UI texture atlas slice shader (#14990)

Fixes https://github.com/bevyengine/bevy/issues/14183

Reimplement the UI texture atlas slicer using a shader.

The problems with #14183 could be fixed more simply by hacking around
with the coordinates and scaling but that way is very fragile and might
get broken again the next time we make changes to the layout
calculations. A shader based solution is more robust, it's impossible
for gaps to appear between the image slices with these changes as we're
only drawing a single quad.

I've not tried any benchmarks yet but it should much more efficient as
well, in the worst cases even hundreds or thousands of times faster.

Maybe could have used the UiMaterialPipeline. I wrote the shader first
and used fat vertices and then realised it wouldn't work that way with a
UiMaterial. If it's rewritten it so it puts all the slice geometry in
uniform buffer, then it might work? Adding the uniform buffer would
probably make the shader more complicated though, so don't know if it's
even worth it. Instancing is another alternative.

The examples are working and it seems to match the old API correctly but
I've not used the texture atlas slicing API for anything before, I
reviewed the PR but that was back in January.

Needs a review by someone who knows the rendering pipeline and wgsl
really well because I don't really have any idea what I'm doing.
This commit is contained in:
ickshonpe 2024-09-03 00:03:58 +01:00 committed by François
parent 489c1e1a87
commit 9afe666f6d
No known key found for this signature in database
5 changed files with 908 additions and 252 deletions

View file

@ -26,7 +26,6 @@ mod geometry;
mod layout;
mod render;
mod stack;
mod texture_slice;
mod ui_node;
pub use focus::*;
@ -163,11 +162,6 @@ impl Plugin for UiPlugin {
.before(UiSystem::Layout)
.in_set(AmbiguousWithTextSystem)
.in_set(AmbiguousWithUpdateText2DLayout),
(
texture_slice::compute_slices_on_asset_event,
texture_slice::compute_slices_on_image_change,
)
.after(UiSystem::Layout),
),
);

View file

@ -1,6 +1,7 @@
mod pipeline;
mod render_pass;
mod ui_material_pipeline;
pub mod ui_texture_slice_pipeline;
use bevy_color::{Alpha, ColorToComponents, LinearRgba};
use bevy_core_pipeline::core_2d::graph::{Core2d, Node2d};
@ -14,16 +15,16 @@ use bevy_render::{
view::ViewVisibility,
ExtractSchedule, Render,
};
use bevy_sprite::{SpriteAssetEvents, TextureAtlas};
use bevy_sprite::{ImageScaleMode, SpriteAssetEvents, TextureAtlas};
pub use pipeline::*;
pub use render_pass::*;
pub use ui_material_pipeline::*;
use ui_texture_slice_pipeline::UiTextureSlicerPlugin;
use crate::graph::{NodeUi, SubGraphUi};
use crate::{
texture_slice::ComputedTextureSlices, BackgroundColor, BorderColor, BorderRadius,
CalculatedClip, ContentSize, DefaultUiCamera, Node, Outline, Style, TargetCamera, UiImage,
UiScale, Val,
BackgroundColor, BorderColor, BorderRadius, CalculatedClip, ContentSize, DefaultUiCamera, Node,
Outline, Style, TargetCamera, UiImage, UiScale, Val,
};
use bevy_app::prelude::*;
@ -139,6 +140,8 @@ pub fn build_ui_render(app: &mut App) {
graph_3d.add_node_edge(Node3d::EndMainPassPostProcessing, NodeUi::UiPass);
graph_3d.add_node_edge(NodeUi::UiPass, Node3d::Upscaling);
}
app.add_plugins(UiTextureSlicerPlugin);
}
fn get_ui_graph(render_app: &mut SubApp) -> RenderGraph {
@ -298,19 +301,21 @@ pub fn extract_uinode_images(
ui_scale: Extract<Res<UiScale>>,
default_ui_camera: Extract<DefaultUiCamera>,
uinode_query: Extract<
Query<(
&Node,
&GlobalTransform,
&ViewVisibility,
Option<&CalculatedClip>,
Option<&TargetCamera>,
&UiImage,
Option<&TextureAtlas>,
Option<&ComputedTextureSlices>,
Option<&BorderRadius>,
Option<&Parent>,
&Style,
)>,
Query<
(
&Node,
&GlobalTransform,
&ViewVisibility,
Option<&CalculatedClip>,
Option<&TargetCamera>,
&UiImage,
Option<&TextureAtlas>,
Option<&BorderRadius>,
Option<&Parent>,
&Style,
),
Without<ImageScaleMode>,
>,
>,
node_query: Extract<Query<&Node>>,
) {
@ -322,7 +327,6 @@ pub fn extract_uinode_images(
camera,
image,
atlas,
slices,
border_radius,
parent,
style,
@ -338,15 +342,6 @@ pub fn extract_uinode_images(
continue;
}
if let Some(slices) = slices {
extracted_uinodes.uinodes.extend(
slices
.extract_ui_nodes(transform, uinode, image, clip, camera_entity)
.map(|e| (commands.spawn_empty().id(), e)),
);
continue;
}
let (rect, atlas_size) = match atlas {
Some(atlas) => {
let Some(layout) = texture_atlases.get(&atlas.layout) else {

