the position on the near clipping plane to avoid -inf world position
// because the far plane of an infinite reverse projection is at infinity.
let view_position_homogeneous = view.inverse_projection * vec4(
let view_position_homogeneous = view.view_from_clip * vec4(
coords_to_viewport_uv(position, viewport) * vec2(2.0, -2.0) + vec2(-1.0, 1.0),
1.0,
1.0,
@ -34,7 +34,7 @@ fn coords_to_ray_direction(position: vec2<f32>, viewport: vec4<f32>) -> vec3<f32
// direction to world space. Note that the w element is set to 0.0, as this is a
// vector direction, not a position, That causes the matrix multiplication to ignore
// the translations from the view matrix.
let ray_direction = (view.view * vec4(view_ray_direction, 0.0)).xyz;
let ray_direction = (view.world_from_view * vec4(view_ray_direction, 0.0)).xyz;
return normalize(ray_direction);
}

View file

@ -3,8 +3,8 @@
#import bevy_pbr::view_transformations::uv_to_ndc
struct PreviousViewUniforms {
inverse_view: mat4x4<f32>,
view_proj: mat4x4<f32>,
view_from_world: mat4x4<f32>,
clip_from_world: mat4x4<f32>,
}
@group(0) @binding(0) var<uniform> view: View;
@ -13,8 +13,8 @@ struct PreviousViewUniforms {
@fragment
fn fragment(in: FullscreenVertexOutput) -> @location(1) vec4<f32> {
let clip_pos = uv_to_ndc(in.uv); // Convert from uv to clip space
let world_pos = view.inverse_view_proj * vec4(clip_pos, 0.0, 1.0);
let prev_clip_pos = (previous_view.view_proj * world_pos).xy;
let world_pos = view.world_from_clip * vec4(clip_pos, 0.0, 1.0);
let prev_clip_pos = (previous_view.clip_from_world * world_pos).xy;
let velocity = (clip_pos - prev_clip_pos) * vec2(0.5, -0.5); // Copied from mesh motion vectors
return vec4(velocity.x, velocity.y, 0.0, 1.0);

View file

@ -39,9 +39,9 @@ fn vertex_bevel(vertex: VertexInput) -> VertexOutput {
);
var position = positions[vertex.index];
var clip_a = view.view_proj * vec4(vertex.position_a, 1.);
var clip_b = view.view_proj * vec4(vertex.position_b, 1.);
var clip_c = view.view_proj * vec4(vertex.position_c, 1.);
var clip_a = view.clip_from_world * vec4(vertex.position_a, 1.);
var clip_b = view.clip_from_world * vec4(vertex.position_b, 1.);
var clip_c = view.clip_from_world * vec4(vertex.position_c, 1.);
// Manual near plane clipping to avoid errors when doing the perspective divide inside this shader.
clip_a = clip_near_plane(clip_a, clip_c);
@ -98,9 +98,9 @@ fn vertex_miter(vertex: VertexInput) -> VertexOutput {
);
var position = positions[vertex.index];
var clip_a = view.view_proj * vec4(vertex.position_a, 1.);
var clip_b = view.view_proj * vec4(vertex.position_b, 1.);
var clip_c = view.view_proj * vec4(vertex.position_c, 1.);
var clip_a = view.clip_from_world * vec4(vertex.position_a, 1.);
var clip_b = view.clip_from_world * vec4(vertex.position_b, 1.);
var clip_c = view.clip_from_world * vec4(vertex.position_c, 1.);
// Manual near plane clipping to avoid errors when doing the perspective divide inside this shader.
clip_a = clip_near_plane(clip_a, clip_c);
@ -148,9 +148,9 @@ fn vertex_miter(vertex: VertexInput) -> VertexOutput {
@vertex
fn vertex_round(vertex: VertexInput) -> VertexOutput {
var clip_a = view.view_proj * vec4(vertex.position_a, 1.);
var clip_b = view.view_proj * vec4(vertex.position_b, 1.);
var clip_c = view.view_proj * vec4(vertex.position_c, 1.);
var clip_a = view.clip_from_world * vec4(vertex.position_a, 1.);
var clip_b = view.clip_from_world * vec4(vertex.position_b, 1.);
var clip_c = view.clip_from_world * vec4(vertex.position_c, 1.);
// Manual near plane clipping to avoid errors when doing the perspective divide inside this shader.
clip_a = clip_near_plane(clip_a, clip_c);

View file

@ -44,8 +44,8 @@ fn vertex(vertex: VertexInput) -> VertexOutput {
let position = positions[vertex.index];
// algorithm based on https://wwwtyro.net/2019/11/18/instanced-lines.html
var clip_a = view.view_proj * vec4(vertex.position_a, 1.);
var clip_b = view.view_proj * vec4(vertex.position_b, 1.);
var clip_a = view.clip_from_world * vec4(vertex.position_a, 1.);
var clip_b = view.clip_from_world * vec4(vertex.position_b, 1.);
// Manual near plane clipping to avoid errors when doing the perspective divide inside this shader.
clip_a = clip_near_plane(clip_a, clip_b);
@ -69,13 +69,13 @@ fn vertex(vertex: VertexInput) -> VertexOutput {
line_width /= clip.w;
// get height of near clipping plane in world space
let pos0 = view.inverse_projection * vec4(0, -1, 0, 1); // Bottom of the screen
let pos1 = view.inverse_projection * vec4(0, 1, 0, 1); // Top of the screen
let pos0 = view.view_from_clip * vec4(0, -1, 0, 1); // Bottom of the screen
let pos1 = view.view_from_clip * vec4(0, 1, 0, 1); // Top of the screen
let near_clipping_plane_height = length(pos0.xyz - pos1.xyz);
// We can't use vertex.position_X because we may have changed the clip positions with clip_near_plane
let position_a = view.inverse_view_proj * clip_a;
let position_b = view.inverse_view_proj * clip_b;
let position_a = view.inverse_clip_from_world * clip_a;
let position_b = view.inverse_clip_from_world * clip_b;
let world_distance = length(position_a.xyz - position_b.xyz);
// Offset to compensate for moved clip positions. If removed dots on lines will slide when position a is ofscreen.
@ -84,7 +84,7 @@ fn vertex(vertex: VertexInput) -> VertexOutput {
uv = (clipped_offset + position.y * world_distance) * resolution.y / near_clipping_plane_height / line_gizmo.line_width;
#else
// Get the distance of b to the camera along camera axes
let camera_b = view.inverse_projection * clip_b;
let camera_b = view.view_from_clip * clip_b;
// This differentiates between orthographic and perspective cameras.
// For orthographic cameras no depth adaptment (depth_adaptment = 1) is needed.

View file

@ -615,7 +615,7 @@ async fn load_gltf<'a, 'b, 'c>(
.skins()
.map(|gltf_skin| {
let reader = gltf_skin.reader(|buffer| Some(&buffer_data[buffer.index()]));
let inverse_bindposes: Vec<Mat4> = reader
let local_to_bone_bind_matrices: Vec<Mat4> = reader
.read_inverse_bind_matrices()
.unwrap()
.map(|mat| Mat4::from_cols_array_2d(&mat))
@ -623,7 +623,7 @@ async fn load_gltf<'a, 'b, 'c>(
load_context.add_labeled_asset(
skin_label(&gltf_skin),
SkinnedMeshInverseBindposes::from(inverse_bindposes),
SkinnedMeshInverseBindposes::from(local_to_bone_bind_matrices),
)
})
.collect();

View file

@ -209,20 +209,20 @@ pub(crate) fn assign_lights_to_clusters(
let mut requested_cluster_dimensions = config.dimensions_for_screen_size(screen_size);
let view_transform = camera_transform.compute_matrix();
let view_inv_scale = camera_transform.compute_transform().scale.recip();
let view_inv_scale_max = view_inv_scale.abs().max_element();
let inverse_view_transform = view_transform.inverse();
let is_orthographic = camera.projection_matrix().w_axis.w == 1.0;
let world_from_view = camera_transform.compute_matrix();
let view_from_world_scale = camera_transform.compute_transform().scale.recip();
let view_from_world_scale_max = view_from_world_scale.abs().max_element();
let view_from_world = world_from_view.inverse();
let is_orthographic = camera.clip_from_view().w_axis.w == 1.0;
let far_z = match config.far_z_mode() {
ClusterFarZMode::MaxLightRange => {
let inverse_view_row_2 = inverse_view_transform.row(2);
let view_from_world_row_2 = view_from_world.row(2);
lights
.iter()
.map(|light| {
-inverse_view_row_2.dot(light.transform.translation().extend(1.0))
+ light.range * view_inv_scale.z
-view_from_world_row_2.dot(light.transform.translation().extend(1.0))
+ light.range * view_from_world_scale.z
})
.reduce(f32::max)
.unwrap_or(0.0)
@ -239,12 +239,12 @@ pub(crate) fn assign_lights_to_clusters(
// 3,2 = r * far and 2,2 = r where r = 1.0 / (far - near)
// rearranging r = 1.0 / (far - near), r * (far - near) = 1.0, r * far - 1.0 = r * near, near = (r * far - 1.0) / r
// = (3,2 - 1.0) / 2,2
(camera.projection_matrix().w_axis.z - 1.0) / camera.projection_matrix().z_axis.z
(camera.clip_from_view().w_axis.z - 1.0) / camera.clip_from_view().z_axis.z
}
(false, 1) => config.first_slice_depth().max(far_z),
_ => config.first_slice_depth(),
};
let first_slice_depth = first_slice_depth * view_inv_scale.z;
let first_slice_depth = first_slice_depth * view_from_world_scale.z;
// NOTE: Ensure the far_z is at least as far as the first_depth_slice to avoid clustering problems.
let far_z = far_z.max(first_slice_depth);
@ -269,9 +269,9 @@ pub(crate) fn assign_lights_to_clusters(
// this overestimates index counts by at most 50% (and typically much less) when the whole light range is in view
// it can overestimate more significantly when light ranges are only partially in view
let (light_aabb_min, light_aabb_max) = cluster_space_light_aabb(
inverse_view_transform,
view_inv_scale,
camera.projection_matrix(),
view_from_world,
view_from_world_scale,
camera.clip_from_view(),
&light_sphere,
);
@ -337,7 +337,7 @@ pub(crate) fn assign_lights_to_clusters(
clusters.dimensions.x * clusters.dimensions.y * clusters.dimensions.z <= 4096
);
let inverse_projection = camera.projection_matrix().inverse();
let view_from_clip = camera.clip_from_view().inverse();
for lights in &mut clusters.lights {
lights.entities.clear();
@ -364,7 +364,7 @@ pub(crate) fn assign_lights_to_clusters(
for x in 0..=clusters.dimensions.x {
let x_proportion = x as f32 / x_slices;
let x_pos = x_proportion * 2.0 - 1.0;
let view_x = clip_to_view(inverse_projection, Vec4::new(x_pos, 0.0, 1.0, 1.0)).x;
let view_x = clip_to_view(view_from_clip, Vec4::new(x_pos, 0.0, 1.0, 1.0)).x;
let normal = Vec3::X;
let d = view_x * normal.x;
x_planes.push(HalfSpace::new(normal.extend(d)));
@ -374,7 +374,7 @@ pub(crate) fn assign_lights_to_clusters(
for y in 0..=clusters.dimensions.y {
let y_proportion = 1.0 - y as f32 / y_slices;
let y_pos = y_proportion * 2.0 - 1.0;
let view_y = clip_to_view(inverse_projection, Vec4::new(0.0, y_pos, 1.0, 1.0)).y;
let view_y = clip_to_view(view_from_clip, Vec4::new(0.0, y_pos, 1.0, 1.0)).y;
let normal = Vec3::Y;
let d = view_y * normal.y;
y_planes.push(HalfSpace::new(normal.extend(d)));
@ -384,8 +384,8 @@ pub(crate) fn assign_lights_to_clusters(
for x in 0..=clusters.dimensions.x {
let x_proportion = x as f32 / x_slices;
let x_pos = x_proportion * 2.0 - 1.0;
let nb = clip_to_view(inverse_projection, Vec4::new(x_pos, -1.0, 1.0, 1.0)).xyz();
let nt = clip_to_view(inverse_projection, Vec4::new(x_pos, 1.0, 1.0, 1.0)).xyz();
let nb = clip_to_view(view_from_clip, Vec4::new(x_pos, -1.0, 1.0, 1.0)).xyz();
let nt = clip_to_view(view_from_clip, Vec4::new(x_pos, 1.0, 1.0, 1.0)).xyz();
let normal = nb.cross(nt);
let d = nb.dot(normal);
x_planes.push(HalfSpace::new(normal.extend(d)));
@ -395,8 +395,8 @@ pub(crate) fn assign_lights_to_clusters(
for y in 0..=clusters.dimensions.y {
let y_proportion = 1.0 - y as f32 / y_slices;
let y_pos = y_proportion * 2.0 - 1.0;
let nl = clip_to_view(inverse_projection, Vec4::new(-1.0, y_pos, 1.0, 1.0)).xyz();
let nr = clip_to_view(inverse_projection, Vec4::new(1.0, y_pos, 1.0, 1.0)).xyz();
let nl = clip_to_view(view_from_clip, Vec4::new(-1.0, y_pos, 1.0, 1.0)).xyz();
let nr = clip_to_view(view_from_clip, Vec4::new(1.0, y_pos, 1.0, 1.0)).xyz();
let normal = nr.cross(nl);
let d = nr.dot(normal);
y_planes.push(HalfSpace::new(normal.extend(d)));
@ -432,9 +432,9 @@ pub(crate) fn assign_lights_to_clusters(
// note: caching seems to be slower than calling twice for this aabb calculation
let (light_aabb_xy_ndc_z_view_min, light_aabb_xy_ndc_z_view_max) =
cluster_space_light_aabb(
inverse_view_transform,
view_inv_scale,
camera.projection_matrix(),
view_from_world,
view_from_world_scale,
camera.clip_from_view(),
&light_sphere,
);
@ -463,13 +463,13 @@ pub(crate) fn assign_lights_to_clusters(
// as they often assume that the widest part of the sphere under projection is the
// center point on the axis of interest plus the radius, and that is not true!
let view_light_sphere = Sphere {
center: Vec3A::from(inverse_view_transform * light_sphere.center.extend(1.0)),
radius: light_sphere.radius * view_inv_scale_max,
center: Vec3A::from(view_from_world * light_sphere.center.extend(1.0)),
radius: light_sphere.radius * view_from_world_scale_max,
};
let spot_light_dir_sin_cos = light.spot_light_angle.map(|angle| {
let (angle_sin, angle_cos) = angle.sin_cos();
(
(inverse_view_transform * light.transform.back().extend(0.0))
(view_from_world * light.transform.back().extend(0.0))
.truncate()
.normalize(),
angle_sin,
@ -477,7 +477,7 @@ pub(crate) fn assign_lights_to_clusters(
)
});
let light_center_clip =
camera.projection_matrix() * view_light_sphere.center.extend(1.0);
camera.clip_from_view() * view_light_sphere.center.extend(1.0);
let light_center_ndc = light_center_clip.xyz() / light_center_clip.w;
let cluster_coordinates = ndc_position_to_cluster(
clusters.dimensions,
@ -586,7 +586,7 @@ pub(crate) fn assign_lights_to_clusters(
far_z,
clusters.tile_size.as_vec2(),
screen_size.as_vec2(),
inverse_projection,
view_from_clip,
is_orthographic,
clusters.dimensions,
UVec3::new(x, y, z),
@ -613,7 +613,8 @@ pub(crate) fn assign_lights_to_clusters(
distance_closest_point > cluster_aabb_sphere.radius;
let front_cull = v1_len
> cluster_aabb_sphere.radius + light.range * view_inv_scale_max;
> cluster_aabb_sphere.radius
+ light.range * view_from_world_scale_max;
let back_cull = v1_len < -cluster_aabb_sphere.radius;
if !angle_cull && !front_cull && !back_cull {
@ -657,7 +658,7 @@ fn compute_aabb_for_cluster(
z_far: f32,
tile_size: Vec2,
screen_size: Vec2,
inverse_projection: Mat4,
view_from_clip: Mat4,
is_orthographic: bool,
cluster_dimensions: UVec3,
ijk: UVec3,
@ -675,8 +676,8 @@ fn compute_aabb_for_cluster(
// Convert to view space at the cluster near and far planes
// NOTE: 1.0 is the near plane due to using reverse z projections
let mut p_min = screen_to_view(screen_size, inverse_projection, p_min, 0.0).xyz();
let mut p_max = screen_to_view(screen_size, inverse_projection, p_max, 0.0).xyz();
let mut p_min = screen_to_view(screen_size, view_from_clip, p_min, 0.0).xyz();
let mut p_max = screen_to_view(screen_size, view_from_clip, p_max, 0.0).xyz();
// calculate cluster depth using z_near and z_far
p_min.z = -z_near + (z_near - z_far) * ijk.z / cluster_dimensions.z as f32;
@ -687,8 +688,8 @@ fn compute_aabb_for_cluster(
} else {
// Convert to view space at the near plane
// NOTE: 1.0 is the near plane due to using reverse z projections
let p_min = screen_to_view(screen_size, inverse_projection, p_min, 1.0);
let p_max = screen_to_view(screen_size, inverse_projection, p_max, 1.0);
let p_min = screen_to_view(screen_size, view_from_clip, p_min, 1.0);
let p_max = screen_to_view(screen_size, view_from_clip, p_max, 1.0);
let z_far_over_z_near = -z_far / -z_near;
let cluster_near = if ijk.z == 0.0 {
@ -763,14 +764,14 @@ fn ndc_position_to_cluster(
/// `X` and `Y` in normalized device coordinates with range `[-1, 1]`
/// `Z` in view space, with range `[-inf, -f32::MIN_POSITIVE]`
fn cluster_space_light_aabb(
inverse_view_transform: Mat4,
view_inv_scale: Vec3,
projection_matrix: Mat4,
view_from_world: Mat4,
view_from_world_scale: Vec3,
clip_from_view: Mat4,
light_sphere: &Sphere,
) -> (Vec3, Vec3) {
let light_aabb_view = Aabb {
center: Vec3A::from(inverse_view_transform * light_sphere.center.extend(1.0)),
half_extents: Vec3A::from(light_sphere.radius * view_inv_scale.abs()),
center: Vec3A::from(view_from_world * light_sphere.center.extend(1.0)),
half_extents: Vec3A::from(light_sphere.radius * view_from_world_scale.abs()),
};
let (mut light_aabb_view_min, mut light_aabb_view_max) =
(light_aabb_view.min(), light_aabb_view.max());
@ -806,10 +807,10 @@ fn cluster_space_light_aabb(
light_aabb_clip_xymax_near,
light_aabb_clip_xymax_far,
) = (
projection_matrix * light_aabb_view_xymin_near.extend(1.0),
projection_matrix * light_aabb_view_xymin_far.extend(1.0),
projection_matrix * light_aabb_view_xymax_near.extend(1.0),
projection_matrix * light_aabb_view_xymax_far.extend(1.0),
clip_from_view * light_aabb_view_xymin_near.extend(1.0),
clip_from_view * light_aabb_view_xymin_far.extend(1.0),
clip_from_view * light_aabb_view_xymax_near.extend(1.0),
clip_from_view * light_aabb_view_xymax_far.extend(1.0),
);
let (
light_aabb_ndc_xymin_near,
@ -872,12 +873,12 @@ fn view_z_to_z_slice(
z_slice.min(z_slices - 1)
}
fn clip_to_view(inverse_projection: Mat4, clip: Vec4) -> Vec4 {
let view = inverse_projection * clip;
fn clip_to_view(view_from_clip: Mat4, clip: Vec4) -> Vec4 {
let view = view_from_clip * clip;
view / view.w
}
fn screen_to_view(screen_size: Vec2, inverse_projection: Mat4, screen: Vec2, ndc_z: f32) -> Vec4 {
fn screen_to_view(screen_size: Vec2, view_from_clip: Mat4, screen: Vec2, ndc_z: f32) -> Vec4 {
let tex_coord = screen / screen_size;
let clip = Vec4::new(
tex_coord.x * 2.0 - 1.0,
@ -885,7 +886,7 @@ fn screen_to_view(screen_size: Vec2, inverse_projection: Mat4, screen: Vec2, ndc
ndc_z,
1.0,
);
clip_to_view(inverse_projection, clip)
clip_to_view(view_from_clip, clip)
}
// NOTE: This exploits the fact that a x-plane normal has only x and z components

