add breakout example game

This commit is contained in:
Carter Anderson 2020-06-26 21:40:09 -07:00
parent 1e614e41f1
commit 7441ac1a01
5 changed files with 299 additions and 1 deletions

View file

@ -139,6 +139,10 @@ path = "examples/ecs/startup_system.rs"
name = "ecs_guide"
path = "examples/ecs/ecs_guide.rs"
[[example]]
name = "breakout"
path = "examples/game/breakout/main.rs"
[[example]]
name = "mouse_input"
path = "examples/input/mouse_input.rs"

View file

@ -0,0 +1,62 @@
use glam::{Vec3, Vec2};
#[derive(Debug)]
pub enum Collision {
Left,
Right,
Top,
Bottom,
}
// TODO: ideally we can remove this once bevy gets a physics system
/// Axis-aligned bounding box collision with "side" detection
pub fn collide(a_pos: Vec3, a_size: Vec2, b_pos: Vec3, b_size: Vec2) -> Option<Collision> {
let a_min = a_pos.truncate() - a_size / 2.0;
let a_max = a_pos.truncate() + a_size / 2.0;
let b_min = b_pos.truncate() - b_size / 2.0;
let b_max = b_pos.truncate() + b_size / 2.0;
// check to see if the two rectangles are intersecting
if a_min.x() < b_max.x()
&& a_max.x() > b_min.x()
&& a_min.y() < b_max.y()
&& a_max.y() > b_min.y()
{
// check to see if we hit on the left or right side
let (x_collision, x_depth) =
if a_min.x() < b_min.x() && a_max.x() > b_min.x() && a_max.x() < b_max.x() {
(Some(Collision::Left), b_min.x() - a_max.x())
} else if a_min.x() > b_min.x() && a_min.x() < b_max.x() && a_max.x() > b_max.x() {
(Some(Collision::Right), a_min.x() - b_max.x())
} else {
(None, 0.0)
};
// check to see if we hit on the top or bottom side
let (y_collision, y_depth) =
if a_min.y() < b_min.y() && a_max.y() > b_min.y() && a_max.y() < b_max.y() {
(Some(Collision::Bottom), b_min.y() - a_max.y())
} else if a_min.y() > b_min.y() && a_min.y() < b_max.y() && a_max.y() > b_max.y() {
(Some(Collision::Top), a_min.y() - b_max.y())
} else {
(None, 0.0)
};
// if we had an "x" and a "y" collision, pick the "primary" side using penetration depth
match (x_collision, y_collision) {
(Some(x_collision), Some(y_collision)) => {
if y_depth < x_depth {
Some(y_collision)
} else {
Some(x_collision)
}
}
(Some(x_collision), None) => Some(x_collision),
(None, Some(y_collision)) => Some(y_collision),
(None, None) => None,
}
} else {
None
}
}

View file

@ -1,6 +1,7 @@
mod color_material;
mod dynamic_texture_atlas_builder;
pub mod entity;
pub mod collide_aabb;
mod rect;
mod render;
mod sprite;

View file

@ -12,7 +12,7 @@ use glam::Vec2;
#[derive(Default, RenderResources, RenderResource)]
#[render_resources(from_self)]
pub struct Sprite {
size: Vec2,
pub size: Vec2,
}
// SAFE: sprite is repr(C) and only consists of byteables