View file

@ -0,0 +1,127 @@
#import bevy_render::view::View;
#import bevy_render::globals::Globals;
@group(0) @binding(0)
var<uniform> view: View;
@group(0) @binding(1)
var<uniform> globals: Globals;
@group(1) @binding(0) var sprite_texture: texture_2d<f32>;
@group(1) @binding(1) var sprite_sampler: sampler;
struct UiVertexOutput {
@location(0) uv: vec2<f32>,
@location(1) color: vec4<f32>,
// Defines the dividing line that are used to split the texture atlas rect into corner, side and center slices
// The distances are normalized and from the top left corner of the texture atlas rect
// x = distance of the left vertical dividing line
// y = distance of the top horizontal dividing line
// z = distance of the right vertical dividing line
// w = distance of the bottom horizontal dividing line
@location(2) @interpolate(flat) texture_slices: vec4<f32>,
// Defines the dividing line that are used to split the render target into into corner, side and center slices
// The distances are normalized and from the top left corner of the render target
// x = distance of left vertical dividing line
// y = distance of top horizontal dividing line
// z = distance of right vertical dividing line
// w = distance of bottom horizontal dividing line
@location(3) @interpolate(flat) target_slices: vec4<f32>,
// The number of times the side or center texture slices should be repeated when mapping them to the border slices
// x = number of times to repeat along the horizontal axis for the side textures
// y = number of times to repeat along the vertical axis for the side textures
// z = number of times to repeat along the horizontal axis for the center texture
// w = number of times to repeat along the vertical axis for the center texture
@location(4) @interpolate(flat) repeat: vec4<f32>,
// normalized texture atlas rect coordinates
// x, y = top, left corner of the atlas rect
// z, w = bottom, right corner of the atlas rect
@location(5) @interpolate(flat) atlas_rect: vec4<f32>,
@builtin(position) position: vec4<f32>,
}
@vertex
fn vertex(
@location(0) vertex_position: vec3<f32>,
@location(1) vertex_uv: vec2<f32>,
@location(2) vertex_color: vec4<f32>,
@location(3) texture_slices: vec4<f32>,
@location(4) target_slices: vec4<f32>,
@location(5) repeat: vec4<f32>,
@location(6) atlas_rect: vec4<f32>,
) -> UiVertexOutput {
var out: UiVertexOutput;
out.uv = vertex_uv;
out.color = vertex_color;
out.position = view.clip_from_world * vec4<f32>(vertex_position, 1.0);
out.texture_slices = texture_slices;
out.target_slices = target_slices;
out.repeat = repeat;
out.atlas_rect = atlas_rect;
return out;
}
/// maps a point along the axis of the render target to slice coordinates
fn map_axis_with_repeat(
// normalized distance along the axis
p: f32,
// target min dividing point
il: f32,
// target max dividing point
ih: f32,
// slice min dividing point
tl: f32,
// slice max dividing point
th: f32,
// number of times to repeat the slice for sides and the center
r: f32,
) -> f32 {
if p < il {
// inside one of the two left (horizontal axis) or top (vertical axis) corners
return (p / il) * tl;
} else if ih < p {
// inside one of the two (horizontal axis) or top (vertical axis) corners
return th + ((p - ih) / (1 - ih)) * (1 - th);
} else {
// not inside a corner, repeat the texture
return tl + fract((r * (p - il)) / (ih - il)) * (th - tl);
}
}
fn map_uvs_to_slice(
uv: vec2<f32>,
target_slices: vec4<f32>,
texture_slices: vec4<f32>,
repeat: vec4<f32>,
) -> vec2<f32> {
var r: vec2<f32>;
if target_slices.x <= uv.x && uv.x <= target_slices.z && target_slices.y <= uv.y && uv.y <= target_slices.w {
// use the center repeat values if the uv coords are inside the center slice of the target
r = repeat.zw;
} else {
// use the side repeat values if the uv coords are outside the center slice
r = repeat.xy;
}
// map horizontal axis
let x = map_axis_with_repeat(uv.x, target_slices.x, target_slices.z, texture_slices.x, texture_slices.z, r.x);
// map vertical axis
let y = map_axis_with_repeat(uv.y, target_slices.y, target_slices.w, texture_slices.y, texture_slices.w, r.y);
return vec2(x, y);
}
@fragment
fn fragment(in: UiVertexOutput) -> @location(0) vec4<f32> {
// map the target uvs to slice coords
let uv = map_uvs_to_slice(in.uv, in.target_slices, in.texture_slices, in.repeat);
// map the slice coords to texture coords
let atlas_uv = in.atlas_rect.xy + uv * (in.atlas_rect.zw - in.atlas_rect.xy);
return in.color * textureSample(sprite_texture, sprite_sampler, atlas_uv);
}