View file

@ -95,7 +95,7 @@ fn pbr_input_from_deferred_gbuffer(frag_coord: vec4<f32>, gbuffer: vec4<u32>) ->
let N = octahedral_decode(octahedral_normal);
let world_position = vec4(position_ndc_to_world(frag_coord_to_ndc(frag_coord)), 1.0);
let is_orthographic = view.projection[3].w == 1.0;
let is_orthographic = view.clip_from_view[3].w == 1.0;
let V = pbr_functions::calculate_view(world_position, is_orthographic);
pbr.frag_coord = frag_coord;

View file

@ -277,13 +277,13 @@ pub struct Cascades {
#[derive(Clone, Debug, Default, Reflect)]
pub struct Cascade {
/// The transform of the light, i.e. the view to world matrix.
pub(crate) view_transform: Mat4,
pub(crate) world_from_cascade: Mat4,
/// The orthographic projection for this cascade.
pub(crate) projection: Mat4,
pub(crate) clip_from_cascade: Mat4,
/// The view-projection matrix for this cascade, converting world space into light clip space.
/// Importantly, this is derived and stored separately from `view_transform` and `projection` to
/// ensure shadow stability.
pub(crate) view_projection: Mat4,
pub(crate) clip_from_world: Mat4,
/// Size of each shadow map texel in world units.
pub(crate) texel_size: f32,
}
@ -329,8 +329,8 @@ pub fn build_directional_light_cascades<P: CameraProjection + Component>(
// users to not change any other aspects of the transform - there's no guarantee
// `transform.compute_matrix()` will give us a matrix with our desired properties.
// Instead, we directly create a good matrix from just the rotation.
let light_to_world = Mat4::from_quat(transform.compute_transform().rotation);
let light_to_world_inverse = light_to_world.inverse();
let world_from_light = Mat4::from_quat(transform.compute_transform().rotation);
let light_to_world_inverse = world_from_light.inverse();
for (view_entity, projection, view_to_world) in views.iter().copied() {
let camera_to_light_view = light_to_world_inverse * view_to_world;
@ -353,7 +353,7 @@ pub fn build_directional_light_cascades<P: CameraProjection + Component>(
calculate_cascade(
corners,
directional_light_shadow_map.size as f32,
light_to_world,
world_from_light,
camera_to_light_view,
)
})
@ -369,13 +369,13 @@ pub fn build_directional_light_cascades<P: CameraProjection + Component>(
fn calculate_cascade(
frustum_corners: [Vec3A; 8],
cascade_texture_size: f32,
light_to_world: Mat4,
camera_to_light: Mat4,
world_from_light: Mat4,
light_from_camera: Mat4,
) -> Cascade {
let mut min = Vec3A::splat(f32::MAX);
let mut max = Vec3A::splat(f32::MIN);
for corner_camera_view in frustum_corners {
let corner_light_view = camera_to_light.transform_point3a(corner_camera_view);
let corner_light_view = light_from_camera.transform_point3a(corner_camera_view);
min = min.min(corner_light_view);
max = max.max(corner_light_view);
}
@ -408,8 +408,8 @@ fn calculate_cascade(
// It is critical for `world_to_cascade` to be stable. So rather than forming `cascade_to_world`
// and inverting it, which risks instability due to numerical precision, we directly form
// `world_to_cascade` as the reference material suggests.
let light_to_world_transpose = light_to_world.transpose();
let world_to_cascade = Mat4::from_cols(
let light_to_world_transpose = world_from_light.transpose();
let cascade_from_world = Mat4::from_cols(
light_to_world_transpose.x_axis,
light_to_world_transpose.y_axis,
light_to_world_transpose.z_axis,
@ -419,18 +419,18 @@ fn calculate_cascade(
// Right-handed orthographic projection, centered at `near_plane_center`.
// NOTE: This is different from the reference material, as we use reverse Z.
let r = (max.z - min.z).recip();
let cascade_projection = Mat4::from_cols(
let clip_from_cascade = Mat4::from_cols(
Vec4::new(2.0 / cascade_diameter, 0.0, 0.0, 0.0),
Vec4::new(0.0, 2.0 / cascade_diameter, 0.0, 0.0),
Vec4::new(0.0, 0.0, r, 0.0),
Vec4::new(0.0, 0.0, 1.0, 1.0),
);
let cascade_view_projection = cascade_projection * world_to_cascade;
let clip_from_world = clip_from_cascade * cascade_from_world;
Cascade {
view_transform: world_to_cascade.inverse(),
projection: cascade_projection,
view_projection: cascade_view_projection,
world_from_cascade: cascade_from_world.inverse(),
clip_from_cascade,
clip_from_world,
texel_size: cascade_texel_size,
}
}
@ -551,7 +551,7 @@ pub fn update_directional_light_frusta(
*view,
cascades
.iter()
.map(|c| Frustum::from_view_projection(&c.view_projection))
.map(|c| Frustum::from_clip_from_world(&c.clip_from_world))
.collect::<Vec<_>>(),
)
})
@ -567,7 +567,7 @@ pub fn update_point_light_frusta(
Or<(Changed<GlobalTransform>, Changed<PointLight>)>,
>,
) {
let projection =
let clip_from_view =
Mat4::perspective_infinite_reverse_rh(std::f32::consts::FRAC_PI_2, 1.0, POINT_LIGHT_NEAR_Z);
let view_rotations = CUBE_MAP_FACES
.iter()
@ -591,11 +591,11 @@ pub fn update_point_light_frusta(
let view_backward = transform.back();
for (view_rotation, frustum) in view_rotations.iter().zip(cubemap_frusta.iter_mut()) {
let view = view_translation * *view_rotation;
let view_projection = projection * view.compute_matrix().inverse();
let world_from_view = view_translation * *view_rotation;
let clip_from_world = clip_from_view * world_from_view.compute_matrix().inverse();
*frustum = Frustum::from_view_projection_custom_far(
&view_projection,
*frustum = Frustum::from_clip_from_world_custom_far(
&clip_from_world,
&transform.translation(),
&view_backward,
point_light.range,
@ -625,12 +625,12 @@ pub fn update_spot_light_frusta(
// by applying those as a view transform to shadow map rendering of objects
let view_backward = transform.back();
let spot_view = spot_light_view_matrix(transform);
let spot_projection = spot_light_projection_matrix(spot_light.outer_angle);
let view_projection = spot_projection * spot_view.inverse();
let spot_world_from_view = spot_light_world_from_view(transform);
let spot_clip_from_view = spot_light_clip_from_view(spot_light.outer_angle);
let clip_from_world = spot_clip_from_view * spot_world_from_view.inverse();
*frustum = Frustum::from_view_projection_custom_far(
&view_projection,
*frustum = Frustum::from_clip_from_world_custom_far(
&clip_from_world,
&transform.translation(),
&view_backward,
spot_light.range,

View file

@ -32,7 +32,7 @@ fn irradiance_volume_light(world_position: vec3<f32>, N: vec3<f32>) -> vec3<f32>
let resolution = vec3<f32>(textureDimensions(irradiance_volume_texture) / vec3(1u, 2u, 3u));
// Make sure to clamp to the edges to avoid texture bleed.
var unit_pos = (query_result.inverse_transform * vec4(world_position, 1.0f)).xyz;
var unit_pos = (query_result.light_from_world * vec4(world_position, 1.0f)).xyz;
let stp = clamp((unit_pos + 0.5) * resolution, vec3(0.5f), resolution - vec3(0.5f));
let uvw = stp / atlas_resolution;

View file

@ -13,7 +13,7 @@ struct LightProbeQueryResult {
intensity: f32,
// Transform from world space to the light probe model space. In light probe
// model space, the light probe is a 1×1×1 cube centered on the origin.
inverse_transform: mat4x4<f32>,
light_from_world: mat4x4<f32>,
};
fn transpose_affine_matrix(matrix: mat3x4<f32>) -> mat4x4<f32> {
@ -53,16 +53,16 @@ fn query_light_probe(
}
// Unpack the inverse transform.
let inverse_transform =
transpose_affine_matrix(light_probe.inverse_transpose_transform);
let light_from_world =
transpose_affine_matrix(light_probe.light_from_world_transposed);
// Check to see if the transformed point is inside the unit cube
// centered at the origin.
let probe_space_pos = (inverse_transform * vec4<f32>(world_position, 1.0f)).xyz;
let probe_space_pos = (light_from_world * vec4<f32>(world_position, 1.0f)).xyz;
if (all(abs(probe_space_pos) <= vec3(0.5f))) {
result.texture_index = light_probe.cubemap_index;
result.intensity = light_probe.intensity;
result.inverse_transform = inverse_transform;
result.light_from_world = light_from_world;
// TODO: Workaround for ICE in DXC https://github.com/microsoft/DirectXShaderCompiler/issues/6183
// We can't use `break` here because of the ICE.

