Add a scene viewer tool (#4183)

# Objective

- Allow quick and easy testing of scenes

## Solution

- Add a `scene-viewer` tool based on `load_gltf`.
  - Run it with e.g. `cargo run --release --example scene_viewer --features jpeg -- ../some/path/assets/models/Sponza/glTF/Sponza.gltf#Scene0`
- Configure the asset path as pointing to the repo root for convenience (paths specified relative to current working directory)
- Copy over the camera controller from the `shadow_biases` example
- Support toggling the light animation
- Support toggling shadows
- Support adjusting the directional light shadow projection (cascaded shadow maps will remove the need for this later)

I don't want to do too much on it up-front. Rather we can add features over time as we need them.
This commit is contained in:
Robert Swain 2022-03-19 19:14:13 +00:00
parent fee7a26137
commit 738cd5e740
3 changed files with 416 additions and 0 deletions

View file

@ -507,6 +507,10 @@ path = "examples/shader/compute_shader_game_of_life.rs"
name = "bevymark" name = "bevymark"
path = "examples/tools/bevymark.rs" path = "examples/tools/bevymark.rs"
[[example]]
name = "scene_viewer"
path = "examples/tools/scene_viewer.rs"
# Transforms # Transforms
[[example]] [[example]]
name = "global_vs_local_translation" name = "global_vs_local_translation"

View file

@ -247,6 +247,7 @@ Example | File | Description
Example | File | Description Example | File | Description
--- | --- | --- --- | --- | ---
`bevymark` | [`tools/bevymark.rs`](./tools/bevymark.rs) | A heavy sprite rendering workload to benchmark your system with Bevy `bevymark` | [`tools/bevymark.rs`](./tools/bevymark.rs) | A heavy sprite rendering workload to benchmark your system with Bevy
`scene_viewer` | [`tools/scene_viewer.rs`](./tools/scene_viewer.rs) | A simple way to view glTF models with Bevy. Just run `cargo run --release --example scene_viewer -- /path/to/model.gltf#Scene0`, replacing the path as appropriate. With no arguments it will load the FieldHelmet glTF model from the repository assets subdirectory.
## Transforms ## Transforms