View file

@ -0,0 +1,759 @@
use std::{hash::Hash, ops::Range};
use bevy_asset::*;
use bevy_color::{Alpha, ColorToComponents, LinearRgba};
use bevy_ecs::{
prelude::Component,
storage::SparseSet,
system::{
lifetimeless::{Read, SRes},
*,
},
};
use bevy_math::{FloatOrd, Mat4, Rect, Vec2, Vec4Swizzles};
use bevy_render::{
render_asset::RenderAssets,
render_phase::*,
render_resource::{binding_types::uniform_buffer, *},
renderer::{RenderDevice, RenderQueue},
texture::{BevyDefault, GpuImage, Image, TRANSPARENT_IMAGE_HANDLE},
view::*,
Extract, ExtractSchedule, Render, RenderSet,
};
use bevy_sprite::{
ImageScaleMode, SliceScaleMode, SpriteAssetEvents, TextureAtlas, TextureAtlasLayout,
TextureSlicer,
};
use bevy_transform::prelude::GlobalTransform;
use bevy_utils::HashMap;
use binding_types::{sampler, texture_2d};
use bytemuck::{Pod, Zeroable};
use crate::*;
pub const UI_SLICER_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(11156288772117983964);
pub struct UiTextureSlicerPlugin;
impl Plugin for UiTextureSlicerPlugin {
fn build(&self, app: &mut App) {
load_internal_asset!(
app,
UI_SLICER_SHADER_HANDLE,
"ui_texture_slice.wgsl",
Shader::from_wgsl
);
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.add_render_command::<TransparentUi, DrawUiTextureSlices>()
.init_resource::<ExtractedUiTextureSlices>()
.init_resource::<UiTextureSliceMeta>()
.init_resource::<UiTextureSliceImageBindGroups>()
.init_resource::<SpecializedRenderPipelines<UiTextureSlicePipeline>>()
.add_systems(
ExtractSchedule,
extract_ui_texture_slices.after(extract_uinode_images),
)
.add_systems(
Render,
(
queue_ui_slices.in_set(RenderSet::Queue),
prepare_ui_slices.in_set(RenderSet::PrepareBindGroups),
),
);
}
}
fn finish(&self, app: &mut App) {
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app.init_resource::<UiTextureSlicePipeline>();
}
}
}
#[repr(C)]
#[derive(Copy, Clone, Pod, Zeroable)]
struct UiTextureSliceVertex {
pub position: [f32; 3],
pub uv: [f32; 2],
pub color: [f32; 4],
pub slices: [f32; 4],
pub border: [f32; 4],
pub repeat: [f32; 4],
pub atlas: [f32; 4],
}
#[derive(Component)]
pub struct UiTextureSlicerBatch {
pub range: Range<u32>,
pub image: AssetId<Image>,
pub camera: Entity,
}
#[derive(Resource)]
pub struct UiTextureSliceMeta {
vertices: RawBufferVec<UiTextureSliceVertex>,
indices: RawBufferVec<u32>,
view_bind_group: Option<BindGroup>,
}
impl Default for UiTextureSliceMeta {
fn default() -> Self {
Self {
vertices: RawBufferVec::new(BufferUsages::VERTEX),
indices: RawBufferVec::new(BufferUsages::INDEX),
view_bind_group: None,
}
}
}
#[derive(Resource, Default)]
pub struct UiTextureSliceImageBindGroups {
pub values: HashMap<AssetId<Image>, BindGroup>,
}
#[derive(Resource)]
pub struct UiTextureSlicePipeline {
pub view_layout: BindGroupLayout,
pub image_layout: BindGroupLayout,
}
impl FromWorld for UiTextureSlicePipeline {
fn from_world(world: &mut World) -> Self {
let render_device = world.resource::<RenderDevice>();
let view_layout = render_device.create_bind_group_layout(
"ui_texture_slice_view_layout",
&BindGroupLayoutEntries::single(
ShaderStages::VERTEX_FRAGMENT,
uniform_buffer::<ViewUniform>(true),
),
);
let image_layout = render_device.create_bind_group_layout(
"ui_texture_slice_image_layout",
&BindGroupLayoutEntries::sequential(
ShaderStages::FRAGMENT,
(
texture_2d(TextureSampleType::Float { filterable: true }),
sampler(SamplerBindingType::Filtering),
),
),
);
UiTextureSlicePipeline {
view_layout,
image_layout,
}
}
}
#[derive(Clone, Copy, Hash, PartialEq, Eq)]
pub struct UiTextureSlicePipelineKey {
pub hdr: bool,
}
impl SpecializedRenderPipeline for UiTextureSlicePipeline {
type Key = UiTextureSlicePipelineKey;
fn specialize(&self, key: Self::Key) -> RenderPipelineDescriptor {
let vertex_layout = VertexBufferLayout::from_vertex_formats(
VertexStepMode::Vertex,