View file

@ -111,7 +111,7 @@ pub struct LightProbe;
struct RenderLightProbe {
/// The transform from the world space to the model space. This is used to
/// efficiently check for bounding box intersection.
inverse_transpose_transform: [Vec4; 3],
light_from_world_transposed: [Vec4; 3],
/// The index of the texture or textures in the appropriate binding array or
/// arrays.
@ -179,10 +179,10 @@ where
C: LightProbeComponent,
{
// The transform from world space to light probe space.
inverse_transform: Mat4,
light_from_world: Mat4,
// The transform from light probe space to world space.
affine_transform: Affine3A,
world_from_light: Affine3A,
// Scale factor applied to the diffuse and specular light generated by this
// reflection probe.
@ -508,8 +508,8 @@ where
image_assets: &RenderAssets<GpuImage>,
) -> Option<LightProbeInfo<C>> {
environment_map.id(image_assets).map(|id| LightProbeInfo {
affine_transform: light_probe_transform.affine(),
inverse_transform: light_probe_transform.compute_matrix().inverse(),
world_from_light: light_probe_transform.affine(),
light_from_world: light_probe_transform.compute_matrix().inverse(),
asset_id: id,
intensity: environment_map.intensity(),
})
@ -523,7 +523,7 @@ where
center: Vec3A::default(),
half_extents: Vec3A::splat(0.5),
},
&self.affine_transform,
&self.world_from_light,
true,
false,
)
@ -533,7 +533,7 @@ where
/// suitable for distance sorting.
fn camera_distance_sort_key(&self, view_transform: &GlobalTransform) -> FloatOrd {
FloatOrd(
(self.affine_transform.translation - view_transform.translation_vec3a())
(self.world_from_light.translation - view_transform.translation_vec3a())
.length_squared(),
)
}
@ -598,14 +598,14 @@ where
// Transpose the inverse transform to compress the structure on the
// GPU (from 4 `Vec4`s to 3 `Vec4`s). The shader will transpose it
// to recover the original inverse transform.
let inverse_transpose_transform = light_probe.inverse_transform.transpose();
let light_from_world_transposed = light_probe.light_from_world.transpose();
// Write in the light probe data.
self.render_light_probes.push(RenderLightProbe {
inverse_transpose_transform: [
inverse_transpose_transform.x_axis,
inverse_transpose_transform.y_axis,
inverse_transpose_transform.z_axis,
light_from_world_transposed: [
light_from_world_transposed.x_axis,
light_from_world_transposed.y_axis,
light_from_world_transposed.z_axis,
],
texture_index: cubemap_index as i32,
intensity: light_probe.intensity,
@ -620,8 +620,8 @@ where
{
fn clone(&self) -> Self {
Self {
inverse_transform: self.inverse_transform,
affine_transform: self.affine_transform,
light_from_world: self.light_from_world,
world_from_light: self.world_from_light,
intensity: self.intensity,
asset_id: self.asset_id.clone(),
}

View file

@ -44,11 +44,11 @@ fn cull_meshlets(
// Calculate world-space culling bounding sphere for the cluster
let instance_uniform = meshlet_instance_uniforms[instance_id];
let meshlet_id = meshlet_cluster_meshlet_ids[cluster_id];
let model = affine3_to_square(instance_uniform.model);
let model_scale = max(length(model[0]), max(length(model[1]), length(model[2])));
let world_from_local = affine3_to_square(instance_uniform.world_from_local);
let world_scale = max(length(world_from_local[0]), max(length(world_from_local[1]), length(world_from_local[2])));
let bounding_spheres = meshlet_bounding_spheres[meshlet_id];
var culling_bounding_sphere_center = model * vec4(bounding_spheres.self_culling.center, 1.0);
var culling_bounding_sphere_radius = model_scale * bounding_spheres.self_culling.radius;
var culling_bounding_sphere_center = world_from_local * vec4(bounding_spheres.self_culling.center, 1.0);
var culling_bounding_sphere_radius = world_scale * bounding_spheres.self_culling.radius;
#ifdef MESHLET_FIRST_CULLING_PASS
// Frustum culling
@ -60,14 +60,14 @@ fn cull_meshlets(
}
// Calculate view-space LOD bounding sphere for the meshlet
let lod_bounding_sphere_center = model * vec4(bounding_spheres.self_lod.center, 1.0);
let lod_bounding_sphere_radius = model_scale * bounding_spheres.self_lod.radius;
let lod_bounding_sphere_center_view_space = (view.inverse_view * vec4(lod_bounding_sphere_center.xyz, 1.0)).xyz;
let lod_bounding_sphere_center = world_from_local * vec4(bounding_spheres.self_lod.center, 1.0);
let lod_bounding_sphere_radius = world_scale * bounding_spheres.self_lod.radius;
let lod_bounding_sphere_center_view_space = (view.view_from_world * vec4(lod_bounding_sphere_center.xyz, 1.0)).xyz;
// Calculate view-space LOD bounding sphere for the meshlet's parent
let parent_lod_bounding_sphere_center = model * vec4(bounding_spheres.parent_lod.center, 1.0);
let parent_lod_bounding_sphere_radius = model_scale * bounding_spheres.parent_lod.radius;
let parent_lod_bounding_sphere_center_view_space = (view.inverse_view * vec4(parent_lod_bounding_sphere_center.xyz, 1.0)).xyz;
let parent_lod_bounding_sphere_center = world_from_local * vec4(bounding_spheres.parent_lod.center, 1.0);
let parent_lod_bounding_sphere_radius = world_scale * bounding_spheres.parent_lod.radius;
let parent_lod_bounding_sphere_center_view_space = (view.view_from_world * vec4(parent_lod_bounding_sphere_center.xyz, 1.0)).xyz;
// Check LOD cut (meshlet error imperceptible, and parent error not imperceptible)
let lod_is_ok = lod_error_is_imperceptible(lod_bounding_sphere_center_view_space, lod_bounding_sphere_radius);
@ -77,12 +77,12 @@ fn cull_meshlets(
// Project the culling bounding sphere to view-space for occlusion culling
#ifdef MESHLET_FIRST_CULLING_PASS
let previous_model = affine3_to_square(instance_uniform.previous_model);
let previous_model_scale = max(length(previous_model[0]), max(length(previous_model[1]), length(previous_model[2])));
culling_bounding_sphere_center = previous_model * vec4(bounding_spheres.self_culling.center, 1.0);
culling_bounding_sphere_radius = previous_model_scale * bounding_spheres.self_culling.radius;
let previous_world_from_local = affine3_to_square(instance_uniform.previous_world_from_local);
let previous_world_from_local_scale = max(length(previous_world_from_local[0]), max(length(previous_world_from_local[1]), length(previous_world_from_local[2])));
culling_bounding_sphere_center = previous_world_from_local * vec4(bounding_spheres.self_culling.center, 1.0);
culling_bounding_sphere_radius = previous_world_from_local_scale * bounding_spheres.self_culling.radius;
#endif
let culling_bounding_sphere_center_view_space = (view.inverse_view * vec4(culling_bounding_sphere_center.xyz, 1.0)).xyz;
let culling_bounding_sphere_center_view_space = (view.view_from_world * vec4(culling_bounding_sphere_center.xyz, 1.0)).xyz;
let aabb = project_view_space_sphere_to_screen_space_aabb(culling_bounding_sphere_center_view_space, culling_bounding_sphere_radius);
// Halve the view-space AABB size as the depth pyramid is half the view size
@ -101,13 +101,13 @@ fn cull_meshlets(
// Check whether or not the cluster would be occluded if drawn
var meshlet_visible: bool;
if view.projection[3][3] == 1.0 {
if view.clip_from_view[3][3] == 1.0 {
// Orthographic
let sphere_depth = view.projection[3][2] + (culling_bounding_sphere_center_view_space.z + culling_bounding_sphere_radius) * view.projection[2][2];
let sphere_depth = view.clip_from_view[3][2] + (culling_bounding_sphere_center_view_space.z + culling_bounding_sphere_radius) * view.clip_from_view[2][2];
meshlet_visible = sphere_depth >= occluder_depth;
} else {
// Perspective
let sphere_depth = -view.projection[3][2] / (culling_bounding_sphere_center_view_space.z + culling_bounding_sphere_radius);
let sphere_depth = -view.clip_from_view[3][2] / (culling_bounding_sphere_center_view_space.z + culling_bounding_sphere_radius);
meshlet_visible = sphere_depth >= occluder_depth;
}
@ -132,7 +132,7 @@ fn cull_meshlets(
fn lod_error_is_imperceptible(cp: vec3<f32>, r: f32) -> bool {
let d2 = dot(cp, cp);
let r2 = r * r;
let sphere_diameter_uv = view.projection[0][0] * r / sqrt(d2 - r2);
let sphere_diameter_uv = view.clip_from_view[0][0] * r / sqrt(d2 - r2);
let view_size = f32(max(view.viewport.z, view.viewport.w));
let sphere_diameter_pixels = sphere_diameter_uv * view_size;
return sphere_diameter_pixels < 1.0;
@ -140,9 +140,9 @@ fn lod_error_is_imperceptible(cp: vec3<f32>, r: f32) -> bool {
// https://zeux.io/2023/01/12/approximate-projected-bounds
fn project_view_space_sphere_to_screen_space_aabb(cp: vec3<f32>, r: f32) -> vec4<f32> {
let inv_width = view.projection[0][0] * 0.5;
let inv_height = view.projection[1][1] * 0.5;
if view.projection[3][3] == 1.0 {
let inv_width = view.clip_from_view[0][0] * 0.5;
let inv_height = view.clip_from_view[1][1] * 0.5;
if view.clip_from_view[3][3] == 1.0 {
// Orthographic
let min_x = cp.x - r;
let max_x = cp.x + r;

View file

@ -131,8 +131,8 @@ pub fn extract_meshlet_meshes(
flags |= MeshFlags::SIGN_DETERMINANT_MODEL_3X3;
}
let transforms = MeshTransforms {
transform: (&transform).into(),
previous_transform: (&previous_transform).into(),
world_from_local: (&transform).into(),
previous_world_from_local: (&previous_transform).into(),
flags: flags.bits(),
};
gpu_scene

View file

@ -50,9 +50,9 @@ fn vertex(@builtin(vertex_index) vertex_index: u32) -> VertexOutput {
let instance_id = meshlet_cluster_instance_ids[cluster_id];
let instance_uniform = meshlet_instance_uniforms[instance_id];
let model = affine3_to_square(instance_uniform.model);
let world_position = mesh_position_local_to_world(model, vec4(vertex.position, 1.0));
var clip_position = view.view_proj * vec4(world_position.xyz, 1.0);
let world_from_local = affine3_to_square(instance_uniform.world_from_local);
let world_position = mesh_position_local_to_world(world_from_local, vec4(vertex.position, 1.0));
var clip_position = view.clip_from_world * vec4(world_position.xyz, 1.0);
#ifdef DEPTH_CLAMP_ORTHO
let unclamped_clip_depth = clip_position.z;
clip_position.z = min(clip_position.z, 1.0);

View file

@ -109,11 +109,11 @@ fn resolve_vertex_output(frag_coord: vec4<f32>) -> VertexOutput {
let instance_id = meshlet_cluster_instance_ids[cluster_id];
let instance_uniform = meshlet_instance_uniforms[instance_id];
let model = affine3_to_square(instance_uniform.model);
let world_from_local = affine3_to_square(instance_uniform.world_from_local);
let world_position_1 = mesh_position_local_to_world(model, vec4(vertex_1.position, 1.0));
let world_position_2 = mesh_position_local_to_world(model, vec4(vertex_2.position, 1.0));
let world_position_3 = mesh_position_local_to_world(model, vec4(vertex_3.position, 1.0));
let world_position_1 = mesh_position_local_to_world(world_from_local, vec4(vertex_1.position, 1.0));
let world_position_2 = mesh_position_local_to_world(world_from_local, vec4(vertex_2.position, 1.0));
let world_position_3 = mesh_position_local_to_world(world_from_local, vec4(vertex_3.position, 1.0));
let clip_position_1 = position_world_to_clip(world_position_1.xyz);
let clip_position_2 = position_world_to_clip(world_position_2.xyz);
@ -129,8 +129,8 @@ fn resolve_vertex_output(frag_coord: vec4<f32>) -> VertexOutput {
let vertex_normal = mat3x3(vertex_1.normal, vertex_2.normal, vertex_3.normal) * partial_derivatives.barycentrics;
let world_normal = normalize(
mat2x4_f32_to_mat3x3_unpack(
instance_uniform.inverse_transpose_model_a,
instance_uniform.inverse_transpose_model_b,
instance_uniform.local_from_world_transpose_a,
instance_uniform.local_from_world_transpose_b,
) * vertex_normal
);
let uv = mat3x2(vertex_1.uv, vertex_2.uv, vertex_3.uv) * partial_derivatives.barycentrics;
@ -140,9 +140,9 @@ fn resolve_vertex_output(frag_coord: vec4<f32>) -> VertexOutput {
let world_tangent = vec4(
normalize(
mat3x3(
model[0].xyz,
model[1].xyz,
model[2].xyz
world_from_local[0].xyz,
world_from_local[1].xyz,
world_from_local[2].xyz
) * vertex_tangent.xyz
),
vertex_tangent.w * (f32(bool(instance_uniform.flags & MESH_FLAGS_SIGN_DETERMINANT_MODEL_3X3_BIT)) * 2.0 - 1.0)
@ -150,13 +150,13 @@ fn resolve_vertex_output(frag_coord: vec4<f32>) -> VertexOutput {
#ifdef PREPASS_FRAGMENT
#ifdef MOTION_VECTOR_PREPASS
let previous_model = affine3_to_square(instance_uniform.previous_model);
let previous_world_position_1 = mesh_position_local_to_world(previous_model, vec4(vertex_1.position, 1.0));
let previous_world_position_2 = mesh_position_local_to_world(previous_model, vec4(vertex_2.position, 1.0));
let previous_world_position_3 = mesh_position_local_to_world(previous_model, vec4(vertex_3.position, 1.0));
let previous_clip_position_1 = previous_view_uniforms.view_proj * vec4(previous_world_position_1.xyz, 1.0);
let previous_clip_position_2 = previous_view_uniforms.view_proj * vec4(previous_world_position_2.xyz, 1.0);
let previous_clip_position_3 = previous_view_uniforms.view_proj * vec4(previous_world_position_3.xyz, 1.0);
let previous_world_from_local = affine3_to_square(instance_uniform.previous_world_from_local);
let previous_world_position_1 = mesh_position_local_to_world(previous_world_from_local, vec4(vertex_1.position, 1.0));
let previous_world_position_2 = mesh_position_local_to_world(previous_world_from_local, vec4(vertex_2.position, 1.0));
let previous_world_position_3 = mesh_position_local_to_world(previous_world_from_local, vec4(vertex_3.position, 1.0));
let previous_clip_position_1 = previous_view_uniforms.clip_from_world * vec4(previous_world_position_1.xyz, 1.0);
let previous_clip_position_2 = previous_view_uniforms.clip_from_world * vec4(previous_world_position_2.xyz, 1.0);
let previous_clip_position_3 = previous_view_uniforms.clip_from_world * vec4(previous_world_position_3.xyz, 1.0);
let previous_partial_derivatives = compute_partial_derivatives(
array(previous_clip_position_1, previous_clip_position_2, previous_clip_position_3),
frag_coord_ndc,

