Array texture example (#5077)

# Objective

- Make the reusable PBR shading functionality a little more reusable
  - Add constructor functions for `StandardMaterial` and `PbrInput` structs to populate them with default values
  - Document unclear `PbrInput` members
- Demonstrate how to reuse the bevy PBR shading functionality
- The final important piece from #3969 as the initial shot at making the PBR shader code reusable in custom materials

## Solution

- Add back and rework the 'old' `array_texture` example from pre-0.6.
- Create a custom shader material
  - Use a single array texture binding and sampler for the material bind group
  - Use a shader that calls `pbr()` from the `bevy_pbr::pbr_functions` import
- Spawn a row of cubes using the custom material
- In the shader, select the array texture layer to sample by using the world position x coordinate modulo the number of array texture layers

<img width="1392" alt="Screenshot 2022-06-23 at 12 28 05" src="https://user-images.githubusercontent.com/302146/175278593-2296f519-f577-4ece-81c0-d842283784a1.png">

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This commit is contained in:
Robert Swain 2022-06-28 00:58:50 +00:00
parent 9eb69282ef
commit 84991d34f3
7 changed files with 309 additions and 3 deletions

View file

@ -1183,6 +1183,16 @@ description = "A compute shader that simulates Conway's Game of Life"
category = "Shaders" category = "Shaders"
wasm = false wasm = false
[[example]]
name = "array_texture"
path = "examples/shader/array_texture.rs"
[package.metadata.example.array_texture]
name = "Array Texture"
description = "A shader that shows how to reuse the core bevy PBR shading functionality in a custom material that obtains the base color from an array texture."
category = "Shaders"
wasm = true
# Stress tests # Stress tests
[[package.metadata.category]] [[package.metadata.category]]
name = "Stress Tests" name = "Stress Tests"

View file

@ -0,0 +1,63 @@
#import bevy_pbr::mesh_view_bindings
#import bevy_pbr::mesh_bindings
#import bevy_pbr::pbr_types
#import bevy_pbr::utils
#import bevy_pbr::clustered_forward
#import bevy_pbr::lighting
#import bevy_pbr::shadows
#import bevy_pbr::pbr_functions
[[group(1), binding(0)]]
var my_array_texture: texture_2d_array<f32>;
[[group(1), binding(1)]]
var my_array_texture_sampler: sampler;
struct FragmentInput {
[[builtin(front_facing)]] is_front: bool;
[[builtin(position)]] frag_coord: vec4<f32>;
[[location(0)]] world_position: vec4<f32>;
[[location(1)]] world_normal: vec3<f32>;
[[location(2)]] uv: vec2<f32>;
#ifdef VERTEX_TANGENTS
[[location(3)]] world_tangent: vec4<f32>;
#endif
#ifdef VERTEX_COLORS
[[location(4)]] color: vec4<f32>;
#endif
};
[[stage(fragment)]]
fn fragment(in: FragmentInput) -> [[location(0)]] vec4<f32> {
let layer = i32(in.world_position.x) & 0x3;
// Prepare a 'processed' StandardMaterial by sampling all textures to resolve
// the material members
var pbr_input: PbrInput = pbr_input_new();
pbr_input.material.base_color = textureSample(my_array_texture, my_array_texture_sampler, in.uv, layer);
#ifdef VERTEX_COLORS
pbr_input.material.base_color = pbr_input.material.base_color * in.color;
#endif
pbr_input.frag_coord = in.frag_coord;
pbr_input.world_position = in.world_position;
pbr_input.world_normal = in.world_normal;
pbr_input.is_orthographic = view.projection[3].w == 1.0;
pbr_input.N = prepare_normal(
pbr_input.material.flags,
in.world_normal,
#ifdef VERTEX_TANGENTS
#ifdef STANDARDMATERIAL_NORMAL_MAP
in.world_tangent,
#endif
#endif
in.uv,
in.is_front,
);
pbr_input.V = calculate_view(in.world_position, pbr_input.is_orthographic);
return pbr(pbr_input);
}

View file

@ -74,6 +74,7 @@ fn fragment(in: FragmentInput) -> [[location(0)]] vec4<f32> {
pbr_input.is_orthographic = view.projection[3].w == 1.0; pbr_input.is_orthographic = view.projection[3].w == 1.0;
pbr_input.N = prepare_normal( pbr_input.N = prepare_normal(
material.flags,
in.world_normal, in.world_normal,
#ifdef VERTEX_TANGENTS #ifdef VERTEX_TANGENTS
#ifdef STANDARDMATERIAL_NORMAL_MAP #ifdef STANDARDMATERIAL_NORMAL_MAP