vec![
// position
VertexFormat::Float32x3,
// uv
VertexFormat::Float32x2,
// color
VertexFormat::Float32x4,
// normalized texture slicing lines (left, top, right, bottom)
VertexFormat::Float32x4,
// normalized target slicing lines (left, top, right, bottom)
VertexFormat::Float32x4,
// repeat values (horizontal side, vertical side, horizontal center, vertical center)
VertexFormat::Float32x4,
// normalized texture atlas rect (left, top, right, bottom)
VertexFormat::Float32x4,
],
);
let shader_defs = Vec::new();
RenderPipelineDescriptor {
vertex: VertexState {
shader: UI_SLICER_SHADER_HANDLE,
entry_point: "vertex".into(),
shader_defs: shader_defs.clone(),
buffers: vec![vertex_layout],
},
fragment: Some(FragmentState {
shader: UI_SLICER_SHADER_HANDLE,
shader_defs,
entry_point: "fragment".into(),
targets: vec![Some(ColorTargetState {
format: if key.hdr {
ViewTarget::TEXTURE_FORMAT_HDR
} else {
TextureFormat::bevy_default()
},
blend: Some(BlendState::ALPHA_BLENDING),
write_mask: ColorWrites::ALL,
})],
}),
layout: vec![self.view_layout.clone(), self.image_layout.clone()],
push_constant_ranges: Vec::new(),
primitive: PrimitiveState {
front_face: FrontFace::Ccw,
cull_mode: None,
unclipped_depth: false,
polygon_mode: PolygonMode::Fill,
conservative: false,
topology: PrimitiveTopology::TriangleList,
strip_index_format: None,
},
depth_stencil: None,
multisample: MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
label: Some("ui_texture_slice_pipeline".into()),
}
}
}
pub struct ExtractedUiTextureSlice {
pub stack_index: u32,
pub transform: Mat4,
pub rect: Rect,
pub atlas_rect: Option<Rect>,
pub image: AssetId<Image>,
pub clip: Option<Rect>,
pub camera_entity: Entity,
pub color: LinearRgba,
pub image_scale_mode: ImageScaleMode,
}
#[derive(Resource, Default)]
pub struct ExtractedUiTextureSlices {
pub slices: SparseSet<Entity, ExtractedUiTextureSlice>,
}
pub fn extract_ui_texture_slices(
mut commands: Commands,
mut extracted_ui_slicers: ResMut<ExtractedUiTextureSlices>,
default_ui_camera: Extract<DefaultUiCamera>,
texture_atlases: Extract<Res<Assets<TextureAtlasLayout>>>,
slicers_query: Extract<
Query<(
&Node,
&GlobalTransform,
&ViewVisibility,
Option<&CalculatedClip>,
Option<&TargetCamera>,
&UiImage,
&ImageScaleMode,
Option<&TextureAtlas>,
)>,
>,
) {
for (uinode, transform, view_visibility, clip, camera, image, image_scale_mode, atlas) in
&slicers_query
{
let Some(camera_entity) = camera.map(TargetCamera::entity).or(default_ui_camera.get())
else {
continue;
};
// Skip invisible images
if !view_visibility.get()
|| image.color.is_fully_transparent()
|| image.texture.id() == TRANSPARENT_IMAGE_HANDLE.id()
{
continue;
}
let atlas_rect = atlas.and_then(|atlas| {
texture_atlases
.get(&atlas.layout)
.map(|layout| layout.textures[atlas.index].as_rect())
});
extracted_ui_slicers.slices.insert(
commands.spawn_empty().id(),
ExtractedUiTextureSlice {
stack_index: uinode.stack_index,
transform: transform.compute_matrix(),
color: image.color.into(),
rect: Rect {
min: Vec2::ZERO,
max: uinode.calculated_size,
},
clip: clip.map(|clip| clip.clip),
image: image.texture.id(),
camera_entity,
image_scale_mode: image_scale_mode.clone(),
atlas_rect,
},
);
}
}
pub fn queue_ui_slices(
extracted_ui_slicers: ResMut<ExtractedUiTextureSlices>,
ui_slicer_pipeline: Res<UiTextureSlicePipeline>,
mut pipelines: ResMut<SpecializedRenderPipelines<UiTextureSlicePipeline>>,
mut transparent_render_phases: ResMut<ViewSortedRenderPhases<TransparentUi>>,
mut views: Query<(Entity, &ExtractedView)>,
pipeline_cache: Res<PipelineCache>,
draw_functions: Res<DrawFunctions<TransparentUi>>,
) {
let draw_function = draw_functions.read().id::<DrawUiTextureSlices>();
for (entity, extracted_slicer) in extracted_ui_slicers.slices.iter() {
let Ok((view_entity, view)) = views.get_mut(extracted_slicer.camera_entity) else {