View file

@ -204,10 +204,10 @@ pub fn update_previous_view_data(
query: Query<(Entity, &Camera, &GlobalTransform), PreviousViewFilter>,
) {
for (entity, camera, camera_transform) in &query {
let inverse_view = camera_transform.compute_matrix().inverse();
let view_from_world = camera_transform.compute_matrix().inverse();
commands.entity(entity).try_insert(PreviousViewData {
inverse_view,
view_proj: camera.projection_matrix() * inverse_view,
view_from_world,
clip_from_world: camera.clip_from_view() * view_from_world,
});
}
}
@ -608,19 +608,19 @@ pub fn prepare_previous_view_uniforms(
};
for (entity, camera, maybe_previous_view_uniforms) in views_iter {
let view_projection = match maybe_previous_view_uniforms {
let prev_view_data = match maybe_previous_view_uniforms {
Some(previous_view) => previous_view.clone(),
None => {
let inverse_view = camera.transform.compute_matrix().inverse();
let view_from_world = camera.world_from_view.compute_matrix().inverse();
PreviousViewData {
inverse_view,
view_proj: camera.projection * inverse_view,
view_from_world,
clip_from_world: camera.clip_from_view * view_from_world,
}
}
};
commands.entity(entity).insert(PreviousViewUniformOffset {
offset: writer.write(&view_projection),
offset: writer.write(&prev_view_data),
});
}
}

View file

@ -63,14 +63,14 @@ fn vertex(vertex_no_morph: Vertex) -> VertexOutput {
#endif
#ifdef SKINNED
var model = skinning::skin_model(vertex.joint_indices, vertex.joint_weights);
var world_from_local = skinning::skin_model(vertex.joint_indices, vertex.joint_weights);
#else // SKINNED
// Use vertex_no_morph.instance_index instead of vertex.instance_index to work around a wgpu dx12 bug.
// See https://github.com/gfx-rs/naga/issues/2416
var model = mesh_functions::get_model_matrix(vertex_no_morph.instance_index);
var world_from_local = mesh_functions::get_world_from_local(vertex_no_morph.instance_index);
#endif // SKINNED
out.world_position = mesh_functions::mesh_position_local_to_world(model, vec4<f32>(vertex.position, 1.0));
out.world_position = mesh_functions::mesh_position_local_to_world(world_from_local, vec4<f32>(vertex.position, 1.0));
out.position = position_world_to_clip(out.world_position.xyz);
#ifdef DEPTH_CLAMP_ORTHO
out.clip_position_unclamped = out.position;
@ -87,7 +87,7 @@ fn vertex(vertex_no_morph: Vertex) -> VertexOutput {
#ifdef NORMAL_PREPASS_OR_DEFERRED_PREPASS
#ifdef SKINNED
out.world_normal = skinning::skin_normals(model, vertex.normal);
out.world_normal = skinning::skin_normals(world_from_local, vertex.normal);
#else // SKINNED
out.world_normal = mesh_functions::mesh_normal_local_to_world(
vertex.normal,
@ -99,7 +99,7 @@ fn vertex(vertex_no_morph: Vertex) -> VertexOutput {
#ifdef VERTEX_TANGENTS
out.world_tangent = mesh_functions::mesh_tangent_local_to_world(
model,
world_from_local,
vertex.tangent,
// Use vertex_no_morph.instance_index instead of vertex.instance_index to work around a wgpu dx12 bug.
// See https://github.com/gfx-rs/naga/issues/2416
@ -138,11 +138,11 @@ fn vertex(vertex_no_morph: Vertex) -> VertexOutput {
prev_vertex.joint_weights,
);
#else // HAS_PREVIOUS_SKIN
let prev_model = mesh_functions::get_previous_model_matrix(prev_vertex.instance_index);
let prev_model = mesh_functions::get_previous_world_from_local(prev_vertex.instance_index);
#endif // HAS_PREVIOUS_SKIN
#else // SKINNED
let prev_model = mesh_functions::get_previous_model_matrix(prev_vertex.instance_index);
let prev_model = mesh_functions::get_previous_world_from_local(prev_vertex.instance_index);
#endif // SKINNED
out.previous_world_position = mesh_functions::mesh_position_local_to_world(
@ -174,9 +174,9 @@ fn fragment(in: VertexOutput) -> FragmentOutput {
#endif // DEPTH_CLAMP_ORTHO
#ifdef MOTION_VECTOR_PREPASS
let clip_position_t = view.unjittered_view_proj * in.world_position;
let clip_position_t = view.unjittered_clip_from_world * in.world_position;
let clip_position = clip_position_t.xy / clip_position_t.w;
let previous_clip_position_t = prepass_bindings::previous_view_uniforms.view_proj * in.previous_world_position;
let previous_clip_position_t = prepass_bindings::previous_view_uniforms.clip_from_world * in.previous_world_position;
let previous_clip_position = previous_clip_position_t.xy / previous_clip_position_t.w;
// These motion vectors are used as offsets to UV positions and are stored
// in the range -1,1 to allow offsetting from the one corner to the

View file

@ -1,8 +1,8 @@
#define_import_path bevy_pbr::prepass_bindings
struct PreviousViewUniforms {
inverse_view: mat4x4<f32>,
view_proj: mat4x4<f32>,
view_from_world: mat4x4<f32>,
clip_from_world: mat4x4<f32>,
}
#ifdef MOTION_VECTOR_PREPASS

View file

@ -68,7 +68,7 @@ bitflags::bitflags! {
#[derive(Copy, Clone, ShaderType, Default, Debug)]
pub struct GpuDirectionalCascade {
view_projection: Mat4,
clip_from_world: Mat4,
texel_size: f32,
far_bound: f32,
}
@ -479,7 +479,7 @@ pub fn calculate_cluster_factors(
// we will also construct it in the fragment shader and need our implementations to match,
// so we reproduce it here to avoid a mismatch if glam changes. we also switch the handedness
// could move this onto transform but it's pretty niche
pub(crate) fn spot_light_view_matrix(transform: &GlobalTransform) -> Mat4 {
pub(crate) fn spot_light_world_from_view(transform: &GlobalTransform) -> Mat4 {
// the matrix z_local (opposite of transform.forward())
let fwd_dir = transform.back().extend(0.0);
@ -502,7 +502,7 @@ pub(crate) fn spot_light_view_matrix(transform: &GlobalTransform) -> Mat4 {
)
}
pub(crate) fn spot_light_projection_matrix(angle: f32) -> Mat4 {
pub(crate) fn spot_light_clip_from_view(angle: f32) -> Mat4 {
// spot light projection FOV is 2x the angle from spot light center to outer edge
Mat4::perspective_infinite_reverse_rh(angle * 2.0, 1.0, POINT_LIGHT_NEAR_Z)
}
@ -828,7 +828,7 @@ pub fn prepare_lights(
);
let mut view_lights = Vec::new();
let is_orthographic = extracted_view.projection.w_axis.w == 1.0;
let is_orthographic = extracted_view.clip_from_view.w_axis.w == 1.0;
let cluster_factors_zw = calculate_cluster_factors(
clusters.near,
clusters.far,
@ -909,9 +909,9 @@ pub fn prepare_lights(
point_light_shadow_map.size as u32,
point_light_shadow_map.size as u32,
),
transform: view_translation * *view_rotation,
view_projection: None,
projection: cube_face_projection,
world_from_view: view_translation * *view_rotation,
clip_from_world: None,
clip_from_view: cube_face_projection,
hdr: false,
color_grading: Default::default(),
},
@ -936,12 +936,12 @@ pub fn prepare_lights(
.take(spot_light_shadow_maps_count)
.enumerate()
{
let spot_view_matrix = spot_light_view_matrix(&light.transform);
let spot_view_transform = spot_view_matrix.into();
let spot_world_from_view = spot_light_world_from_view(&light.transform);
let spot_world_from_view = spot_world_from_view.into();
let angle = light.spot_light_angles.expect("lights should be sorted so that \
[point_light_count..point_light_count + spot_light_shadow_maps_count] are spot lights").1;
let spot_projection = spot_light_projection_matrix(angle);
let spot_projection = spot_light_clip_from_view(angle);
let depth_texture_view =
directional_light_depth_texture
@ -970,9 +970,9 @@ pub fn prepare_lights(
directional_light_shadow_map.size as u32,
directional_light_shadow_map.size as u32,
),
transform: spot_view_transform,
projection: spot_projection,
view_projection: None,
world_from_view: spot_world_from_view,
clip_from_view: spot_projection,
clip_from_world: None,
hdr: false,
color_grading: Default::default(),
},
@ -1027,7 +1027,7 @@ pub fn prepare_lights(
{
gpu_lights.directional_lights[light_index].cascades[cascade_index] =
GpuDirectionalCascade {
view_projection: cascade.view_projection,
clip_from_world: cascade.clip_from_world,
texel_size: cascade.texel_size,
far_bound: *bound,
};
@ -1066,9 +1066,9 @@ pub fn prepare_lights(
directional_light_shadow_map.size as u32,
directional_light_shadow_map.size as u32,
),
transform: GlobalTransform::from(cascade.view_transform),
projection: cascade.projection,
view_projection: Some(cascade.view_projection),
world_from_view: GlobalTransform::from(cascade.world_from_cascade),
clip_from_view: cascade.clip_from_cascade,
clip_from_world: Some(cascade.clip_from_world),
hdr: false,
color_grading: Default::default(),
},

View file

@ -250,22 +250,22 @@ impl Plugin for MeshRenderPlugin {
#[derive(Component)]
pub struct MeshTransforms {
pub transform: Affine3,
pub previous_transform: Affine3,
pub world_from_local: Affine3,
pub previous_world_from_local: Affine3,
pub flags: u32,
}
#[derive(ShaderType, Clone)]
pub struct MeshUniform {
// Affine 4x3 matrices transposed to 3x4
pub transform: [Vec4; 3],
pub previous_transform: [Vec4; 3],
pub world_from_local: [Vec4; 3],
pub previous_world_from_local: [Vec4; 3],
// 3x3 matrix packed in mat2x4 and f32 as:
// [0].xyz, [1].x,
// [1].yz, [2].xy
// [2].z
pub inverse_transpose_model_a: [Vec4; 2],
pub inverse_transpose_model_b: f32,
pub local_from_world_transpose_a: [Vec4; 2],
pub local_from_world_transpose_b: f32,
pub flags: u32,
// Four 16-bit unsigned normalized UV values packed into a `UVec2`:
//
@ -287,7 +287,7 @@ pub struct MeshUniform {
#[repr(C)]
pub struct MeshInputUniform {
/// Affine 4x3 matrix transposed to 3x4.
pub transform: [Vec4; 3],
pub world_from_local: [Vec4; 3],
/// Four 16-bit unsigned normalized UV values packed into a `UVec2`:
///
/// ```text
@ -334,14 +334,14 @@ pub struct MeshCullingDataBuffer(RawBufferVec<MeshCullingData>);
impl MeshUniform {
pub fn new(mesh_transforms: &MeshTransforms, maybe_lightmap_uv_rect: Option<Rect>) -> Self {
let (inverse_transpose_model_a, inverse_transpose_model_b) =
mesh_transforms.transform.inverse_transpose_3x3();
let (local_from_world_transpose_a, local_from_world_transpose_b) =
mesh_transforms.world_from_local.inverse_transpose_3x3();
Self {
transform: mesh_transforms.transform.to_transpose(),
previous_transform: mesh_transforms.previous_transform.to_transpose(),
lightmap_uv_rect: lightmap::pack_lightmap_uv_rect(maybe_lightmap_uv_rect),
inverse_transpose_model_a,
inverse_transpose_model_b,
world_from_local: mesh_transforms.world_from_local.to_transpose(),
previous_world_from_local: mesh_transforms.previous_world_from_local.to_transpose(),
lightmap_uv_rect: pack_lightmap_uv_rect(maybe_lightmap_uv_rect),
local_from_world_transpose_a,
local_from_world_transpose_b,
flags: mesh_transforms.flags,
}
}
@ -475,7 +475,7 @@ pub struct RenderMeshInstanceGpuBuilder {
/// Data that will be placed on the [`RenderMeshInstanceGpu`].
pub shared: RenderMeshInstanceShared,
/// The current transform.
pub transform: Affine3,
pub world_from_local: Affine3,
/// Four 16-bit unsigned normalized UV values packed into a [`UVec2`]:
///
/// ```text
@ -631,7 +631,7 @@ impl RenderMeshInstancesCpu {
self.get(&entity)
.map(|render_mesh_instance| RenderMeshQueueData {
shared: &render_mesh_instance.shared,
translation: render_mesh_instance.transforms.transform.translation,
translation: render_mesh_instance.transforms.world_from_local.translation,
})
}
@ -724,7 +724,7 @@ impl RenderMeshInstanceGpuBuilder {
) -> usize {
// Push the mesh input uniform.
let current_uniform_index = current_input_buffer.push(MeshInputUniform {
transform: self.transform.to_transpose(),
world_from_local: self.world_from_local.to_transpose(),
lightmap_uv_rect: self.lightmap_uv_rect,
flags: self.mesh_flags.bits(),
previous_input_index: match self.previous_input_index {
@ -737,7 +737,7 @@ impl RenderMeshInstanceGpuBuilder {
render_mesh_instances.insert(
entity,
RenderMeshInstanceGpu {
translation: self.transform.translation,
translation: self.world_from_local.translation,
shared: self.shared,
current_uniform_index: (current_uniform_index as u32)
.try_into()
@ -859,13 +859,15 @@ pub fn extract_meshes_for_cpu_building(
no_automatic_batching,
);
let transform = transform.affine();
let world_from_local = transform.affine();
queue.push((
entity,
RenderMeshInstanceCpu {
transforms: MeshTransforms {
transform: (&transform).into(),
previous_transform: (&previous_transform.map(|t| t.0).unwrap_or(transform))
world_from_local: (&world_from_local).into(),
previous_world_from_local: (&previous_transform
.map(|t| t.0)
.unwrap_or(world_from_local))
.into(),
flags: mesh_flags.bits(),
},
@ -995,7 +997,7 @@ pub fn extract_meshes_for_gpu_building(
let gpu_mesh_instance_builder = RenderMeshInstanceGpuBuilder {
shared,
transform: (&transform.affine()).into(),
world_from_local: (&transform.affine()).into(),
lightmap_uv_rect,
mesh_flags,
previous_input_index,

