Support transforming bounding volumes (#11681)

# Objective

Make it straightforward to translate and rotate bounding volumes.

## Solution

Add `translate_by`/`translated_by`, `rotate_by`/`rotated_by`,
`transform_by`/`transformed_by` methods to the `BoundingVolume` trait.
This follows the naming used for mesh transformations (see #11454 and
#11675).

---

## Changelog

- Added `translate_by`/`translated_by`, `rotate_by`/`rotated_by`,
`transform_by`/`transformed_by` methods to the `BoundingVolume` trait
and implemented them for the bounding volumes
- Renamed `Position` associated type to `Translation`

---------

Co-authored-by: Mateusz Wachowiak <mateusz_wachowiak@outlook.com>
This commit is contained in:
Joona Aalto 2024-03-05 02:48:45 +02:00 committed by GitHub
parent 9a6fc76148
commit 921ba54acf
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 255 additions and 15 deletions

View file

@ -93,11 +93,12 @@ impl Aabb2d {
}
impl BoundingVolume for Aabb2d {
type Position = Vec2;
type Translation = Vec2;
type Rotation = f32;
type HalfSize = Vec2;
#[inline(always)]
fn center(&self) -> Self::Position {
fn center(&self) -> Self::Translation {
(self.min + self.max) / 2.
}
@ -147,6 +148,66 @@ impl BoundingVolume for Aabb2d {
debug_assert!(b.min.x <= b.max.x && b.min.y <= b.max.y);
b
}
/// Transforms the bounding volume by first rotating it around the origin and then applying a translation.
///
/// The result is an Axis-Aligned Bounding Box that encompasses the rotated shape.
///
/// Note that the result may not be as tightly fitting as the original, and repeated rotations
/// can cause the AABB to grow indefinitely. Avoid applying multiple rotations to the same AABB,
/// and consider storing the original AABB and rotating that every time instead.
#[inline(always)]
fn transformed_by(mut self, translation: Self::Translation, rotation: Self::Rotation) -> Self {
self.transform_by(translation, rotation);
self
}
/// Transforms the bounding volume by first rotating it around the origin and then applying a translation.
///
/// The result is an Axis-Aligned Bounding Box that encompasses the rotated shape.
///
/// Note that the result may not be as tightly fitting as the original, and repeated rotations
/// can cause the AABB to grow indefinitely. Avoid applying multiple rotations to the same AABB,
/// and consider storing the original AABB and rotating that every time instead.
#[inline(always)]
fn transform_by(&mut self, translation: Self::Translation, rotation: Self::Rotation) {
self.rotate_by(rotation);
self.translate_by(translation);
}
#[inline(always)]
fn translate_by(&mut self, translation: Self::Translation) {
self.min += translation;
self.max += translation;
}
/// Rotates the bounding volume around the origin by the given rotation.
///
/// The result is an Axis-Aligned Bounding Box that encompasses the rotated shape.
///
/// Note that the result may not be as tightly fitting as the original, and repeated rotations
/// can cause the AABB to grow indefinitely. Avoid applying multiple rotations to the same AABB,
/// and consider storing the original AABB and rotating that every time instead.
#[inline(always)]
fn rotated_by(mut self, rotation: Self::Rotation) -> Self {
self.rotate_by(rotation);
self
}
/// Rotates the bounding volume around the origin by the given rotation.
///
/// The result is an Axis-Aligned Bounding Box that encompasses the rotated shape.
///
/// Note that the result may not be as tightly fitting as the original, and repeated rotations
/// can cause the AABB to grow indefinitely. Avoid applying multiple rotations to the same AABB,
/// and consider storing the original AABB and rotating that every time instead.
#[inline(always)]
fn rotate_by(&mut self, rotation: Self::Rotation) {
let rot_mat = Mat2::from_angle(rotation);
let abs_rot_mat = Mat2::from_cols(rot_mat.x_axis.abs(), rot_mat.y_axis.abs());
let half_size = abs_rot_mat * self.half_size();
*self = Self::new(rot_mat * self.center(), half_size);
}
}
impl IntersectsVolume<Self> for Aabb2d {
@ -277,6 +338,24 @@ mod aabb2d_tests {
assert!(!shrunk.contains(&a));
}
#[test]
fn transform() {
let a = Aabb2d {
min: Vec2::new(-2.0, -2.0),
max: Vec2::new(2.0, 2.0),
};
let transformed = a.transformed_by(Vec2::new(2.0, -2.0), std::f32::consts::FRAC_PI_4);
let half_length = 2_f32.hypot(2.0);
assert_eq!(
transformed.min,
Vec2::new(2.0 - half_length, -half_length - 2.0)
);
assert_eq!(
transformed.max,
Vec2::new(2.0 + half_length, half_length - 2.0)
);
}
#[test]
fn closest_point() {
let aabb = Aabb2d {
@ -396,11 +475,12 @@ impl BoundingCircle {
}
impl BoundingVolume for BoundingCircle {
type Position = Vec2;
type Translation = Vec2;
type Rotation = f32;
type HalfSize = f32;
#[inline(always)]
fn center(&self) -> Self::Position {
fn center(&self) -> Self::Translation {
self.center
}
@ -449,6 +529,16 @@ impl BoundingVolume for BoundingCircle {
debug_assert!(self.radius() >= amount);
Self::new(self.center, self.radius() - amount)
}
#[inline(always)]
fn translate_by(&mut self, translation: Vec2) {
self.center += translation;
}
#[inline(always)]
fn rotate_by(&mut self, rotation: f32) {
self.center = Mat2::from_angle(rotation) * self.center;
}
}
impl IntersectsVolume<Self> for BoundingCircle {
@ -551,6 +641,17 @@ mod bounding_circle_tests {
assert!(!shrunk.contains(&a));
}
#[test]
fn transform() {
let a = BoundingCircle::new(Vec2::ONE, 5.0);
let transformed = a.transformed_by(Vec2::new(2.0, -2.0), std::f32::consts::FRAC_PI_4);
assert_eq!(
transformed.center,
Vec2::new(2.0, std::f32::consts::SQRT_2 - 2.0)
);
assert_eq!(transformed.radius(), 5.0);
}
#[test]
fn closest_point() {
let circle = BoundingCircle::new(Vec2::ZERO, 1.0);