continue;
};
let Some(transparent_phase) = transparent_render_phases.get_mut(&view_entity) else {
continue;
};
let pipeline = pipelines.specialize(
&pipeline_cache,
&ui_slicer_pipeline,
UiTextureSlicePipelineKey { hdr: view.hdr },
);
transparent_phase.add(TransparentUi {
draw_function,
pipeline,
entity: *entity,
sort_key: (
FloatOrd(extracted_slicer.stack_index as f32),
entity.index(),
),
batch_range: 0..0,
extra_index: PhaseItemExtraIndex::NONE,
});
}
}
#[allow(clippy::too_many_arguments)]
pub fn prepare_ui_slices(
mut commands: Commands,
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
mut ui_meta: ResMut<UiTextureSliceMeta>,
mut extracted_slices: ResMut<ExtractedUiTextureSlices>,
view_uniforms: Res<ViewUniforms>,
texture_slicer_pipeline: Res<UiTextureSlicePipeline>,
mut image_bind_groups: ResMut<UiTextureSliceImageBindGroups>,
gpu_images: Res<RenderAssets<GpuImage>>,
mut phases: ResMut<ViewSortedRenderPhases<TransparentUi>>,
events: Res<SpriteAssetEvents>,
mut previous_len: Local<usize>,
) {
// If an image has changed, the GpuImage has (probably) changed
for event in &events.images {
match event {
AssetEvent::Added { .. } |
AssetEvent::Unused { .. } |
// Images don't have dependencies
AssetEvent::LoadedWithDependencies { .. } => {}
AssetEvent::Modified { id } | AssetEvent::Removed { id } => {
image_bind_groups.values.remove(id);
}
};
}
if let Some(view_binding) = view_uniforms.uniforms.binding() {
let mut batches: Vec<(Entity, UiTextureSlicerBatch)> = Vec::with_capacity(*previous_len);
ui_meta.vertices.clear();
ui_meta.indices.clear();
ui_meta.view_bind_group = Some(render_device.create_bind_group(
"ui_texture_slice_view_bind_group",
&texture_slicer_pipeline.view_layout,
&BindGroupEntries::single(view_binding),
));
// Buffer indexes
let mut vertices_index = 0;
let mut indices_index = 0;
for ui_phase in phases.values_mut() {
let mut batch_item_index = 0;
let mut batch_image_handle = AssetId::invalid();
let mut batch_image_size = Vec2::ZERO;
for item_index in 0..ui_phase.items.len() {
let item = &mut ui_phase.items[item_index];
if let Some(texture_slices) = extracted_slices.slices.get(item.entity) {
let mut existing_batch = batches.last_mut();
if batch_image_handle == AssetId::invalid()
|| existing_batch.is_none()
|| (batch_image_handle != AssetId::default()
&& texture_slices.image != AssetId::default()
&& batch_image_handle != texture_slices.image)
|| existing_batch.as_ref().map(|(_, b)| b.camera)
!= Some(texture_slices.camera_entity)
{
if let Some(gpu_image) = gpu_images.get(texture_slices.image) {
batch_item_index = item_index;
batch_image_handle = texture_slices.image;
batch_image_size = gpu_image.size.as_vec2();
let new_batch = UiTextureSlicerBatch {
range: vertices_index..vertices_index,
image: texture_slices.image,
camera: texture_slices.camera_entity,
};
batches.push((item.entity, new_batch));
image_bind_groups
.values
.entry(batch_image_handle)
.or_insert_with(|| {
render_device.create_bind_group(
"ui_texture_slice_image_layout",
&texture_slicer_pipeline.image_layout,
&BindGroupEntries::sequential((
&gpu_image.texture_view,
&gpu_image.sampler,
)),
)
});
existing_batch = batches.last_mut();
} else {
continue;
}
} else if batch_image_handle == AssetId::default()
&& texture_slices.image != AssetId::default()
{
if let Some(gpu_image) = gpu_images.get(texture_slices.image) {
batch_image_handle = texture_slices.image;
batch_image_size = gpu_image.size.as_vec2();
existing_batch.as_mut().unwrap().1.image = texture_slices.image;
image_bind_groups
.values
.entry(batch_image_handle)
.or_insert_with(|| {
render_device.create_bind_group(
"ui_texture_slice_image_layout",
&texture_slicer_pipeline.image_layout,
&BindGroupEntries::sequential((
&gpu_image.texture_view,
&gpu_image.sampler,
)),
)
});
} else {
continue;