View file

@ -38,16 +38,16 @@ fn vertex(vertex_no_morph: Vertex) -> VertexOutput {
#endif
#ifdef SKINNED
var model = skinning::skin_model(vertex.joint_indices, vertex.joint_weights);
var world_from_local = skinning::skin_model(vertex.joint_indices, vertex.joint_weights);
#else
// Use vertex_no_morph.instance_index instead of vertex.instance_index to work around a wgpu dx12 bug.
// See https://github.com/gfx-rs/naga/issues/2416 .
var model = mesh_functions::get_model_matrix(vertex_no_morph.instance_index);
var world_from_local = mesh_functions::get_world_from_local(vertex_no_morph.instance_index);
#endif
#ifdef VERTEX_NORMALS
#ifdef SKINNED
out.world_normal = skinning::skin_normals(model, vertex.normal);
out.world_normal = skinning::skin_normals(world_from_local, vertex.normal);
#else
out.world_normal = mesh_functions::mesh_normal_local_to_world(
vertex.normal,
@ -59,7 +59,7 @@ fn vertex(vertex_no_morph: Vertex) -> VertexOutput {
#endif
#ifdef VERTEX_POSITIONS
out.world_position = mesh_functions::mesh_position_local_to_world(model, vec4<f32>(vertex.position, 1.0));
out.world_position = mesh_functions::mesh_position_local_to_world(world_from_local, vec4<f32>(vertex.position, 1.0));
out.position = position_world_to_clip(out.world_position.xyz);
#endif
@ -72,7 +72,7 @@ fn vertex(vertex_no_morph: Vertex) -> VertexOutput {
#ifdef VERTEX_TANGENTS
out.world_tangent = mesh_functions::mesh_tangent_local_to_world(
model,
world_from_local,
vertex.tangent,
// Use vertex_no_morph.instance_index instead of vertex.instance_index to work around a wgpu dx12 bug.
// See https://github.com/gfx-rs/naga/issues/2416
@ -92,7 +92,7 @@ fn vertex(vertex_no_morph: Vertex) -> VertexOutput {
#ifdef VISIBILITY_RANGE_DITHER
out.visibility_range_dither = mesh_functions::get_visibility_range_dither_level(
vertex_no_morph.instance_index, model[3]);
vertex_no_morph.instance_index, world_from_local[3]);
#endif
return out;

View file

@ -13,23 +13,23 @@
#import bevy_render::maths::{affine3_to_square, mat2x4_f32_to_mat3x3_unpack}
fn get_model_matrix(instance_index: u32) -> mat4x4<f32> {
return affine3_to_square(mesh[instance_index].model);
fn get_world_from_local(instance_index: u32) -> mat4x4<f32> {
return affine3_to_square(mesh[instance_index].world_from_local);
}
fn get_previous_model_matrix(instance_index: u32) -> mat4x4<f32> {
return affine3_to_square(mesh[instance_index].previous_model);
fn get_previous_world_from_local(instance_index: u32) -> mat4x4<f32> {
return affine3_to_square(mesh[instance_index].previous_world_from_local);
}
fn mesh_position_local_to_world(model: mat4x4<f32>, vertex_position: vec4<f32>) -> vec4<f32> {
return model * vertex_position;
fn mesh_position_local_to_world(world_from_local: mat4x4<f32>, vertex_position: vec4<f32>) -> vec4<f32> {
return world_from_local * vertex_position;
}
// NOTE: The intermediate world_position assignment is important
// for precision purposes when using the 'equals' depth comparison
// function.
fn mesh_position_local_to_clip(model: mat4x4<f32>, vertex_position: vec4<f32>) -> vec4<f32> {
let world_position = mesh_position_local_to_world(model, vertex_position);
fn mesh_position_local_to_clip(world_from_local: mat4x4<f32>, vertex_position: vec4<f32>) -> vec4<f32> {
let world_position = mesh_position_local_to_world(world_from_local, vertex_position);
return position_world_to_clip(world_position.xyz);
}
@ -44,8 +44,8 @@ fn mesh_normal_local_to_world(vertex_normal: vec3<f32>, instance_index: u32) ->
if any(vertex_normal != vec3<f32>(0.0)) {
return normalize(
mat2x4_f32_to_mat3x3_unpack(
mesh[instance_index].inverse_transpose_model_a,
mesh[instance_index].inverse_transpose_model_b,
mesh[instance_index].local_from_world_transpose_a,
mesh[instance_index].local_from_world_transpose_b,
) * vertex_normal
);
} else {
@ -62,7 +62,7 @@ fn sign_determinant_model_3x3m(instance_index: u32) -> f32 {
return f32(bool(mesh[instance_index].flags & MESH_FLAGS_SIGN_DETERMINANT_MODEL_3X3_BIT)) * 2.0 - 1.0;
}
fn mesh_tangent_local_to_world(model: mat4x4<f32>, vertex_tangent: vec4<f32>, instance_index: u32) -> vec4<f32> {
fn mesh_tangent_local_to_world(world_from_local: mat4x4<f32>, vertex_tangent: vec4<f32>, instance_index: u32) -> vec4<f32> {
// NOTE: The mikktspace method of normal mapping requires that the world tangent is
// re-normalized in the vertex shader to match the way mikktspace bakes vertex tangents
// and normal maps so that the exact inverse process is applied when shading. Blender, Unity,
@ -74,9 +74,9 @@ fn mesh_tangent_local_to_world(model: mat4x4<f32>, vertex_tangent: vec4<f32>, in
return vec4<f32>(
normalize(
mat3x3<f32>(
model[0].xyz,
model[1].xyz,
model[2].xyz
world_from_local[0].xyz,
world_from_local[1].xyz,
world_from_local[2].xyz
) * vertex_tangent.xyz
),
// NOTE: Multiplying by the sign of the determinant of the 3x3 model matrix accounts for

View file

@ -14,7 +14,7 @@
// Per-frame data that the CPU supplies to the GPU.
struct MeshInput {
// The model transform.
model: mat3x4<f32>,
world_from_local: mat3x4<f32>,
// The lightmap UV rect, packed into 64 bits.
lightmap_uv_rect: vec2<u32>,
// Various flags.
@ -92,7 +92,7 @@ struct IndirectParameters {
//
// `aabb_center.w` should be 1.0.
fn view_frustum_intersects_obb(
model: mat4x4<f32>,
world_from_local: mat4x4<f32>,
aabb_center: vec4<f32>,
aabb_half_extents: vec3<f32>,
) -> bool {
@ -103,9 +103,9 @@ fn view_frustum_intersects_obb(
let relative_radius = dot(
abs(
vec3(
dot(plane_normal, model[0]),
dot(plane_normal, model[1]),
dot(plane_normal, model[2]),
dot(plane_normal, world_from_local[0]),
dot(plane_normal, world_from_local[1]),
dot(plane_normal, world_from_local[2]),
)
),
aabb_half_extents
@ -135,8 +135,8 @@ fn main(@builtin(global_invocation_id) global_invocation_id: vec3<u32>) {
// Unpack.
let input_index = work_items[instance_index].input_index;
let output_index = work_items[instance_index].output_index;
let model_affine_transpose = current_input[input_index].model;
let model = maths::affine3_to_square(model_affine_transpose);
let world_from_local_affine_transpose = current_input[input_index].world_from_local;
let world_from_local = maths::affine3_to_square(world_from_local_affine_transpose);
// Cull if necessary.
#ifdef FRUSTUM_CULLING
@ -144,29 +144,29 @@ fn main(@builtin(global_invocation_id) global_invocation_id: vec3<u32>) {
let aabb_half_extents = mesh_culling_data[input_index].aabb_half_extents.xyz;
// Do an OBB-based frustum cull.
let model_center = model * vec4(aabb_center, 1.0);
if (!view_frustum_intersects_obb(model, model_center, aabb_half_extents)) {
let model_center = world_from_local * vec4(aabb_center, 1.0);
if (!view_frustum_intersects_obb(world_from_local, model_center, aabb_half_extents)) {
return;
}
#endif
// Calculate inverse transpose.
let inverse_transpose_model = transpose(maths::inverse_affine3(transpose(
model_affine_transpose)));
let local_from_world_transpose = transpose(maths::inverse_affine3(transpose(
world_from_local_affine_transpose)));
// Pack inverse transpose.
let inverse_transpose_model_a = mat2x4<f32>(
vec4<f32>(inverse_transpose_model[0].xyz, inverse_transpose_model[1].x),
vec4<f32>(inverse_transpose_model[1].yz, inverse_transpose_model[2].xy));
let inverse_transpose_model_b = inverse_transpose_model[2].z;
let local_from_world_transpose_a = mat2x4<f32>(
vec4<f32>(local_from_world_transpose[0].xyz, local_from_world_transpose[1].x),
vec4<f32>(local_from_world_transpose[1].yz, local_from_world_transpose[2].xy));
let local_from_world_transpose_b = local_from_world_transpose[2].z;
// Look up the previous model matrix.
let previous_input_index = current_input[input_index].previous_input_index;
var previous_model: mat3x4<f32>;
var previous_world_from_local: mat3x4<f32>;
if (previous_input_index == 0xffffffff) {
previous_model = model_affine_transpose;
previous_world_from_local = world_from_local_affine_transpose;
} else {
previous_model = previous_input[previous_input_index].model;
previous_world_from_local = previous_input[previous_input_index].world_from_local;
}
// Figure out the output index. In indirect mode, this involves bumping the
@ -180,10 +180,10 @@ fn main(@builtin(global_invocation_id) global_invocation_id: vec3<u32>) {
#endif
// Write the output.
output[mesh_output_index].model = model_affine_transpose;
output[mesh_output_index].previous_model = previous_model;
output[mesh_output_index].inverse_transpose_model_a = inverse_transpose_model_a;
output[mesh_output_index].inverse_transpose_model_b = inverse_transpose_model_b;
output[mesh_output_index].world_from_local = world_from_local_affine_transpose;
output[mesh_output_index].previous_world_from_local = previous_world_from_local;
output[mesh_output_index].local_from_world_transpose_a = local_from_world_transpose_a;
output[mesh_output_index].local_from_world_transpose_b = local_from_world_transpose_b;
output[mesh_output_index].flags = current_input[input_index].flags;
output[mesh_output_index].lightmap_uv_rect = current_input[input_index].lightmap_uv_rect;
}

View file

@ -3,15 +3,15 @@
struct Mesh {
// Affine 4x3 matrices transposed to 3x4
// Use bevy_render::maths::affine3_to_square to unpack
model: mat3x4<f32>,
previous_model: mat3x4<f32>,
world_from_local: mat3x4<f32>,
previous_world_from_local: mat3x4<f32>,
// 3x3 matrix packed in mat2x4 and f32 as:
// [0].xyz, [1].x,
// [1].yz, [2].xy
// [2].z
// Use bevy_pbr::mesh_functions::mat2x4_f32_to_mat3x3_unpack to unpack
inverse_transpose_model_a: mat2x4<f32>,
inverse_transpose_model_b: f32,
local_from_world_transpose_a: mat2x4<f32>,
local_from_world_transpose_b: f32,
// 'flags' is a bit field indicating various options. u32 is 32 bits so we have up to 32 options.
flags: u32,
lightmap_uv_rect: vec2<u32>,

View file

@ -17,7 +17,7 @@ const POINT_LIGHT_FLAGS_SHADOWS_ENABLED_BIT: u32 = 1u;
const POINT_LIGHT_FLAGS_SPOT_LIGHT_Y_NEGATIVE: u32 = 2u;
struct DirectionalCascade {
view_projection: mat4x4<f32>,
clip_from_world: mat4x4<f32>,
texel_size: f32,
far_bound: f32,
}
@ -115,7 +115,7 @@ struct ClusterOffsetsAndCounts {
struct LightProbe {
// This is stored as the transpose in order to save space in this structure.
// It'll be transposed in the `environment_map_light` function.
inverse_transpose_transform: mat3x4<f32>,
light_from_world_transposed: mat3x4<f32>,
cubemap_index: i32,
intensity: f32,
};

View file

@ -40,7 +40,7 @@ fn pbr_input_from_vertex_output(
pbr_input.flags = mesh[in.instance_index].flags;
#endif
pbr_input.is_orthographic = view.projection[3].w == 1.0;
pbr_input.is_orthographic = view.clip_from_view[3].w == 1.0;
pbr_input.V = pbr_functions::calculate_view(in.world_position, pbr_input.is_orthographic);
pbr_input.frag_coord = in.position;
pbr_input.world_position = in.world_position;
@ -297,7 +297,7 @@ fn pbr_input_from_standard_material(
// TODO: Meshlet support
#ifndef MESHLET_MESH_MATERIAL_PASS
thickness *= length(
(transpose(mesh[in.instance_index].model) * vec4(pbr_input.N, 0.0)).xyz
(transpose(mesh[in.instance_index].world_from_local) * vec4(pbr_input.N, 0.0)).xyz
);
#endif
pbr_input.material.thickness = thickness;

View file

@ -213,7 +213,7 @@ fn calculate_view(
var V: vec3<f32>;
if is_orthographic {
// Orthographic view vector
V = normalize(vec3<f32>(view_bindings::view.view_proj[0].z, view_bindings::view.view_proj[1].z, view_bindings::view.view_proj[2].z));
V = normalize(vec3<f32>(view_bindings::view.clip_from_world[0].z, view_bindings::view.clip_from_world[1].z, view_bindings::view.clip_from_world[2].z));
} else {
// Only valid for a perspective projection
V = normalize(view_bindings::view.world_position.xyz - world_position.xyz);
@ -342,10 +342,10 @@ fn apply_pbr_lighting(
#endif // STANDARD_MATERIAL_DIFFUSE_TRANSMISSION
let view_z = dot(vec4<f32>(
view_bindings::view.inverse_view[0].z,
view_bindings::view.inverse_view[1].z,
view_bindings::view.inverse_view[2].z,
view_bindings::view.inverse_view[3].z
view_bindings::view.view_from_world[0].z,
view_bindings::view.view_from_world[1].z,
view_bindings::view.view_from_world[2].z,
view_bindings::view.view_from_world[3].z
), in.world_position);
let cluster_index = clustering::fragment_cluster_index(in.frag_coord.xy, view_z, in.is_orthographic);
let offset_and_counts = clustering::unpack_offset_and_counts(cluster_index);