View file

@ -3,6 +3,7 @@
// NOTE: This ensures that the world_normal is normalized and if // NOTE: This ensures that the world_normal is normalized and if
// vertex tangents and normal maps then normal mapping may be applied. // vertex tangents and normal maps then normal mapping may be applied.
fn prepare_normal( fn prepare_normal(
standard_material_flags: u32,
world_normal: vec3<f32>, world_normal: vec3<f32>,
#ifdef VERTEX_TANGENTS #ifdef VERTEX_TANGENTS
#ifdef STANDARDMATERIAL_NORMAL_MAP #ifdef STANDARDMATERIAL_NORMAL_MAP
@ -25,7 +26,7 @@ fn prepare_normal(
#endif #endif
#endif #endif
if ((material.flags & STANDARD_MATERIAL_FLAGS_DOUBLE_SIDED_BIT) != 0u) { if ((standard_material_flags & STANDARD_MATERIAL_FLAGS_DOUBLE_SIDED_BIT) != 0u) {
if (!is_front) { if (!is_front) {
N = -N; N = -N;
#ifdef VERTEX_TANGENTS #ifdef VERTEX_TANGENTS
@ -41,7 +42,7 @@ fn prepare_normal(
#ifdef STANDARDMATERIAL_NORMAL_MAP #ifdef STANDARDMATERIAL_NORMAL_MAP
// Nt is the tangent-space normal. // Nt is the tangent-space normal.
var Nt: vec3<f32>; var Nt: vec3<f32>;
if ((material.flags & STANDARD_MATERIAL_FLAGS_TWO_COMPONENT_NORMAL_MAP) != 0u) { if ((standard_material_flags & STANDARD_MATERIAL_FLAGS_TWO_COMPONENT_NORMAL_MAP) != 0u) {
// Only use the xy components and derive z for 2-component normal maps. // Only use the xy components and derive z for 2-component normal maps.
Nt = vec3<f32>(textureSample(normal_map_texture, normal_map_sampler, uv).rg * 2.0 - 1.0, 0.0); Nt = vec3<f32>(textureSample(normal_map_texture, normal_map_sampler, uv).rg * 2.0 - 1.0, 0.0);
Nt.z = sqrt(1.0 - Nt.x * Nt.x - Nt.y * Nt.y); Nt.z = sqrt(1.0 - Nt.x * Nt.x - Nt.y * Nt.y);
@ -49,7 +50,7 @@ fn prepare_normal(
Nt = textureSample(normal_map_texture, normal_map_sampler, uv).rgb * 2.0 - 1.0; Nt = textureSample(normal_map_texture, normal_map_sampler, uv).rgb * 2.0 - 1.0;
} }
// Normal maps authored for DirectX require flipping the y component // Normal maps authored for DirectX require flipping the y component
if ((material.flags & STANDARD_MATERIAL_FLAGS_FLIP_NORMAL_MAP_Y) != 0u) { if ((standard_material_flags & STANDARD_MATERIAL_FLAGS_FLIP_NORMAL_MAP_Y) != 0u) {
Nt.y = -Nt.y; Nt.y = -Nt.y;
} }
// NOTE: The mikktspace method of normal mapping applies maps the tangent-space normal from // NOTE: The mikktspace method of normal mapping applies maps the tangent-space normal from
@ -86,12 +87,36 @@ struct PbrInput {
occlusion: f32; occlusion: f32;
frag_coord: vec4<f32>; frag_coord: vec4<f32>;
world_position: vec4<f32>; world_position: vec4<f32>;
// Normalized world normal used for shadow mapping as normal-mapping is not used for shadow
// mapping
world_normal: vec3<f32>; world_normal: vec3<f32>;
// Normalized normal-mapped world normal used for lighting
N: vec3<f32>; N: vec3<f32>;
// Normalized view vector in world space, pointing from the fragment world position toward the
// view world position
V: vec3<f32>; V: vec3<f32>;
is_orthographic: bool; is_orthographic: bool;
}; };
// Creates a PbrInput with default values
fn pbr_input_new() -> PbrInput {
var pbr_input: PbrInput;
pbr_input.material = standard_material_new();
pbr_input.occlusion = 1.0;
pbr_input.frag_coord = vec4<f32>(0.0, 0.0, 0.0, 1.0);
pbr_input.world_position = vec4<f32>(0.0, 0.0, 0.0, 1.0);
pbr_input.world_normal = vec3<f32>(0.0, 0.0, 1.0);
pbr_input.is_orthographic = false;
pbr_input.N = vec3<f32>(0.0, 0.0, 1.0);
pbr_input.V = vec3<f32>(1.0, 0.0, 0.0);
return pbr_input;
}
fn pbr( fn pbr(
in: PbrInput, in: PbrInput,
) -> vec4<f32> { ) -> vec4<f32> {