}
}
let uinode_rect = texture_slices.rect;
let rect_size = uinode_rect.size().extend(1.0);
// Specify the corners of the node
let positions = QUAD_VERTEX_POSITIONS
.map(|pos| (texture_slices.transform * (pos * rect_size).extend(1.)).xyz());
// Calculate the effect of clipping
// Note: this won't work with rotation/scaling, but that's much more complex (may need more that 2 quads)
let positions_diff = if let Some(clip) = texture_slices.clip {
[
Vec2::new(
f32::max(clip.min.x - positions[0].x, 0.),
f32::max(clip.min.y - positions[0].y, 0.),
),
Vec2::new(
f32::min(clip.max.x - positions[1].x, 0.),
f32::max(clip.min.y - positions[1].y, 0.),
),
Vec2::new(
f32::min(clip.max.x - positions[2].x, 0.),
f32::min(clip.max.y - positions[2].y, 0.),
),
Vec2::new(
f32::max(clip.min.x - positions[3].x, 0.),
f32::min(clip.max.y - positions[3].y, 0.),
),
]
} else {
[Vec2::ZERO; 4]
};
let positions_clipped = [
positions[0] + positions_diff[0].extend(0.),
positions[1] + positions_diff[1].extend(0.),
positions[2] + positions_diff[2].extend(0.),
positions[3] + positions_diff[3].extend(0.),
];
let transformed_rect_size =
texture_slices.transform.transform_vector3(rect_size);
// Don't try to cull nodes that have a rotation
// In a rotation around the Z-axis, this value is 0.0 for an angle of 0.0 or π
// In those two cases, the culling check can proceed normally as corners will be on
// horizontal / vertical lines
// For all other angles, bypass the culling check
// This does not properly handles all rotations on all axis
if texture_slices.transform.x_axis[1] == 0.0 {
// Cull nodes that are completely clipped
if positions_diff[0].x - positions_diff[1].x >= transformed_rect_size.x
|| positions_diff[1].y - positions_diff[2].y >= transformed_rect_size.y
{
continue;
}
}
let flags = if texture_slices.image != AssetId::default() {
shader_flags::TEXTURED
} else {
shader_flags::UNTEXTURED
};
let uvs = if flags == shader_flags::UNTEXTURED {
[Vec2::ZERO, Vec2::X, Vec2::ONE, Vec2::Y]
} else {
let atlas_extent = uinode_rect.max;
[
Vec2::new(
uinode_rect.min.x + positions_diff[0].x,
uinode_rect.min.y + positions_diff[0].y,
),
Vec2::new(
uinode_rect.max.x + positions_diff[1].x,
uinode_rect.min.y + positions_diff[1].y,
),
Vec2::new(
uinode_rect.max.x + positions_diff[2].x,
uinode_rect.max.y + positions_diff[2].y,
),
Vec2::new(
uinode_rect.min.x + positions_diff[3].x,
uinode_rect.max.y + positions_diff[3].y,
),
]
.map(|pos| pos / atlas_extent)
};
let color = texture_slices.color.to_f32_array();
let (image_size, atlas) = if let Some(atlas) = texture_slices.atlas_rect {
(
atlas.size(),
[
atlas.min.x / batch_image_size.x,
atlas.min.y / batch_image_size.y,
atlas.max.x / batch_image_size.x,
atlas.max.y / batch_image_size.y,
],
)
} else {
(batch_image_size, [0., 0., 1., 1.])
};
let [slices, border, repeat] = compute_texture_slices(
image_size,
uinode_rect.size(),
&texture_slices.image_scale_mode,
);
for i in 0..4 {
ui_meta.vertices.push(UiTextureSliceVertex {
position: positions_clipped[i].into(),
uv: uvs[i].into(),
color,
slices,
border,
repeat,
atlas,
});
}
for &i in &QUAD_INDICES {
ui_meta.indices.push(indices_index + i as u32);
}
vertices_index += 6;
indices_index += 4;
existing_batch.unwrap().1.range.end = vertices_index;
ui_phase.items[batch_item_index].batch_range_mut().end += 1;
} else {
batch_image_handle = AssetId::invalid();
}
}
}
ui_meta.vertices.write_buffer(&render_device, &render_queue);
ui_meta.indices.write_buffer(&render_device, &render_queue);
*previous_len = batches.len();
commands.insert_or_spawn_batch(batches);
}
extracted_slices.slices.clear();
}
pub type DrawUiTextureSlices = (
SetItemPipeline,
SetSlicerViewBindGroup<0>,
SetSlicerTextureBindGroup<1>,
DrawSlicer,
);
pub struct SetSlicerViewBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetSlicerViewBindGroup<I> {