View file

@ -53,9 +53,9 @@ fn prepass_alpha_discard(in: VertexOutput) {
#ifdef MOTION_VECTOR_PREPASS
fn calculate_motion_vector(world_position: vec4<f32>, previous_world_position: vec4<f32>) -> vec2<f32> {
let clip_position_t = view.unjittered_view_proj * world_position;
let clip_position_t = view.unjittered_clip_from_world * world_position;
let clip_position = clip_position_t.xy / clip_position_t.w;
let previous_clip_position_t = previous_view_uniforms.view_proj * previous_world_position;
let previous_clip_position_t = previous_view_uniforms.clip_from_world * previous_world_position;
let previous_clip_position = previous_clip_position_t.xy / previous_clip_position_t.w;
// These motion vectors are used as offsets to UV positions and are stored
// in the range -1,1 to allow offsetting from the one corner to the

View file

@ -30,7 +30,7 @@ fn specular_transmissive_light(world_position: vec4<f32>, frag_coord: vec3<f32>,
let exit_position = world_position.xyz + T * thickness;
// Transform exit_position into clip space
let clip_exit_position = view_bindings::view.view_proj * vec4<f32>(exit_position, 1.0);
let clip_exit_position = view_bindings::view.clip_from_world * vec4<f32>(exit_position, 1.0);
// Scale / offset position so that coordinate is in right space for sampling transmissive background texture
let offset_position = (clip_exit_position.xy / clip_exit_position.w) * vec2<f32>(0.5, -0.5) + 0.5;

View file

@ -125,7 +125,7 @@ fn world_to_directional_light_local(
let light = &view_bindings::lights.directional_lights[light_id];
let cascade = &(*light).cascades[cascade_index];
let offset_position_clip = (*cascade).view_projection * offset_position;
let offset_position_clip = (*cascade).clip_from_world * offset_position;
if (offset_position_clip.w <= 0.0) {
return vec4(0.0);
}

View file

@ -51,15 +51,15 @@ fn inverse_transpose_3x3m(in: mat3x3<f32>) -> mat3x3<f32> {
}
fn skin_normals(
model: mat4x4<f32>,
world_from_local: mat4x4<f32>,
normal: vec3<f32>,
) -> vec3<f32> {
return normalize(
inverse_transpose_3x3m(
mat3x3<f32>(
model[0].xyz,
model[1].xyz,
model[2].xyz
world_from_local[0].xyz,
world_from_local[1].xyz,
world_from_local[2].xyz
)
) * normal
);

View file

@ -31,31 +31,31 @@
/// Convert a view space position to world space
fn position_view_to_world(view_pos: vec3<f32>) -> vec3<f32> {
let world_pos = view_bindings::view.view * vec4(view_pos, 1.0);
let world_pos = view_bindings::view.world_from_view * vec4(view_pos, 1.0);
return world_pos.xyz;
}
/// Convert a clip space position to world space
fn position_clip_to_world(clip_pos: vec4<f32>) -> vec3<f32> {
let world_pos = view_bindings::view.inverse_view_proj * clip_pos;
let world_pos = view_bindings::view.world_from_clip * clip_pos;
return world_pos.xyz;
}
/// Convert a ndc space position to world space
fn position_ndc_to_world(ndc_pos: vec3<f32>) -> vec3<f32> {
let world_pos = view_bindings::view.inverse_view_proj * vec4(ndc_pos, 1.0);
let world_pos = view_bindings::view.world_from_clip * vec4(ndc_pos, 1.0);
return world_pos.xyz / world_pos.w;
}
/// Convert a view space direction to world space
fn direction_view_to_world(view_dir: vec3<f32>) -> vec3<f32> {
let world_dir = view_bindings::view.view * vec4(view_dir, 0.0);
let world_dir = view_bindings::view.world_from_view * vec4(view_dir, 0.0);
return world_dir.xyz;
}
/// Convert a clip space direction to world space
fn direction_clip_to_world(clip_dir: vec4<f32>) -> vec3<f32> {
let world_dir = view_bindings::view.inverse_view_proj * clip_dir;
let world_dir = view_bindings::view.world_from_clip * clip_dir;
return world_dir.xyz;
}
@ -65,31 +65,31 @@ fn direction_clip_to_world(clip_dir: vec4<f32>) -> vec3<f32> {
/// Convert a world space position to view space
fn position_world_to_view(world_pos: vec3<f32>) -> vec3<f32> {
let view_pos = view_bindings::view.inverse_view * vec4(world_pos, 1.0);
let view_pos = view_bindings::view.view_from_world * vec4(world_pos, 1.0);
return view_pos.xyz;
}
/// Convert a clip space position to view space
fn position_clip_to_view(clip_pos: vec4<f32>) -> vec3<f32> {
let view_pos = view_bindings::view.inverse_projection * clip_pos;
let view_pos = view_bindings::view.view_from_clip * clip_pos;
return view_pos.xyz;
}
/// Convert a ndc space position to view space
fn position_ndc_to_view(ndc_pos: vec3<f32>) -> vec3<f32> {
let view_pos = view_bindings::view.inverse_projection * vec4(ndc_pos, 1.0);
let view_pos = view_bindings::view.view_from_clip * vec4(ndc_pos, 1.0);
return view_pos.xyz / view_pos.w;
}
/// Convert a world space direction to view space
fn direction_world_to_view(world_dir: vec3<f32>) -> vec3<f32> {
let view_dir = view_bindings::view.inverse_view * vec4(world_dir, 0.0);
let view_dir = view_bindings::view.view_from_world * vec4(world_dir, 0.0);
return view_dir.xyz;
}
/// Convert a clip space direction to view space
fn direction_clip_to_view(clip_dir: vec4<f32>) -> vec3<f32> {
let view_dir = view_bindings::view.inverse_projection * clip_dir;
let view_dir = view_bindings::view.view_from_clip * clip_dir;
return view_dir.xyz;
}
@ -99,25 +99,25 @@ fn direction_clip_to_view(clip_dir: vec4<f32>) -> vec3<f32> {
/// Convert a world space position to clip space
fn position_world_to_clip(world_pos: vec3<f32>) -> vec4<f32> {
let clip_pos = view_bindings::view.view_proj * vec4(world_pos, 1.0);
let clip_pos = view_bindings::view.clip_from_world * vec4(world_pos, 1.0);
return clip_pos;
}
/// Convert a view space position to clip space
fn position_view_to_clip(view_pos: vec3<f32>) -> vec4<f32> {
let clip_pos = view_bindings::view.projection * vec4(view_pos, 1.0);
let clip_pos = view_bindings::view.clip_from_view * vec4(view_pos, 1.0);
return clip_pos;
}
/// Convert a world space direction to clip space
fn direction_world_to_clip(world_dir: vec3<f32>) -> vec4<f32> {
let clip_dir = view_bindings::view.view_proj * vec4(world_dir, 0.0);
let clip_dir = view_bindings::view.clip_from_world * vec4(world_dir, 0.0);
return clip_dir;
}
/// Convert a view space direction to clip space
fn direction_view_to_clip(view_dir: vec3<f32>) -> vec4<f32> {
let clip_dir = view_bindings::view.projection * vec4(view_dir, 0.0);
let clip_dir = view_bindings::view.clip_from_view * vec4(view_dir, 0.0);
return clip_dir;
}
@ -127,13 +127,13 @@ fn direction_view_to_clip(view_dir: vec3<f32>) -> vec4<f32> {
/// Convert a world space position to ndc space
fn position_world_to_ndc(world_pos: vec3<f32>) -> vec3<f32> {
let ndc_pos = view_bindings::view.view_proj * vec4(world_pos, 1.0);
let ndc_pos = view_bindings::view.clip_from_world * vec4(world_pos, 1.0);
return ndc_pos.xyz / ndc_pos.w;
}
/// Convert a view space position to ndc space
fn position_view_to_ndc(view_pos: vec3<f32>) -> vec3<f32> {
let ndc_pos = view_bindings::view.projection * vec4(view_pos, 1.0);
let ndc_pos = view_bindings::view.clip_from_view * vec4(view_pos, 1.0);
return ndc_pos.xyz / ndc_pos.w;
}
@ -143,7 +143,7 @@ fn position_view_to_ndc(view_pos: vec3<f32>) -> vec3<f32> {
/// Retrieve the perspective camera near clipping plane
fn perspective_camera_near() -> f32 {
return view_bindings::view.projection[3][2];
return view_bindings::view.clip_from_view[3][2];
}
/// Convert ndc depth to linear view z.
@ -152,9 +152,9 @@ fn depth_ndc_to_view_z(ndc_depth: f32) -> f32 {
#ifdef VIEW_PROJECTION_PERSPECTIVE
return -perspective_camera_near() / ndc_depth;
#else ifdef VIEW_PROJECTION_ORTHOGRAPHIC
return -(view_bindings::view.projection[3][2] - ndc_depth) / view_bindings::view.projection[2][2];
return -(view_bindings::view.clip_from_view[3][2] - ndc_depth) / view_bindings::view.clip_from_view[2][2];
#else
let view_pos = view_bindings::view.inverse_projection * vec4(0.0, 0.0, ndc_depth, 1.0);
let view_pos = view_bindings::view.view_from_clip * vec4(0.0, 0.0, ndc_depth, 1.0);
return view_pos.z / view_pos.w;
#endif
}
@ -165,9 +165,9 @@ fn view_z_to_depth_ndc(view_z: f32) -> f32 {
#ifdef VIEW_PROJECTION_PERSPECTIVE
return -perspective_camera_near() / view_z;
#else ifdef VIEW_PROJECTION_ORTHOGRAPHIC
return view_bindings::view.projection[3][2] + view_z * view_bindings::view.projection[2][2];
return view_bindings::view.clip_from_view[3][2] + view_z * view_bindings::view.clip_from_view[2][2];
#else
let ndc_pos = view_bindings::view.projection * vec4(0.0, 0.0, view_z, 1.0);
let ndc_pos = view_bindings::view.clip_from_view * vec4(0.0, 0.0, view_z, 1.0);
return ndc_pos.z / ndc_pos.w;
#endif
}

View file

@ -65,17 +65,17 @@ fn calculate_neighboring_depth_differences(pixel_coordinates: vec2<i32>) -> f32
fn load_normal_view_space(uv: vec2<f32>) -> vec3<f32> {
var world_normal = textureSampleLevel(normals, point_clamp_sampler, uv, 0.0).xyz;
world_normal = (world_normal * 2.0) - 1.0;
let inverse_view = mat3x3<f32>(
view.inverse_view[0].xyz,
view.inverse_view[1].xyz,
view.inverse_view[2].xyz,
let view_from_world = mat3x3<f32>(
view.view_from_world[0].xyz,
view.view_from_world[1].xyz,
view.view_from_world[2].xyz,
);
return inverse_view * world_normal;
return view_from_world * world_normal;
}
fn reconstruct_view_space_position(depth: f32, uv: vec2<f32>) -> vec3<f32> {
let clip_xy = vec2<f32>(uv.x * 2.0 - 1.0, 1.0 - 2.0 * uv.y);
let t = view.inverse_projection * vec4<f32>(clip_xy, depth, 1.0);
let t = view.view_from_clip * vec4<f32>(clip_xy, depth, 1.0);
let view_xyz = t.xyz / t.w;
return view_xyz;
}
@ -107,7 +107,7 @@ fn gtao(@builtin(global_invocation_id) global_id: vec3<u32>) {
let view_vec = normalize(-pixel_position);
let noise = load_noise(pixel_coordinates);
let sample_scale = (-0.5 * effect_radius * view.projection[0][0]) / pixel_position.z;
let sample_scale = (-0.5 * effect_radius * view.clip_from_view[0][0]) / pixel_position.z;
var visibility = 0.0;
for (var slice_t = 0.0; slice_t < slice_count; slice_t += 1.0) {

View file

@ -82,7 +82,7 @@ pub struct RenderTargetInfo {
/// Holds internally computed [`Camera`] values.
#[derive(Default, Debug, Clone)]
pub struct ComputedCameraValues {
projection_matrix: Mat4,
clip_from_view: Mat4,
target_info: Option<RenderTargetInfo>,
// size of the `Viewport`
old_viewport_size: Option<UVec2>,
@ -340,8 +340,8 @@ impl Camera {
/// The projection matrix computed using this camera's [`CameraProjection`].
#[inline]
pub fn projection_matrix(&self) -> Mat4 {
self.computed.projection_matrix
pub fn clip_from_view(&self) -> Mat4 {
self.computed.clip_from_view
}
/// Given a position in world space, use the camera to compute the viewport-space coordinates.
@ -398,7 +398,7 @@ impl Camera {
let ndc = viewport_position * 2. / target_size - Vec2::ONE;
let ndc_to_world =
camera_transform.compute_matrix() * self.computed.projection_matrix.inverse();
camera_transform.compute_matrix() * self.computed.clip_from_view.inverse();
let world_near_plane = ndc_to_world.project_point3(ndc.extend(1.));
// Using EPSILON because an ndc with Z = 0 returns NaNs.
let world_far_plane = ndc_to_world.project_point3(ndc.extend(f32::EPSILON));
@ -453,9 +453,9 @@ impl Camera {
world_position: Vec3,
) -> Option<Vec3> {
// Build a transformation matrix to convert from world space to NDC using camera data
let world_to_ndc: Mat4 =
self.computed.projection_matrix * camera_transform.compute_matrix().inverse();
let ndc_space_coords: Vec3 = world_to_ndc.project_point3(world_position);
let clip_from_world: Mat4 =
self.computed.clip_from_view * camera_transform.compute_matrix().inverse();
let ndc_space_coords: Vec3 = clip_from_world.project_point3(world_position);
(!ndc_space_coords.is_nan()).then_some(ndc_space_coords)
}
@ -473,7 +473,7 @@ impl Camera {
pub fn ndc_to_world(&self, camera_transform: &GlobalTransform, ndc: Vec3) -> Option<Vec3> {
// Build a transformation matrix to convert from NDC to world space using camera data
let ndc_to_world =
camera_transform.compute_matrix() * self.computed.projection_matrix.inverse();
camera_transform.compute_matrix() * self.computed.clip_from_view.inverse();
let world_space_coords = ndc_to_world.project_point3(ndc);
@ -786,7 +786,7 @@ pub fn camera_system<T: CameraProjection + Component>(
camera.computed.target_info = new_computed_target_info;
if let Some(size) = camera.logical_viewport_size() {
camera_projection.update(size.x, size.y);
camera.computed.projection_matrix = camera_projection.get_projection_matrix();
camera.computed.clip_from_view = camera_projection.get_clip_from_view();
}
}
}
@ -905,9 +905,9 @@ pub fn extract_cameras(
.unwrap_or_else(|| Exposure::default().exposure()),
},
ExtractedView {
projection: camera.projection_matrix(),
transform: *transform,
view_projection: None,
clip_from_view: camera.clip_from_view(),
world_from_view: *transform,
clip_from_world: None,
hdr: camera.hdr,
viewport: UVec4::new(
viewport_origin.x,
@ -1021,8 +1021,8 @@ pub struct TemporalJitter {
}
impl TemporalJitter {
pub fn jitter_projection(&self, projection: &mut Mat4, view_size: Vec2) {
if projection.w_axis.w == 1.0 {
pub fn jitter_projection(&self, clip_from_view: &mut Mat4, view_size: Vec2) {
if clip_from_view.w_axis.w == 1.0 {
warn!(
"TemporalJitter not supported with OrthographicProjection. Use PerspectiveProjection instead."
);
@ -1032,8 +1032,8 @@ impl TemporalJitter {
// https://github.com/GPUOpen-LibrariesAndSDKs/FidelityFX-SDK/blob/d7531ae47d8b36a5d4025663e731a47a38be882f/docs/techniques/media/super-resolution-temporal/jitter-space.svg
let jitter = (self.offset * vec2(2.0, -2.0)) / view_size;
projection.z_axis.x += jitter.x;
projection.z_axis.y += jitter.y;
clip_from_view.z_axis.x += jitter.x;
clip_from_view.z_axis.y += jitter.y;
}
}