View file

@ -22,3 +22,19 @@ let STANDARD_MATERIAL_FLAGS_ALPHA_MODE_MASK: u32 = 128u;
let STANDARD_MATERIAL_FLAGS_ALPHA_MODE_BLEND: u32 = 256u; let STANDARD_MATERIAL_FLAGS_ALPHA_MODE_BLEND: u32 = 256u;
let STANDARD_MATERIAL_FLAGS_TWO_COMPONENT_NORMAL_MAP: u32 = 512u; let STANDARD_MATERIAL_FLAGS_TWO_COMPONENT_NORMAL_MAP: u32 = 512u;
let STANDARD_MATERIAL_FLAGS_FLIP_NORMAL_MAP_Y: u32 = 1024u; let STANDARD_MATERIAL_FLAGS_FLIP_NORMAL_MAP_Y: u32 = 1024u;
// Creates a StandardMaterial with default values
fn standard_material_new() -> StandardMaterial {
var material: StandardMaterial;
// NOTE: Keep in-sync with src/pbr_material.rs!
material.base_color = vec4<f32>(1.0, 1.0, 1.0, 1.0);
material.emissive = vec4<f32>(0.0, 0.0, 0.0, 1.0);
material.perceptual_roughness = 0.089;
material.metallic = 0.01;
material.reflectance = 0.5;
material.flags = STANDARD_MATERIAL_FLAGS_ALPHA_MODE_OPAQUE;
material.alpha_cutoff = 0.5;
return material;
}

View file

@ -253,6 +253,7 @@ There are also compute shaders which are used for more general processing levera
Example | Description Example | Description
--- | --- --- | ---
[Animated](../examples/shader/animate_shader.rs) | A shader that uses dynamic data like the time since startup [Animated](../examples/shader/animate_shader.rs) | A shader that uses dynamic data like the time since startup
[Array Texture](../examples/shader/array_texture.rs) | A shader that shows how to reuse the core bevy PBR shading functionality in a custom material that obtains the base color from an array texture.
[Compute - Game of Life](../examples/shader/compute_shader_game_of_life.rs) | A compute shader that simulates Conway's Game of Life [Compute - Game of Life](../examples/shader/compute_shader_game_of_life.rs) | A compute shader that simulates Conway's Game of Life
[Custom Vertex Attribute](../examples/shader/custom_vertex_attribute.rs) | A shader that reads a mesh's custom vertex attribute [Custom Vertex Attribute](../examples/shader/custom_vertex_attribute.rs) | A shader that reads a mesh's custom vertex attribute
[Instancing](../examples/shader/shader_instancing.rs) | A shader that renders a mesh multiple times in one draw call [Instancing](../examples/shader/shader_instancing.rs) | A shader that renders a mesh multiple times in one draw call