View file

@ -0,0 +1,411 @@
use bevy::{
asset::{AssetServerSettings, LoadState},
input::mouse::MouseMotion,
math::Vec3A,
prelude::*,
render::{
camera::{Camera2d, Camera3d, CameraProjection},
primitives::{Aabb, Frustum, Sphere},
},
scene::InstanceId,
};
#[derive(Debug, Hash, PartialEq, Eq, Clone, SystemLabel)]
struct CameraControllerCheckSystem;
fn main() {
println!(
"
Controls:
WSAD - forward/back/strafe left/right
LShift - 'run'
E - up
Q - down
L - animate light direction
U - toggle shadows
5/6 - decrease/increase shadow projection width
7/8 - decrease/increase shadow projection height
9/0 - decrease/increase shadow projection near/far
"
);
App::new()
.insert_resource(AmbientLight {
color: Color::WHITE,
brightness: 1.0 / 5.0f32,
})
.insert_resource(AssetServerSettings {
asset_folder: std::env::var("CARGO_MANIFEST_DIR").unwrap(),
watch_for_changes: true,
})
.insert_resource(WindowDescriptor {
title: "bevy scene viewer".to_string(),
..default()
})
.add_plugins(DefaultPlugins)
.add_startup_system(setup)
.add_system_to_stage(CoreStage::PreUpdate, scene_load_check)
.add_system_to_stage(CoreStage::PreUpdate, camera_spawn_check)
.add_system(camera_controller_check.label(CameraControllerCheckSystem))
.add_system(update_lights)
.add_system(camera_controller.after(CameraControllerCheckSystem))
.run();
}
struct SceneHandle {
handle: Handle<Scene>,
instance_id: Option<InstanceId>,
is_loaded: bool,
has_camera: bool,
has_light: bool,
}
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
let scene_path = std::env::args().nth(1).map_or_else(
|| "assets/models/FlightHelmet/FlightHelmet.gltf#Scene0".to_string(),
|s| {
if let Some(index) = s.find("#Scene") {
if index + 6 < s.len() && s[index + 6..].chars().all(char::is_numeric) {
return s;
}
return format!("{}#Scene0", &s[..index]);
}
format!("{}#Scene0", s)
},
);
info!("Loading {}", scene_path);
commands.insert_resource(SceneHandle {
handle: asset_server.load(&scene_path),
instance_id: None,
is_loaded: false,
has_camera: false,
has_light: false,
});
}
fn scene_load_check(
asset_server: Res<AssetServer>,
mut scenes: ResMut<Assets<Scene>>,
mut scene_handle: ResMut<SceneHandle>,
mut scene_spawner: ResMut<SceneSpawner>,
) {
match scene_handle.instance_id {
None if asset_server.get_load_state(&scene_handle.handle) == LoadState::Loaded => {
if let Some(scene) = scenes.get_mut(&scene_handle.handle) {
let mut query = scene
.world
.query::<(Option<&Camera2d>, Option<&Camera3d>)>();
scene_handle.has_camera =
query
.iter(&scene.world)
.any(|(maybe_camera2d, maybe_camera3d)| {
maybe_camera2d.is_some() || maybe_camera3d.is_some()
});
let mut query = scene
.world
.query::<(Option<&DirectionalLight>, Option<&PointLight>)>();
scene_handle.has_light =
query
.iter(&scene.world)
.any(|(maybe_directional_light, maybe_point_light)| {
maybe_directional_light.is_some() || maybe_point_light.is_some()
});
scene_handle.instance_id =
Some(scene_spawner.spawn(scene_handle.handle.clone_weak()));
info!("Spawning scene...");
}
}
Some(instance_id) if !scene_handle.is_loaded => {
if scene_spawner.instance_is_ready(instance_id) {
info!("...done!");
scene_handle.is_loaded = true;
}
}
_ => {}
}
}
fn camera_spawn_check(
mut commands: Commands,
mut scene_handle: ResMut<SceneHandle>,
meshes: Query<(&GlobalTransform, Option<&Aabb>), With<Handle<Mesh>>>,
) {
// If the scene did not contain a camera, find an approximate bounding box of the scene from
// its meshes and spawn a camera that fits it in view
if scene_handle.is_loaded && (!scene_handle.has_camera || !scene_handle.has_light) {
if meshes.iter().any(|(_, maybe_aabb)| maybe_aabb.is_none()) {
return;
}
let mut min = Vec3A::splat(f32::MAX);
let mut max = Vec3A::splat(f32::MIN);
for (transform, maybe_aabb) in meshes.iter() {
let aabb = maybe_aabb.unwrap();
// If the Aabb had not been rotated, applying the non-uniform scale would produce the
// correct bounds. However, it could very well be rotated and so we first convert to
// a Sphere, and then back to an Aabb to find the conservative min and max points.
let sphere = Sphere {
center: Vec3A::from(transform.mul_vec3(Vec3::from(aabb.center))),
radius: (Vec3A::from(transform.scale) * aabb.half_extents).length(),
};
let aabb = Aabb::from(sphere);
min = min.min(aabb.min());
max = max.max(aabb.max());
}
let size = (max - min).length();
let aabb = Aabb::from_min_max(Vec3::from(min), Vec3::from(max));
if !scene_handle.has_camera {
let transform = Transform::from_translation(
Vec3::from(aabb.center) + size * Vec3::new(0.5, 0.25, 0.5),
)
.looking_at(Vec3::from(aabb.center), Vec3::Y);
let view = transform.compute_matrix();
let mut perspective_projection = PerspectiveProjection::default();
perspective_projection.far = perspective_projection.far.max(size * 10.0);
let view_projection = view.inverse() * perspective_projection.get_projection_matrix();
let frustum = Frustum::from_view_projection(
&view_projection,
&transform.translation,
&transform.back(),
perspective_projection.far(),
);
info!("Spawning a 3D perspective camera");
commands.spawn_bundle(PerspectiveCameraBundle {
camera: Camera {
near: perspective_projection.near,
far: perspective_projection.far,
..default()
},
perspective_projection,
frustum,
transform,
..PerspectiveCameraBundle::new_3d()
});
scene_handle.has_camera = true;
}
if !scene_handle.has_light {