View file

@ -75,7 +75,7 @@ pub struct CameraUpdateSystem;
///
/// [`Camera`]: crate::camera::Camera
pub trait CameraProjection {
fn get_projection_matrix(&self) -> Mat4;
fn get_clip_from_view(&self) -> Mat4;
fn update(&mut self, width: f32, height: f32);
fn far(&self) -> f32;
fn get_frustum_corners(&self, z_near: f32, z_far: f32) -> [Vec3A; 8];
@ -85,10 +85,10 @@ pub trait CameraProjection {
/// This code is called by [`update_frusta`](crate::view::visibility::update_frusta) system
/// for each camera to update its frustum.
fn compute_frustum(&self, camera_transform: &GlobalTransform) -> Frustum {
let view_projection =
self.get_projection_matrix() * camera_transform.compute_matrix().inverse();
Frustum::from_view_projection_custom_far(
&view_projection,
let clip_from_world =
self.get_clip_from_view() * camera_transform.compute_matrix().inverse();
Frustum::from_clip_from_world_custom_far(
&clip_from_world,
&camera_transform.translation(),
&camera_transform.back(),
self.far(),
@ -117,10 +117,10 @@ impl From<OrthographicProjection> for Projection {
}
impl CameraProjection for Projection {
fn get_projection_matrix(&self) -> Mat4 {
fn get_clip_from_view(&self) -> Mat4 {
match self {
Projection::Perspective(projection) => projection.get_projection_matrix(),
Projection::Orthographic(projection) => projection.get_projection_matrix(),
Projection::Perspective(projection) => projection.get_clip_from_view(),
Projection::Orthographic(projection) => projection.get_clip_from_view(),
}
}
@ -185,7 +185,7 @@ pub struct PerspectiveProjection {
}
impl CameraProjection for PerspectiveProjection {
fn get_projection_matrix(&self) -> Mat4 {
fn get_clip_from_view(&self) -> Mat4 {
Mat4::perspective_infinite_reverse_rh(self.fov, self.aspect_ratio, self.near)
}
@ -391,7 +391,7 @@ pub struct OrthographicProjection {
}
impl CameraProjection for OrthographicProjection {
fn get_projection_matrix(&self) -> Mat4 {
fn get_clip_from_view(&self) -> Mat4 {
Mat4::orthographic_rh(
self.area.min.x,
self.area.max.x,

View file

@ -76,13 +76,13 @@ impl Aabb {
/// Calculate the relative radius of the AABB with respect to a plane
#[inline]
pub fn relative_radius(&self, p_normal: &Vec3A, model: &Mat3A) -> f32 {
pub fn relative_radius(&self, p_normal: &Vec3A, world_from_local: &Mat3A) -> f32 {
// NOTE: dot products on Vec3A use SIMD and even with the overhead of conversion are net faster than Vec3
let half_extents = self.half_extents;
Vec3A::new(
p_normal.dot(model.x_axis),
p_normal.dot(model.y_axis),
p_normal.dot(model.z_axis),
p_normal.dot(world_from_local.x_axis),
p_normal.dot(world_from_local.y_axis),
p_normal.dot(world_from_local.z_axis),
)
.abs()
.dot(half_extents)
@ -117,11 +117,11 @@ pub struct Sphere {
impl Sphere {
#[inline]
pub fn intersects_obb(&self, aabb: &Aabb, local_to_world: &Affine3A) -> bool {
let aabb_center_world = local_to_world.transform_point3a(aabb.center);
pub fn intersects_obb(&self, aabb: &Aabb, world_from_local: &Affine3A) -> bool {
let aabb_center_world = world_from_local.transform_point3a(aabb.center);
let v = aabb_center_world - self.center;
let d = v.length();
let relative_radius = aabb.relative_radius(&(v / d), &local_to_world.matrix3);
let relative_radius = aabb.relative_radius(&(v / d), &world_from_local.matrix3);
d < self.radius + relative_radius
}
}
@ -219,24 +219,24 @@ pub struct Frustum {
}
impl Frustum {
/// Returns a frustum derived from `view_projection`.
/// Returns a frustum derived from `clip_from_world`.
#[inline]
pub fn from_view_projection(view_projection: &Mat4) -> Self {
let mut frustum = Frustum::from_view_projection_no_far(view_projection);
frustum.half_spaces[5] = HalfSpace::new(view_projection.row(2));
pub fn from_clip_from_world(clip_from_world: &Mat4) -> Self {
let mut frustum = Frustum::from_clip_from_world_no_far(clip_from_world);
frustum.half_spaces[5] = HalfSpace::new(clip_from_world.row(2));
frustum
}
/// Returns a frustum derived from `view_projection`,
/// Returns a frustum derived from `clip_from_world`,
/// but with a custom far plane.
#[inline]
pub fn from_view_projection_custom_far(
view_projection: &Mat4,
pub fn from_clip_from_world_custom_far(
clip_from_world: &Mat4,
view_translation: &Vec3,
view_backward: &Vec3,
far: f32,
) -> Self {
let mut frustum = Frustum::from_view_projection_no_far(view_projection);
let mut frustum = Frustum::from_clip_from_world_no_far(clip_from_world);
let far_center = *view_translation - far * *view_backward;
frustum.half_spaces[5] =
HalfSpace::new(view_backward.extend(-view_backward.dot(far_center)));
@ -248,11 +248,11 @@ impl Frustum {
// Rendering by Lengyel.
/// Returns a frustum derived from `view_projection`,
/// without a far plane.
fn from_view_projection_no_far(view_projection: &Mat4) -> Self {
let row3 = view_projection.row(3);
fn from_clip_from_world_no_far(clip_from_world: &Mat4) -> Self {
let row3 = clip_from_world.row(3);
let mut half_spaces = [HalfSpace::default(); 6];
for (i, half_space) in half_spaces.iter_mut().enumerate().take(5) {
let row = view_projection.row(i / 2);
let row = clip_from_world.row(i / 2);
*half_space = HalfSpace::new(if (i & 1) == 0 && i != 4 {
row3 + row
} else {
@ -280,11 +280,11 @@ impl Frustum {
pub fn intersects_obb(
&self,
aabb: &Aabb,
model_to_world: &Affine3A,
world_from_local: &Affine3A,
intersect_near: bool,
intersect_far: bool,
) -> bool {
let aabb_center_world = model_to_world.transform_point3a(aabb.center).extend(1.0);
let aabb_center_world = world_from_local.transform_point3a(aabb.center).extend(1.0);
for (idx, half_space) in self.half_spaces.into_iter().enumerate() {
if idx == 4 && !intersect_near {
continue;
@ -293,7 +293,7 @@ impl Frustum {
continue;
}
let p_normal = half_space.normal();
let relative_radius = aabb.relative_radius(&p_normal, &model_to_world.matrix3);
let relative_radius = aabb.relative_radius(&p_normal, &world_from_local.matrix3);
if half_space.normal_d().dot(aabb_center_world) + relative_radius <= 0.0 {
return false;
}

View file

@ -2,16 +2,16 @@ use bevy_math::{Mat4, Vec3, Vec4};
/// A distance calculator for the draw order of [`PhaseItem`](crate::render_phase::PhaseItem)s.
pub struct ViewRangefinder3d {
inverse_view_row_2: Vec4,
view_from_world_row_2: Vec4,
}
impl ViewRangefinder3d {
/// Creates a 3D rangefinder for a view matrix.
pub fn from_view_matrix(view_matrix: &Mat4) -> ViewRangefinder3d {
let inverse_view_matrix = view_matrix.inverse();
pub fn from_world_from_view(world_from_view: &Mat4) -> ViewRangefinder3d {
let view_from_world = world_from_view.inverse();
ViewRangefinder3d {
inverse_view_row_2: inverse_view_matrix.row(2),
view_from_world_row_2: view_from_world.row(2),
}
}
@ -20,7 +20,7 @@ impl ViewRangefinder3d {
pub fn distance_translation(&self, translation: &Vec3) -> f32 {
// NOTE: row 2 of the inverse view matrix dotted with the translation from the model matrix
// gives the z component of translation of the mesh in view-space
self.inverse_view_row_2.dot(translation.extend(1.0))
self.view_from_world_row_2.dot(translation.extend(1.0))
}
/// Calculates the distance, or view-space `Z` value, for the given `transform`.
@ -28,7 +28,7 @@ impl ViewRangefinder3d {
pub fn distance(&self, transform: &Mat4) -> f32 {
// NOTE: row 2 of the inverse view matrix dotted with column 3 of the model matrix
// gives the z component of translation of the mesh in view-space
self.inverse_view_row_2.dot(transform.col(3))
self.view_from_world_row_2.dot(transform.col(3))
}
}
@ -40,7 +40,7 @@ mod tests {
#[test]
fn distance() {
let view_matrix = Mat4::from_translation(Vec3::new(0.0, 0.0, -1.0));
let rangefinder = ViewRangefinder3d::from_view_matrix(&view_matrix);
let rangefinder = ViewRangefinder3d::from_world_from_view(&view_matrix);
assert_eq!(rangefinder.distance(&Mat4::IDENTITY), 1.0);
assert_eq!(
rangefinder.distance(&Mat4::from_translation(Vec3::new(0.0, 0.0, 1.0))),

View file

@ -172,12 +172,12 @@ impl Msaa {
#[derive(Component)]
pub struct ExtractedView {
pub projection: Mat4,
pub transform: GlobalTransform,
pub clip_from_view: Mat4,
pub world_from_view: GlobalTransform,
// The view-projection matrix. When provided it is used instead of deriving it from
// `projection` and `transform` fields, which can be helpful in cases where numerical
// stability matters and there is a more direct way to derive the view-projection matrix.
pub view_projection: Option<Mat4>,
pub clip_from_world: Option<Mat4>,
pub hdr: bool,
// uvec4(origin.x, origin.y, width, height)
pub viewport: UVec4,
@ -187,7 +187,7 @@ pub struct ExtractedView {
impl ExtractedView {
/// Creates a 3D rangefinder for a view
pub fn rangefinder3d(&self) -> ViewRangefinder3d {
ViewRangefinder3d::from_view_matrix(&self.transform.compute_matrix())
ViewRangefinder3d::from_world_from_view(&self.world_from_view.compute_matrix())
}
}
@ -404,13 +404,13 @@ impl ColorGrading {
#[derive(Clone, ShaderType)]
pub struct ViewUniform {
view_proj: Mat4,
unjittered_view_proj: Mat4,
inverse_view_proj: Mat4,
view: Mat4,
inverse_view: Mat4,
projection: Mat4,
inverse_projection: Mat4,
clip_from_world: Mat4,
unjittered_clip_from_world: Mat4,
world_from_clip: Mat4,
world_from_view: Mat4,
view_from_world: Mat4,
clip_from_view: Mat4,
view_from_clip: Mat4,
world_position: Vec3,
exposure: f32,
// viewport(x_origin, y_origin, width, height)
@ -727,23 +727,23 @@ pub fn prepare_view_uniforms(
};
for (entity, extracted_camera, extracted_view, frustum, temporal_jitter, mip_bias) in &views {
let viewport = extracted_view.viewport.as_vec4();
let unjittered_projection = extracted_view.projection;
let mut projection = unjittered_projection;
let unjittered_projection = extracted_view.clip_from_view;
let mut clip_from_view = unjittered_projection;
if let Some(temporal_jitter) = temporal_jitter {
temporal_jitter.jitter_projection(&mut projection, viewport.zw());
temporal_jitter.jitter_projection(&mut clip_from_view, viewport.zw());
}
let inverse_projection = projection.inverse();
let view = extracted_view.transform.compute_matrix();
let inverse_view = view.inverse();
let view_from_clip = clip_from_view.inverse();
let world_from_view = extracted_view.world_from_view.compute_matrix();
let view_from_world = world_from_view.inverse();
let view_proj = if temporal_jitter.is_some() {
projection * inverse_view
let clip_from_world = if temporal_jitter.is_some() {
clip_from_view * view_from_world
} else {
extracted_view
.view_projection
.unwrap_or_else(|| projection * inverse_view)
.clip_from_world
.unwrap_or_else(|| clip_from_view * view_from_world)
};
// Map Frustum type to shader array<vec4<f32>, 6>
@ -753,14 +753,14 @@ pub fn prepare_view_uniforms(
let view_uniforms = ViewUniformOffset {
offset: writer.write(&ViewUniform {
view_proj,
unjittered_view_proj: unjittered_projection * inverse_view,
inverse_view_proj: view * inverse_projection,
view,
inverse_view,
projection,
inverse_projection,
world_position: extracted_view.transform.translation(),
clip_from_world,
unjittered_clip_from_world: unjittered_projection * view_from_world,
world_from_clip: world_from_view * view_from_clip,
world_from_view,
view_from_world,
clip_from_view,
view_from_clip,
world_position: extracted_view.world_from_view.translation(),
exposure: extracted_camera
.map(|c| c.exposure)
.unwrap_or_else(|| Exposure::default().exposure()),