type Param = SRes<UiTextureSliceMeta>;
type ViewQuery = Read<ViewUniformOffset>;
type ItemQuery = ();
fn render<'w>(
_item: &P,
view_uniform: &'w ViewUniformOffset,
_entity: Option<()>,
ui_meta: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let Some(view_bind_group) = ui_meta.into_inner().view_bind_group.as_ref() else {
return RenderCommandResult::Failure;
};
pass.set_bind_group(I, view_bind_group, &[view_uniform.offset]);
RenderCommandResult::Success
}
}
pub struct SetSlicerTextureBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetSlicerTextureBindGroup<I> {
type Param = SRes<UiTextureSliceImageBindGroups>;
type ViewQuery = ();
type ItemQuery = Read<UiTextureSlicerBatch>;
#[inline]
fn render<'w>(
_item: &P,
_view: (),
batch: Option<&'w UiTextureSlicerBatch>,
image_bind_groups: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let image_bind_groups = image_bind_groups.into_inner();
let Some(batch) = batch else {
return RenderCommandResult::Success;
};
pass.set_bind_group(I, image_bind_groups.values.get(&batch.image).unwrap(), &[]);
RenderCommandResult::Success
}
}
pub struct DrawSlicer;
impl<P: PhaseItem> RenderCommand<P> for DrawSlicer {
type Param = SRes<UiTextureSliceMeta>;
type ViewQuery = ();
type ItemQuery = Read<UiTextureSlicerBatch>;
#[inline]
fn render<'w>(
_item: &P,
_view: (),
batch: Option<&'w UiTextureSlicerBatch>,
ui_meta: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let Some(batch) = batch else {
return RenderCommandResult::Success;
};
let ui_meta = ui_meta.into_inner();
let Some(vertices) = ui_meta.vertices.buffer() else {
return RenderCommandResult::Failure;
};
let Some(indices) = ui_meta.indices.buffer() else {
return RenderCommandResult::Failure;
};
// Store the vertices
pass.set_vertex_buffer(0, vertices.slice(..));
// Define how to "connect" the vertices
pass.set_index_buffer(indices.slice(..), 0, IndexFormat::Uint32);
// Draw the vertices
pass.draw_indexed(batch.range.clone(), 0, 0..1);
RenderCommandResult::Success
}
}
fn compute_texture_slices(
image_size: Vec2,
target_size: Vec2,
image_scale_mode: &ImageScaleMode,
) -> [[f32; 4]; 3] {
match image_scale_mode {
ImageScaleMode::Sliced(TextureSlicer {
border,
center_scale_mode,
sides_scale_mode,
max_corner_scale,
}) => {
let min_coeff = (target_size / image_size)
.min_element()
.min(*max_corner_scale);
let slices = [
border.left / image_size.x,
border.top / image_size.y,
1. - border.right / image_size.x,
1. - border.bottom / image_size.y,
];
let border = [
(border.left / target_size.x) * min_coeff,
(border.top / target_size.y) * min_coeff,
1. - (border.right / target_size.x) * min_coeff,
1. - (border.bottom / target_size.y) * min_coeff,
];
let isx = image_size.x * (1. - slices[0] - slices[2]);
let isy = image_size.y * (1. - slices[1] - slices[3]);
let tsx = target_size.x * (1. - border[0] - border[2]);
let tsy = target_size.y * (1. - border[1] - border[3]);
let rx = compute_tiled_subaxis(isx, tsx, sides_scale_mode);
let ry = compute_tiled_subaxis(isy, tsy, sides_scale_mode);
let cx = compute_tiled_subaxis(isx, tsx, center_scale_mode);
let cy = compute_tiled_subaxis(isy, tsy, center_scale_mode);
[slices, border, [rx, ry, cx, cy]]
}
ImageScaleMode::Tiled {
tile_x,
tile_y,
stretch_value,
} => {
let rx = compute_tiled_axis(*tile_x, image_size.x, target_size.x, *stretch_value);
let ry = compute_tiled_axis(*tile_y, image_size.y, target_size.y, *stretch_value);
[[0., 0., 1., 1.], [0., 0., 1., 1.], [1., 1., rx, ry]]
}
}
}
fn compute_tiled_axis(tile: bool, is: f32, ts: f32, stretch: f32) -> f32 {
if tile {
let s = is * stretch;
ts / s
} else {
1.
}
}
fn compute_tiled_subaxis(is: f32, ts: f32, mode: &SliceScaleMode) -> f32 {
match mode {
SliceScaleMode::Stretch => 1.,
SliceScaleMode::Tile { stretch_value } => {
let s = is * *stretch_value;
ts / s
}
}
}