// The same approach as above but now for the scene
let sphere = Sphere {
center: aabb.center,
radius: aabb.half_extents.length(),
};
let aabb = Aabb::from(sphere);
let min = aabb.min();
let max = aabb.max();
info!("Spawning a directional light");
commands.spawn_bundle(DirectionalLightBundle {
directional_light: DirectionalLight {
shadow_projection: OrthographicProjection {
left: min.x,
right: max.x,
bottom: min.y,
top: max.y,
near: min.z,
far: max.z,
..default()
},
shadows_enabled: false,
..default()
},
..default()
});
scene_handle.has_light = true;
}
}
}
fn camera_controller_check(
mut commands: Commands,
camera: Query<Entity, (With<Camera>, Without<CameraController>)>,
mut found_camera: Local<bool>,
) {
if *found_camera {
return;
}
if let Some(entity) = camera.iter().next() {
commands.entity(entity).insert(CameraController::default());
*found_camera = true;
}
}
const SCALE_STEP: f32 = 0.1;
fn update_lights(
key_input: Res<Input<KeyCode>>,
time: Res<Time>,
mut query: Query<(&mut Transform, &mut DirectionalLight)>,
mut animate_directional_light: Local<bool>,
) {
let mut projection_adjustment = Vec3::ONE;
if key_input.just_pressed(KeyCode::Key5) {
projection_adjustment.x -= SCALE_STEP;
} else if key_input.just_pressed(KeyCode::Key6) {
projection_adjustment.x += SCALE_STEP;
} else if key_input.just_pressed(KeyCode::Key7) {
projection_adjustment.y -= SCALE_STEP;
} else if key_input.just_pressed(KeyCode::Key8) {
projection_adjustment.y += SCALE_STEP;
} else if key_input.just_pressed(KeyCode::Key9) {
projection_adjustment.z -= SCALE_STEP;
} else if key_input.just_pressed(KeyCode::Key0) {
projection_adjustment.z += SCALE_STEP;
}
for (_, mut light) in query.iter_mut() {
light.shadow_projection.left *= projection_adjustment.x;
light.shadow_projection.right *= projection_adjustment.x;
light.shadow_projection.bottom *= projection_adjustment.y;
light.shadow_projection.top *= projection_adjustment.y;
light.shadow_projection.near *= projection_adjustment.z;
light.shadow_projection.far *= projection_adjustment.z;
if key_input.just_pressed(KeyCode::U) {
light.shadows_enabled = !light.shadows_enabled;
}
}
if key_input.just_pressed(KeyCode::L) {
*animate_directional_light = !*animate_directional_light;
}
if *animate_directional_light {
for (mut transform, _) in query.iter_mut() {
transform.rotation = Quat::from_euler(
EulerRot::ZYX,
0.0,
time.seconds_since_startup() as f32 * std::f32::consts::TAU / 30.0,
-std::f32::consts::FRAC_PI_4,
);
}
}
}
#[derive(Component)]
struct CameraController {
pub enabled: bool,
pub initialized: bool,
pub sensitivity: f32,
pub key_forward: KeyCode,
pub key_back: KeyCode,
pub key_left: KeyCode,
pub key_right: KeyCode,
pub key_up: KeyCode,
pub key_down: KeyCode,
pub key_run: KeyCode,
pub walk_speed: f32,
pub run_speed: f32,
pub friction: f32,
pub pitch: f32,
pub yaw: f32,
pub velocity: Vec3,
}
impl Default for CameraController {
fn default() -> Self {
Self {
enabled: true,
initialized: false,
sensitivity: 0.5,
key_forward: KeyCode::W,
key_back: KeyCode::S,
key_left: KeyCode::A,
key_right: KeyCode::D,
key_up: KeyCode::E,
key_down: KeyCode::Q,
key_run: KeyCode::LShift,
walk_speed: 5.0,
run_speed: 15.0,
friction: 0.5,
pitch: 0.0,
yaw: 0.0,
velocity: Vec3::ZERO,
}
}
}
fn camera_controller(
time: Res<Time>,
mut mouse_events: EventReader<MouseMotion>,
key_input: Res<Input<KeyCode>>,
mut query: Query<(&mut Transform, &mut CameraController), With<Camera>>,
) {
let dt = time.delta_seconds();
// Handle mouse input
let mut mouse_delta = Vec2::ZERO;
for mouse_event in mouse_events.iter() {
mouse_delta += mouse_event.delta;
}
if let Ok((mut transform, mut options)) = query.get_single_mut() {
if !options.initialized {
let (_roll, yaw, pitch) = transform.rotation.to_euler(EulerRot::ZYX);
options.yaw = yaw;
options.pitch = pitch;
options.initialized = true;
}
if !options.enabled {
return;
}
// Handle key input
let mut axis_input = Vec3::ZERO;
if key_input.pressed(options.key_forward) {
axis_input.z += 1.0;
}
if key_input.pressed(options.key_back) {
axis_input.z -= 1.0;
}
if key_input.pressed(options.key_right) {
axis_input.x += 1.0;
}
if key_input.pressed(options.key_left) {
axis_input.x -= 1.0;
}
if key_input.pressed(options.key_up) {
axis_input.y += 1.0;
}
if key_input.pressed(options.key_down) {
axis_input.y -= 1.0;
}
// Apply movement update
if axis_input != Vec3::ZERO {
let max_speed = if key_input.pressed(options.key_run) {
options.run_speed
} else {
options.walk_speed
};
options.velocity = axis_input.normalize() * max_speed;
} else {
let friction = options.friction.clamp(0.0, 1.0);
options.velocity *= 1.0 - friction;
if options.velocity.length_squared() < 1e-6 {
options.velocity = Vec3::ZERO;
}
}
let forward = transform.forward();
let right = transform.right();
transform.translation += options.velocity.x * dt * right
+ options.velocity.y * dt * Vec3::Y
+ options.velocity.z * dt * forward;
if mouse_delta != Vec2::ZERO {
// Apply look update
let (pitch, yaw) = (
(options.pitch - mouse_delta.y * 0.5 * options.sensitivity * dt).clamp(
-0.99 * std::f32::consts::FRAC_PI_2,
0.99 * std::f32::consts::FRAC_PI_2,
),
options.yaw - mouse_delta.x * options.sensitivity * dt,
);
transform.rotation = Quat::from_euler(EulerRot::ZYX, 0.0, yaw, pitch);
options.pitch = pitch;
options.yaw = yaw;
}
}
}