View file

@ -14,13 +14,13 @@ struct ColorGrading {
}
struct View {
view_proj: mat4x4<f32>,
unjittered_view_proj: mat4x4<f32>,
inverse_view_proj: mat4x4<f32>,
view: mat4x4<f32>,
inverse_view: mat4x4<f32>,
projection: mat4x4<f32>,
inverse_projection: mat4x4<f32>,
clip_from_world: mat4x4<f32>,
unjittered_clip_from_world: mat4x4<f32>,
world_from_clip: mat4x4<f32>,
world_from_view: mat4x4<f32>,
view_from_world: mat4x4<f32>,
clip_from_view: mat4x4<f32>,
view_from_clip: mat4x4<f32>,
world_position: vec3<f32>,
exposure: f32,
// viewport(x_origin, y_origin, width, height)

View file

@ -468,9 +468,9 @@ pub fn check_visibility<QF>(
// If we have an aabb, do frustum culling
if !no_frustum_culling && !no_cpu_culling {
if let Some(model_aabb) = maybe_model_aabb {
let model = transform.affine();
let world_from_local = transform.affine();
let model_sphere = Sphere {
center: model.transform_point3a(model_aabb.center),
center: world_from_local.transform_point3a(model_aabb.center),
radius: transform.radius_vec3a(model_aabb.half_extents),
};
// Do quick sphere-based frustum culling
@ -478,7 +478,7 @@ pub fn check_visibility<QF>(
return;
}
// Do aabb-based frustum culling
if !frustum.intersects_obb(model_aabb, &model, true, false) {
if !frustum.intersects_obb(model_aabb, &world_from_local, true, false) {
return;
}
}

View file

@ -444,7 +444,7 @@ pub fn queue_material2d_meshes<M: Material2d>(
mesh_instance.material_bind_group_id = material_2d.get_bind_group_id();
let mesh_z = mesh_instance.transforms.transform.translation.z;
let mesh_z = mesh_instance.transforms.world_from_local.translation.z;
transparent_phase.add(Transparent2d {
entity: *visible_entity,
draw_function: draw_transparent_2d,

View file

@ -156,31 +156,31 @@ impl Plugin for Mesh2dRenderPlugin {
#[derive(Component)]
pub struct Mesh2dTransforms {
pub transform: Affine3,
pub world_from_local: Affine3,
pub flags: u32,
}
#[derive(ShaderType, Clone)]
pub struct Mesh2dUniform {
// Affine 4x3 matrix transposed to 3x4
pub transform: [Vec4; 3],
pub world_from_local: [Vec4; 3],
// 3x3 matrix packed in mat2x4 and f32 as:
// [0].xyz, [1].x,
// [1].yz, [2].xy
// [2].z
pub inverse_transpose_model_a: [Vec4; 2],
pub inverse_transpose_model_b: f32,
pub local_from_world_transpose_a: [Vec4; 2],
pub local_from_world_transpose_b: f32,
pub flags: u32,
}
impl From<&Mesh2dTransforms> for Mesh2dUniform {
fn from(mesh_transforms: &Mesh2dTransforms) -> Self {
let (inverse_transpose_model_a, inverse_transpose_model_b) =
mesh_transforms.transform.inverse_transpose_3x3();
let (local_from_world_transpose_a, local_from_world_transpose_b) =
mesh_transforms.world_from_local.inverse_transpose_3x3();
Self {
transform: mesh_transforms.transform.to_transpose(),
inverse_transpose_model_a,
inverse_transpose_model_b,
world_from_local: mesh_transforms.world_from_local.to_transpose(),
local_from_world_transpose_a,
local_from_world_transpose_b,
flags: mesh_transforms.flags,
}
}
@ -236,7 +236,7 @@ pub fn extract_mesh2d(
entity,
RenderMesh2dInstance {
transforms: Mesh2dTransforms {
transform: (&transform.affine()).into(),
world_from_local: (&transform.affine()).into(),
flags: MeshFlags::empty().bits(),
},
mesh_asset_id: handle.0.id(),

View file

@ -35,9 +35,9 @@ fn vertex(vertex: Vertex) -> VertexOutput {
#endif
#ifdef VERTEX_POSITIONS
var model = mesh_functions::get_model_matrix(vertex.instance_index);
var world_from_local = mesh_functions::get_world_from_local(vertex.instance_index);
out.world_position = mesh_functions::mesh2d_position_local_to_world(
model,
world_from_local,
vec4<f32>(vertex.position, 1.0)
);
out.position = mesh_functions::mesh2d_position_world_to_clip(out.world_position);
@ -49,7 +49,7 @@ fn vertex(vertex: Vertex) -> VertexOutput {
#ifdef VERTEX_TANGENTS
out.world_tangent = mesh_functions::mesh2d_tangent_local_to_world(
model,
world_from_local,
vertex.tangent
);
#endif

View file

@ -6,39 +6,39 @@
}
#import bevy_render::maths::{affine3_to_square, mat2x4_f32_to_mat3x3_unpack}
fn get_model_matrix(instance_index: u32) -> mat4x4<f32> {
return affine3_to_square(mesh[instance_index].model);
fn get_world_from_local(instance_index: u32) -> mat4x4<f32> {
return affine3_to_square(mesh[instance_index].world_from_local);
}
fn mesh2d_position_local_to_world(model: mat4x4<f32>, vertex_position: vec4<f32>) -> vec4<f32> {
return model * vertex_position;
fn mesh2d_position_local_to_world(world_from_local: mat4x4<f32>, vertex_position: vec4<f32>) -> vec4<f32> {
return world_from_local * vertex_position;
}
fn mesh2d_position_world_to_clip(world_position: vec4<f32>) -> vec4<f32> {
return view.view_proj * world_position;
return view.clip_from_world * world_position;
}
// NOTE: The intermediate world_position assignment is important
// for precision purposes when using the 'equals' depth comparison
// function.
fn mesh2d_position_local_to_clip(model: mat4x4<f32>, vertex_position: vec4<f32>) -> vec4<f32> {
let world_position = mesh2d_position_local_to_world(model, vertex_position);
fn mesh2d_position_local_to_clip(world_from_local: mat4x4<f32>, vertex_position: vec4<f32>) -> vec4<f32> {
let world_position = mesh2d_position_local_to_world(world_from_local, vertex_position);
return mesh2d_position_world_to_clip(world_position);
}
fn mesh2d_normal_local_to_world(vertex_normal: vec3<f32>, instance_index: u32) -> vec3<f32> {
return mat2x4_f32_to_mat3x3_unpack(
mesh[instance_index].inverse_transpose_model_a,
mesh[instance_index].inverse_transpose_model_b,
mesh[instance_index].local_from_world_transpose_a,
mesh[instance_index].local_from_world_transpose_b,
) * vertex_normal;
}
fn mesh2d_tangent_local_to_world(model: mat4x4<f32>, vertex_tangent: vec4<f32>) -> vec4<f32> {
fn mesh2d_tangent_local_to_world(world_from_local: mat4x4<f32>, vertex_tangent: vec4<f32>) -> vec4<f32> {
return vec4<f32>(
mat3x3<f32>(
model[0].xyz,
model[1].xyz,
model[2].xyz
world_from_local[0].xyz,
world_from_local[1].xyz,
world_from_local[2].xyz
) * vertex_tangent.xyz,
vertex_tangent.w
);

View file

@ -3,14 +3,14 @@
struct Mesh2d {
// Affine 4x3 matrix transposed to 3x4
// Use bevy_render::maths::affine3_to_square to unpack
model: mat3x4<f32>,
world_from_local: mat3x4<f32>,
// 3x3 matrix packed in mat2x4 and f32 as:
// [0].xyz, [1].x,
// [1].yz, [2].xy
// [2].z
// Use bevy_render::maths::mat2x4_f32_to_mat3x3_unpack to unpack
inverse_transpose_model_a: mat2x4<f32>,
inverse_transpose_model_b: f32,
local_from_world_transpose_a: mat2x4<f32>,
local_from_world_transpose_b: f32,
// 'flags' is a bit field indicating various options. u32 is 32 bits so we have up to 32 options.
flags: u32,
};

View file

@ -37,7 +37,7 @@ fn vertex(in: VertexInput) -> VertexOutput {
0.0
);
out.clip_position = view.view_proj * affine3_to_square(mat3x4<f32>(
out.clip_position = view.clip_from_world * affine3_to_square(mat3x4<f32>(
in.i_model_transpose_col0,
in.i_model_transpose_col1,
in.i_model_transpose_col2,

View file

@ -224,8 +224,8 @@ impl From<Affine3A> for GlobalTransform {
}
impl From<Mat4> for GlobalTransform {
fn from(matrix: Mat4) -> Self {
Self(Affine3A::from_mat4(matrix))
fn from(world_from_local: Mat4) -> Self {
Self(Affine3A::from_mat4(world_from_local))
}
}

View file

@ -80,8 +80,8 @@ impl Transform {
/// Extracts the translation, rotation, and scale from `matrix`. It must be a 3d affine
/// transformation matrix.
#[inline]
pub fn from_matrix(matrix: Mat4) -> Self {
let (scale, rotation, translation) = matrix.to_scale_rotation_translation();
pub fn from_matrix(world_from_local: Mat4) -> Self {
let (scale, rotation, translation) = world_from_local.to_scale_rotation_translation();
Transform {
translation,

View file

@ -671,7 +671,7 @@ pub fn extract_uinode_outlines(
),
];
let transform = global_transform.compute_matrix();
let world_from_local = global_transform.compute_matrix();
for edge in outline_edges {
if edge.min.x < edge.max.x && edge.min.y < edge.max.y {
extracted_uinodes.uinodes.insert(
@ -679,7 +679,8 @@ pub fn extract_uinode_outlines(
ExtractedUiNode {
stack_index: node.stack_index,
// This translates the uinode's transform to the center of the current border rectangle
transform: transform * Mat4::from_translation(edge.center().extend(0.)),
transform: world_from_local
* Mat4::from_translation(edge.center().extend(0.)),
color: outline.color.into(),
rect: Rect {
max: edge.size(),
@ -755,13 +756,13 @@ pub fn extract_default_ui_camera_view(
);
let default_camera_view = commands
.spawn(ExtractedView {
projection: projection_matrix,
transform: GlobalTransform::from_xyz(
clip_from_view: projection_matrix,
world_from_view: GlobalTransform::from_xyz(
0.0,
0.0,
UI_CAMERA_FAR + UI_CAMERA_TRANSFORM_OFFSET,
),
view_projection: None,
clip_from_world: None,
hdr: camera.hdr,
viewport: UVec4::new(
physical_origin.x,

View file

@ -41,7 +41,7 @@ fn vertex(
) -> VertexOutput {
var out: VertexOutput;
out.uv = vertex_uv;
out.position = view.view_proj * vec4(vertex_position, 1.0);
out.position = view.clip_from_world * vec4(vertex_position, 1.0);
out.color = vertex_color;
out.flags = flags;
out.radius = radius;

View file

@ -18,7 +18,7 @@ fn vertex(
) -> UiVertexOutput {
var out: UiVertexOutput;
out.uv = vertex_uv;
out.position = view.view_proj * vec4<f32>(vertex_position, 1.0);
out.position = view.clip_from_world * vec4<f32>(vertex_position, 1.0);
out.size = size;
out.border_widths = border_widths;
return out;

View file

@ -246,7 +246,7 @@ struct VertexOutput {
fn vertex(vertex: Vertex) -> VertexOutput {
var out: VertexOutput;
// Project the world position of the mesh into screen position
let model = mesh2d_functions::get_model_matrix(vertex.instance_index);
let model = mesh2d_functions::get_world_from_local(vertex.instance_index);
out.clip_position = mesh2d_functions::mesh2d_position_local_to_clip(model, vec4<f32>(vertex.position, 1.0));
// Unpack the `u32` from the vertex buffer into the `vec4<f32>` used by the fragment shader
out.color = vec4<f32>((vec4<u32>(vertex.color) >> vec4<u32>(0u, 8u, 16u, 24u)) & vec4<u32>(255u)) / 255.0;
@ -325,7 +325,7 @@ pub fn extract_colored_mesh2d(
}
let transforms = Mesh2dTransforms {
transform: (&transform.affine()).into(),
world_from_local: (&transform.affine()).into(),
flags: MeshFlags::empty().bits(),
};
@ -386,7 +386,7 @@ pub fn queue_colored_mesh2d(
let pipeline_id =
pipelines.specialize(&pipeline_cache, &colored_mesh2d_pipeline, mesh2d_key);
let mesh_z = mesh2d_transforms.transform.translation.z;
let mesh_z = mesh2d_transforms.world_from_local.translation.z;
transparent_phase.add(Transparent2d {
entity: *visible_entity,
draw_function: draw_colored_mesh2d,

View file

@ -50,7 +50,7 @@ static CLICK_TO_MOVE_HELP_TEXT: &str = "Left click: Move the object";
static GIZMO_COLOR: Color = Color::Srgba(YELLOW);
static VOXEL_TRANSFORM: Mat4 = Mat4::from_cols_array_2d(&[
static VOXEL_FROM_WORLD: Mat4 = Mat4::from_cols_array_2d(&[
[-42.317566, 0.0, 0.0, 0.0],
[0.0, 0.0, 44.601563, 0.0],
[0.0, 16.73776, 0.0, 0.0],
@ -132,8 +132,8 @@ struct VoxelVisualizationExtension {
#[derive(ShaderType, Debug, Clone)]
struct VoxelVisualizationIrradianceVolumeInfo {
transform: Mat4,
inverse_transform: Mat4,
world_from_voxel: Mat4,
voxel_from_world: Mat4,
resolution: UVec3,
intensity: f32,
}
@ -242,7 +242,7 @@ fn spawn_camera(commands: &mut Commands, assets: &ExampleAssets) {
fn spawn_irradiance_volume(commands: &mut Commands, assets: &ExampleAssets) {
commands
.spawn(SpatialBundle {
transform: Transform::from_matrix(VOXEL_TRANSFORM),
transform: Transform::from_matrix(VOXEL_FROM_WORLD),
..SpatialBundle::default()
})
.insert(IrradianceVolume {
@ -571,8 +571,8 @@ fn create_cubes(
base: StandardMaterial::from(Color::from(RED)),
extension: VoxelVisualizationExtension {
irradiance_volume_info: VoxelVisualizationIrradianceVolumeInfo {
transform: VOXEL_TRANSFORM.inverse(),
inverse_transform: VOXEL_TRANSFORM,
world_from_voxel: VOXEL_FROM_WORLD.inverse(),
voxel_from_world: VOXEL_FROM_WORLD,
resolution: uvec3(
resolution.width,
resolution.height,