View file

@ -1,219 +0,0 @@
// This module is mostly copied and pasted from `bevy_sprite::texture_slice`
//
// A more centralized solution should be investigated in the future
use bevy_asset::{AssetEvent, Assets};
use bevy_ecs::prelude::*;
use bevy_math::{Rect, Vec2};
use bevy_render::texture::Image;
use bevy_sprite::{ImageScaleMode, TextureAtlas, TextureAtlasLayout, TextureSlice};
use bevy_transform::prelude::*;
use bevy_utils::HashSet;
use crate::{CalculatedClip, ExtractedUiNode, Node, NodeType, UiImage};
/// Component storing texture slices for image nodes entities with a tiled or sliced [`ImageScaleMode`]
///
/// This component is automatically inserted and updated
#[derive(Debug, Clone, Component)]
pub struct ComputedTextureSlices {
slices: Vec<TextureSlice>,
image_size: Vec2,
}
impl ComputedTextureSlices {
/// Computes [`ExtractedUiNode`] iterator from the sprite slices
///
/// # Arguments
///
/// * `transform` - the sprite entity global transform
/// * `original_entity` - the sprite entity
/// * `sprite` - The sprite component
/// * `handle` - The sprite texture handle
#[must_use]
pub(crate) fn extract_ui_nodes<'a>(
&'a self,
transform: &'a GlobalTransform,
node: &'a Node,
image: &'a UiImage,
clip: Option<&'a CalculatedClip>,
camera_entity: Entity,
) -> impl ExactSizeIterator<Item = ExtractedUiNode> + 'a {
let mut flip = Vec2::new(1.0, -1.0);
let [mut flip_x, mut flip_y] = [false; 2];
if image.flip_x {
flip.x *= -1.0;
flip_x = true;
}
if image.flip_y {
flip.y *= -1.0;
flip_y = true;
}
self.slices.iter().map(move |slice| {
let offset = (slice.offset * flip).extend(0.0);
let transform = transform.mul_transform(Transform::from_translation(offset));
let scale = slice.draw_size / slice.texture_rect.size();
let mut rect = slice.texture_rect;
rect.min *= scale;
rect.max *= scale;
let atlas_size = Some(self.image_size * scale);
ExtractedUiNode {
stack_index: node.stack_index,
color: image.color.into(),
transform: transform.compute_matrix(),
rect,
flip_x,
flip_y,
image: image.texture.id(),
atlas_size,
clip: clip.map(|clip| clip.clip),
camera_entity,
border: [0.; 4],
border_radius: [0.; 4],
node_type: NodeType::Rect,
}
})
}
}
/// Generates sprite slices for a `sprite` given a `scale_mode`. The slices
/// will be computed according to the `image_handle` dimensions.
///
/// Returns `None` if the image asset is not loaded
///
/// # Arguments
///
/// * `draw_area` - The size of the drawing area the slices will have to fit into
/// * `scale_mode` - The image scaling component
/// * `image_handle` - The texture to slice or tile
/// * `images` - The image assets, use to retrieve the image dimensions
/// * `atlas` - Optional texture atlas, if set the slicing will happen on the matching sub section
/// of the texture
/// * `atlas_layouts` - The atlas layout assets, used to retrieve the texture atlas section rect
#[must_use]
fn compute_texture_slices(
draw_area: Vec2,
scale_mode: &ImageScaleMode,
image_handle: &UiImage,
images: &Assets<Image>,
atlas: Option<&TextureAtlas>,
atlas_layouts: &Assets<TextureAtlasLayout>,
) -> Option<ComputedTextureSlices> {
let (image_size, texture_rect) = match atlas {
Some(a) => {
let layout = atlas_layouts.get(&a.layout)?;
(
layout.size.as_vec2(),
layout.textures.get(a.index)?.as_rect(),
)
}
None => {
let image = images.get(&image_handle.texture)?;
let size = Vec2::new(
image.texture_descriptor.size.width as f32,
image.texture_descriptor.size.height as f32,
);
let rect = Rect {
min: Vec2::ZERO,
max: size,
};
(size, rect)
}
};
let slices = match scale_mode {
ImageScaleMode::Sliced(slicer) => slicer.compute_slices(texture_rect, Some(draw_area)),
ImageScaleMode::Tiled {
tile_x,
tile_y,
stretch_value,
} => {
let slice = TextureSlice {
texture_rect,
draw_size: draw_area,
offset: Vec2::ZERO,
};
slice.tiled(*stretch_value, (*tile_x, *tile_y))
}
};
Some(ComputedTextureSlices { slices, image_size })
}
/// System reacting to added or modified [`Image`] handles, and recompute sprite slices
/// on matching sprite entities with a [`ImageScaleMode`] component
pub(crate) fn compute_slices_on_asset_event(
mut commands: Commands,
mut events: EventReader<AssetEvent<Image>>,
images: Res<Assets<Image>>,
atlas_layouts: Res<Assets<TextureAtlasLayout>>,
ui_nodes: Query<(
Entity,
&ImageScaleMode,
&Node,
&UiImage,
Option<&TextureAtlas>,
)>,
) {
// We store the asset ids of added/modified image assets
let added_handles: HashSet<_> = events
.read()
.filter_map(|e| match e {
AssetEvent::Added { id } | AssetEvent::Modified { id } => Some(*id),
_ => None,
})
.collect();
if added_handles.is_empty() {
return;
}
// We recompute the sprite slices for sprite entities with a matching asset handle id
for (entity, scale_mode, ui_node, image, atlas) in &ui_nodes {
if !added_handles.contains(&image.texture.id()) {
continue;
}
if let Some(slices) = compute_texture_slices(
ui_node.size(),
scale_mode,
image,
&images,
atlas,
&atlas_layouts,
) {
commands.entity(entity).try_insert(slices);
}
}
}
/// System reacting to changes on relevant sprite bundle components to compute the sprite slices
/// on matching sprite entities with a [`ImageScaleMode`] component
pub(crate) fn compute_slices_on_image_change(
mut commands: Commands,
images: Res<Assets<Image>>,
atlas_layouts: Res<Assets<TextureAtlasLayout>>,
changed_nodes: Query<
(
Entity,
&ImageScaleMode,
&Node,
&UiImage,
Option<&TextureAtlas>,
),
Or<(
Changed<ImageScaleMode>,
Changed<UiImage>,
Changed<Node>,
Changed<TextureAtlas>,
)>,
>,
) {
for (entity, scale_mode, ui_node, image, atlas) in &changed_nodes {
if let Some(slices) = compute_texture_slices(
ui_node.size(),
scale_mode,
image,
&images,
atlas,
&atlas_layouts,
) {
commands.entity(entity).try_insert(slices);
}
}
}