View file

@ -0,0 +1,190 @@
use bevy::{
asset::LoadState,
ecs::system::{lifetimeless::SRes, SystemParamItem},
pbr::MaterialPipeline,
prelude::*,
reflect::TypeUuid,
render::{
render_asset::{PrepareAssetError, RenderAsset, RenderAssets},
render_resource::{
BindGroup, BindGroupDescriptor, BindGroupEntry, BindGroupLayout,
BindGroupLayoutDescriptor, BindGroupLayoutEntry, BindingResource, BindingType,
SamplerBindingType, ShaderStages, TextureSampleType, TextureViewDimension,
},
renderer::RenderDevice,
},
};
/// This example illustrates how to create a texture for use with a `texture_2d_array<f32>` shader
/// uniform variable.
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_plugin(MaterialPlugin::<ArrayTextureMaterial>::default())
.add_startup_system(setup)
.add_system(create_array_texture)
.run();
}
struct LoadingTexture {
is_loaded: bool,
handle: Handle<Image>,
}
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
// Start loading the texture.
commands.insert_resource(LoadingTexture {
is_loaded: false,
handle: asset_server.load("textures/array_texture.png"),
});
// light
commands.spawn_bundle(PointLightBundle {
point_light: PointLight {
intensity: 3000.0,
..Default::default()
},
transform: Transform::from_xyz(-3.0, 2.0, -1.0),
..Default::default()
});
commands.spawn_bundle(PointLightBundle {
point_light: PointLight {
intensity: 3000.0,
..Default::default()
},
transform: Transform::from_xyz(3.0, 2.0, 1.0),
..Default::default()
});
// camera
commands.spawn_bundle(Camera3dBundle {
transform: Transform::from_xyz(5.0, 5.0, 5.0).looking_at(Vec3::new(1.5, 0.0, 0.0), Vec3::Y),
..Default::default()
});
}
fn create_array_texture(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut loading_texture: ResMut<LoadingTexture>,
mut images: ResMut<Assets<Image>>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<ArrayTextureMaterial>>,
) {
if loading_texture.is_loaded
|| asset_server.get_load_state(loading_texture.handle.clone()) != LoadState::Loaded
{
return;
}
loading_texture.is_loaded = true;
let image = images.get_mut(&loading_texture.handle).unwrap();
// Create a new array texture asset from the loaded texture.
let array_layers = 4;
image.reinterpret_stacked_2d_as_array(array_layers);
// Spawn some cubes using the array texture
let mesh_handle = meshes.add(Mesh::from(shape::Cube { size: 1.0 }));
let material_handle = materials.add(ArrayTextureMaterial {
array_texture: loading_texture.handle.clone(),
});
for x in -5..=5 {
commands.spawn_bundle(MaterialMeshBundle {
mesh: mesh_handle.clone(),
material: material_handle.clone(),
transform: Transform::from_xyz(x as f32 + 0.5, 0.0, 0.0),
..Default::default()
});
}
}
#[derive(Debug, Clone, TypeUuid)]
#[uuid = "9c5a0ddf-1eaf-41b4-9832-ed736fd26af3"]
struct ArrayTextureMaterial {
array_texture: Handle<Image>,
}
#[derive(Clone)]
pub struct GpuArrayTextureMaterial {
bind_group: BindGroup,
}
impl RenderAsset for ArrayTextureMaterial {
type ExtractedAsset = ArrayTextureMaterial;
type PreparedAsset = GpuArrayTextureMaterial;
type Param = (
SRes<RenderDevice>,
SRes<MaterialPipeline<Self>>,
SRes<RenderAssets<Image>>,
);
fn extract_asset(&self) -> Self::ExtractedAsset {
self.clone()
}
fn prepare_asset(
extracted_asset: Self::ExtractedAsset,
(render_device, material_pipeline, gpu_images): &mut SystemParamItem<Self::Param>,
) -> Result<Self::PreparedAsset, PrepareAssetError<Self::ExtractedAsset>> {
let (array_texture_texture_view, array_texture_sampler) = if let Some(result) =
material_pipeline
.mesh_pipeline
.get_image_texture(gpu_images, &Some(extracted_asset.array_texture.clone()))
{
result
} else {
return Err(PrepareAssetError::RetryNextUpdate(extracted_asset));
};
let bind_group = render_device.create_bind_group(&BindGroupDescriptor {
entries: &[
BindGroupEntry {
binding: 0,
resource: BindingResource::TextureView(array_texture_texture_view),
},
BindGroupEntry {
binding: 1,
resource: BindingResource::Sampler(array_texture_sampler),
},
],
label: Some("array_texture_material_bind_group"),
layout: &material_pipeline.material_layout,
});
Ok(GpuArrayTextureMaterial { bind_group })
}
}
impl Material for ArrayTextureMaterial {
fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
Some(asset_server.load("shaders/array_texture.wgsl"))
}
fn bind_group(render_asset: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup {
&render_asset.bind_group
}
fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout {
render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
entries: &[
// Array Texture
BindGroupLayoutEntry {
binding: 0,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Texture {
multisampled: false,
sample_type: TextureSampleType::Float { filterable: true },
view_dimension: TextureViewDimension::D2Array,
},
count: None,
},
// Array Texture Sampler
BindGroupLayoutEntry {
binding: 1,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Sampler(SamplerBindingType::Filtering),
count: None,
},
],
label: None,
})
}
}