View file

@ -1,5 +1,7 @@
mod primitive_impls;
use glam::Mat3;
use super::{BoundingVolume, IntersectsVolume};
use crate::prelude::{Quat, Vec3};
@ -87,11 +89,12 @@ impl Aabb3d {
}
impl BoundingVolume for Aabb3d {
type Position = Vec3;
type Translation = Vec3;
type Rotation = Quat;
type HalfSize = Vec3;
#[inline(always)]
fn center(&self) -> Self::Position {
fn center(&self) -> Self::Translation {
(self.min + self.max) / 2.
}
@ -143,6 +146,54 @@ impl BoundingVolume for Aabb3d {
debug_assert!(b.min.x <= b.max.x && b.min.y <= b.max.y && b.min.z <= b.max.z);
b
}
/// Transforms the bounding volume by first rotating it around the origin and then applying a translation.
///
/// The result is an Axis-Aligned Bounding Box that encompasses the rotated shape.
#[inline(always)]
fn transformed_by(mut self, translation: Self::Translation, rotation: Self::Rotation) -> Self {
self.transform_by(translation, rotation);
self
}
/// Transforms the bounding volume by first rotating it around the origin and then applying a translation.
///
/// The result is an Axis-Aligned Bounding Box that encompasses the rotated shape.
#[inline(always)]
fn transform_by(&mut self, translation: Self::Translation, rotation: Self::Rotation) {
self.rotate_by(rotation);
self.translate_by(translation);
}
#[inline(always)]
fn translate_by(&mut self, translation: Self::Translation) {
self.min += translation;
self.max += translation;
}
/// Rotates the bounding volume around the origin by the given rotation.
///
/// The result is an Axis-Aligned Bounding Box that encompasses the rotated shape.
#[inline(always)]
fn rotated_by(mut self, rotation: Self::Rotation) -> Self {
self.rotate_by(rotation);
self
}
/// Rotates the bounding volume around the origin by the given rotation.
///
/// The result is an Axis-Aligned Bounding Box that encompasses the rotated shape.
#[inline(always)]
fn rotate_by(&mut self, rotation: Self::Rotation) {
let rot_mat = Mat3::from_quat(rotation);
let abs_rot_mat = Mat3::from_cols(
rot_mat.x_axis.abs(),
rot_mat.y_axis.abs(),
rot_mat.z_axis.abs(),
);
let half_size = abs_rot_mat * self.half_size();
*self = Self::new(rot_mat * self.center(), half_size);
}
}
impl IntersectsVolume<Self> for Aabb3d {
@ -170,7 +221,7 @@ mod aabb3d_tests {
use super::Aabb3d;
use crate::{
bounding::{BoundingSphere, BoundingVolume, IntersectsVolume},
Vec3,
Quat, Vec3,
};
#[test]
@ -273,6 +324,27 @@ mod aabb3d_tests {
assert!(!shrunk.contains(&a));
}
#[test]
fn transform() {
let a = Aabb3d {
min: Vec3::new(-2.0, -2.0, -2.0),
max: Vec3::new(2.0, 2.0, 2.0),
};
let transformed = a.transformed_by(
Vec3::new(2.0, -2.0, 4.0),
Quat::from_rotation_z(std::f32::consts::FRAC_PI_4),
);
let half_length = 2_f32.hypot(2.0);
assert_eq!(
transformed.min,
Vec3::new(2.0 - half_length, -half_length - 2.0, 2.0)
);
assert_eq!(
transformed.max,
Vec3::new(2.0 + half_length, half_length - 2.0, 6.0)
);
}
#[test]
fn closest_point() {
let aabb = Aabb3d {
@ -388,11 +460,12 @@ impl BoundingSphere {
}
impl BoundingVolume for BoundingSphere {
type Position = Vec3;
type Translation = Vec3;
type Rotation = Quat;
type HalfSize = f32;
#[inline(always)]
fn center(&self) -> Self::Position {
fn center(&self) -> Self::Translation {
self.center
}
@ -451,6 +524,16 @@ impl BoundingVolume for BoundingSphere {
},
}
}
#[inline(always)]
fn translate_by(&mut self, translation: Vec3) {
self.center += translation;
}
#[inline(always)]
fn rotate_by(&mut self, rotation: Quat) {
self.center = rotation * self.center;
}
}
impl IntersectsVolume<Self> for BoundingSphere {
@ -471,10 +554,12 @@ impl IntersectsVolume<Aabb3d> for BoundingSphere {
#[cfg(test)]
mod bounding_sphere_tests {
use approx::assert_relative_eq;
use super::BoundingSphere;
use crate::{
bounding::{BoundingVolume, IntersectsVolume},
Vec3,
Quat, Vec3,
};
#[test]
@ -553,6 +638,20 @@ mod bounding_sphere_tests {
assert!(!shrunk.contains(&a));
}
#[test]
fn transform() {
let a = BoundingSphere::new(Vec3::ONE, 5.0);
let transformed = a.transformed_by(
Vec3::new(2.0, -2.0, 4.0),
Quat::from_rotation_z(std::f32::consts::FRAC_PI_4),
);
assert_relative_eq!(
transformed.center,
Vec3::new(2.0, std::f32::consts::SQRT_2 - 2.0, 5.0)
);
assert_eq!(transformed.radius(), 5.0);
}
#[test]
fn closest_point() {
let sphere = BoundingSphere::new(Vec3::ZERO, 1.0);