View file

@ -0,0 +1,231 @@
use bevy::{
prelude::*,
sprite::collide_aabb::{collide, Collision},
};
fn main() {
App::build()
.add_default_plugins()
.add_resource(ClearColor(Color::rgb(0.7, 0.7, 0.7)))
.add_startup_system(setup.system())
.add_system(paddle_movement_system.system())
.add_system(ball_collision_system.system())
.add_system(ball_movement_system.system())
.run();
}
struct Paddle {
speed: f32,
}
struct Ball {
velocity: Vec3,
}
struct Brick;
struct Wall;
fn setup(command_buffer: &mut CommandBuffer, mut materials: ResMut<Assets<ColorMaterial>>) {
// Add the game's entities to our world
let mut builder = command_buffer.build();
builder
// camera
.entity_with(OrthographicCameraComponents::default())
// paddle
.entity_with(SpriteComponents {
material: materials.add(Color::rgb(0.2, 0.2, 0.8).into()),
translation: Translation(Vec3::new(0.0, -250.0, 0.0)),
sprite: Sprite {
size: Vec2::new(120.0, 30.0),
},
..Default::default()
})
.with(Paddle { speed: 500.0 })
// ball
.entity_with(SpriteComponents {
material: materials.add(Color::rgb(0.8, 0.2, 0.2).into()),
translation: Translation(Vec3::new(0.0, -100.0, 1.0)),
sprite: Sprite {
size: Vec2::new(30.0, 30.0),
},
..Default::default()
})
.with(Ball {
velocity: 400.0 * Vec3::new(0.5, -0.5, 0.0).normalize(),
});
// Add walls
let wall_material = materials.add(Color::rgb(0.5, 0.5, 0.5).into());
let wall_thickness = 10.0;
let bounds = Vec2::new(900.0, 600.0);
builder
// left
.entity_with(SpriteComponents {
material: wall_material,
translation: Translation(Vec3::new(-bounds.x() / 2.0, 0.0, 0.0)),
sprite: Sprite {
size: Vec2::new(wall_thickness, bounds.y() + wall_thickness),
},
..Default::default()
})
.with(Wall)
// right
.entity_with(SpriteComponents {
material: wall_material,
translation: Translation(Vec3::new(bounds.x() / 2.0, 0.0, 0.0)),
sprite: Sprite {
size: Vec2::new(wall_thickness, bounds.y() + wall_thickness),
},
..Default::default()
})
.with(Wall)
// bottom
.entity_with(SpriteComponents {
material: wall_material,
translation: Translation(Vec3::new(0.0, -bounds.y() / 2.0, 0.0)),
sprite: Sprite {
size: Vec2::new(bounds.x() + wall_thickness, wall_thickness),
},
..Default::default()
})
.with(Wall)
// top
.entity_with(SpriteComponents {
material: wall_material,
translation: Translation(Vec3::new(0.0, bounds.y() / 2.0, 0.0)),
sprite: Sprite {
size: Vec2::new(bounds.x() + wall_thickness, wall_thickness),
},
..Default::default()
})
.with(Wall);
// Add bricks
let brick_rows = 4;
let brick_columns = 5;
let brick_spacing = 20.0;
let brick_size = Vec2::new(150.0, 30.0);
let bricks_width = brick_columns as f32 * (brick_size.x() + brick_spacing) - brick_spacing;
// center the bricks and move them up a bit
let bricks_offset = Vec3::new(-(bricks_width - brick_size.x()) / 2.0, 100.0, 0.0);
for row in 0..brick_rows {
let y_position = row as f32 * (brick_size.y() + brick_spacing);
for column in 0..brick_columns {
let brick_position = Vec3::new(
column as f32 * (brick_size.x() + brick_spacing),
y_position,
0.0,
) + bricks_offset;
builder
// brick
.entity_with(SpriteComponents {
material: materials.add(Color::rgb(0.2, 0.2, 0.8).into()),
sprite: Sprite { size: brick_size },
translation: Translation(brick_position),
..Default::default()
})
.with(Brick);
}
}
}
fn paddle_movement_system(
world: &mut SubWorld,
time: Res<Time>,
keyboard_input: Res<Input<KeyCode>>,
query: &mut Query<(Read<Paddle>, Write<Translation>)>,
) {
for (paddle, mut translation) in query.iter_mut(world) {
let mut direction = 0.0;
if keyboard_input.pressed(KeyCode::Left) {
direction -= 1.0;
}
if keyboard_input.pressed(KeyCode::Right) {
direction += 1.0;
}
*translation.0.x_mut() += time.delta_seconds * direction * paddle.speed;
}
}
fn ball_movement_system(
world: &mut SubWorld,
time: Res<Time>,
ball_query: &mut Query<(Read<Ball>, Write<Translation>)>,
) {
for (ball, mut translation) in ball_query.iter_mut(world) {
translation.0 += ball.velocity * time.delta_seconds;
}
}
fn ball_collision_system(
command_buffer: &mut CommandBuffer,
world: &mut SubWorld,
ball_query: &mut Query<(Write<Ball>, Read<Translation>, Read<Sprite>)>,
paddle_query: &mut Query<(Read<Paddle>, Read<Translation>, Read<Sprite>)>,
brick_query: &mut Query<(Read<Brick>, Read<Translation>, Read<Sprite>)>,
wall_query: &mut Query<(Read<Wall>, Read<Translation>, Read<Sprite>)>,
) {
for (mut ball, translation, sprite) in ball_query.iter_mut(world) {
let ball_position = translation.0;
let ball_size = sprite.size;
let velocity = &mut ball.velocity;
let mut collision = None;
// check collision with walls
for (_wall, translation, sprite) in wall_query.iter(world) {
if collision.is_some() {
break;
}
collision = collide(ball_position, ball_size, translation.0, sprite.size);
}
// check collision with paddle(s)
for (_paddle, translation, sprite) in paddle_query.iter(world) {
if collision.is_some() {
break;
}
collision = collide(ball_position, ball_size, translation.0, sprite.size);
}
// check collision with bricks
for (brick_entity, (_brick, translation, sprite)) in brick_query.iter_entities(world) {
if collision.is_some() {
break;
}
collision = collide(ball_position, ball_size, translation.0, sprite.size);
if collision.is_some() {
command_buffer.delete(brick_entity);
}
}
// reflect the ball when it collides
let mut reflect_x = false;
let mut reflect_y = false;
// only reflect if the ball's velocity is going in the opposite direction of the collision
match collision {
Some(Collision::Left) => reflect_x = velocity.x() > 0.0,
Some(Collision::Right) => reflect_x = velocity.x() < 0.0,
Some(Collision::Top) => reflect_y = velocity.y() < 0.0,
Some(Collision::Bottom) => reflect_y = velocity.y() > 0.0,
None => {}
}
// reflect velocity on the x-axis if we hit something on the x-axis
if reflect_x {
*velocity.x_mut() = -velocity.x();
}
// reflect velocity on the y-axis if we hit something on the y-axis
if reflect_y {
*velocity.y_mut() = -velocity.y();
}
}
}