View file

@ -10,16 +10,20 @@
/// overlapping elements or finding intersections.
///
/// This trait supports both 2D and 3D bounding shapes.
pub trait BoundingVolume {
pub trait BoundingVolume: Sized {
/// The position type used for the volume. This should be `Vec2` for 2D and `Vec3` for 3D.
type Position: Clone + Copy + PartialEq;
type Translation: Clone + Copy + PartialEq;
/// The rotation type used for the volume. This should be `f32` for 2D and `Quat` for 3D.
type Rotation: Clone + Copy + PartialEq;
/// The type used for the size of the bounding volume. Usually a half size. For example an
/// `f32` radius for a circle, or a `Vec3` with half sizes for x, y and z for a 3D axis-aligned
/// bounding box
type HalfSize;
/// Returns the center of the bounding volume.
fn center(&self) -> Self::Position;
fn center(&self) -> Self::Translation;
/// Returns the half size of the bounding volume.
fn half_size(&self) -> Self::HalfSize;
@ -38,11 +42,47 @@ pub trait BoundingVolume {
/// Computes the smallest bounding volume that contains both `self` and `other`.
fn merge(&self, other: &Self) -> Self;
/// Increase the size of the bounding volume in each direction by the given amount
/// Increases the size of the bounding volume in each direction by the given amount.
fn grow(&self, amount: Self::HalfSize) -> Self;
/// Decrease the size of the bounding volume in each direction by the given amount
/// Decreases the size of the bounding volume in each direction by the given amount.
fn shrink(&self, amount: Self::HalfSize) -> Self;
/// Transforms the bounding volume by first rotating it around the origin and then applying a translation.
fn transformed_by(mut self, translation: Self::Translation, rotation: Self::Rotation) -> Self {
self.transform_by(translation, rotation);
self
}
/// Transforms the bounding volume by first rotating it around the origin and then applying a translation.
fn transform_by(&mut self, translation: Self::Translation, rotation: Self::Rotation) {
self.rotate_by(rotation);
self.translate_by(translation);
}
/// Translates the bounding volume by the given translation.
fn translated_by(mut self, translation: Self::Translation) -> Self {
self.translate_by(translation);
self
}
/// Translates the bounding volume by the given translation.
fn translate_by(&mut self, translation: Self::Translation);
/// Rotates the bounding volume around the origin by the given rotation.
///
/// The result is a combination of the original volume and the rotated volume,
/// so it is guaranteed to be either the same size or larger than the original.
fn rotated_by(mut self, rotation: Self::Rotation) -> Self {
self.rotate_by(rotation);
self
}
/// Rotates the bounding volume around the origin by the given rotation.
///
/// The result is a combination of the original volume and the rotated volume,
/// so it is guaranteed to be either the same size or larger than the original.
fn rotate_by(&mut self, rotation: Self::Rotation);
}
/// A trait that generalizes intersection tests against a volume.