Improve or-with disjoint checks (#7085)

# Objective

This PR attempts to improve query compatibility checks in scenarios
involving `Or` filters.

Currently, for the following two disjoint queries, Bevy will throw a
panic:

```
fn sys(_: Query<&mut C, Or<(With<A>, With<B>)>>, _: Query<&mut C, (Without<A>, Without<B>)>) {}
``` 

This PR addresses this particular scenario.

## Solution

`FilteredAccess::with` now stores a vector of `AccessFilters`
(representing a pair of `with` and `without` bitsets), where each member
represents an `Or` "variant".
Filters like `(With<A>, Or<(With<B>, Without<C>)>` are expected to be
expanded into `A * B + A * !C`.

When calculating whether queries are compatible, every `AccessFilters`
of a query is tested for incompatibility with every `AccessFilters` of
another query.

---

## Changelog

- Improved system and query data access compatibility checks in
scenarios involving `Or` filters

---------

Co-authored-by: MinerSebas <66798382+MinerSebas@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
This commit is contained in:
Vladyslav Batyrenko 2023-04-17 18:16:58 +03:00 committed by GitHub
parent c488b7089c
commit 71fccb2897
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 298 additions and 76 deletions

View file

@ -25,6 +25,7 @@ struct FormattedBitSet<'a, T: SparseSetIndex> {
bit_set: &'a FixedBitSet, bit_set: &'a FixedBitSet,
_marker: PhantomData<T>, _marker: PhantomData<T>,
} }
impl<'a, T: SparseSetIndex> FormattedBitSet<'a, T> { impl<'a, T: SparseSetIndex> FormattedBitSet<'a, T> {
fn new(bit_set: &'a FixedBitSet) -> Self { fn new(bit_set: &'a FixedBitSet) -> Self {
Self { Self {
@ -33,6 +34,7 @@ impl<'a, T: SparseSetIndex> FormattedBitSet<'a, T> {
} }
} }
} }
impl<'a, T: SparseSetIndex + fmt::Debug> fmt::Debug for FormattedBitSet<'a, T> { impl<'a, T: SparseSetIndex + fmt::Debug> fmt::Debug for FormattedBitSet<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list() f.debug_list()
@ -69,6 +71,7 @@ impl<T: SparseSetIndex + fmt::Debug> fmt::Debug for Access<T> {
.finish() .finish()
} }
} }
impl<T: SparseSetIndex> Default for Access<T> { impl<T: SparseSetIndex> Default for Access<T> {
fn default() -> Self { fn default() -> Self {
Self::new() Self::new()
@ -213,31 +216,22 @@ impl<T: SparseSetIndex> Access<T> {
/// is read/write `T`, read `U`. It must still have a read `U` access otherwise the following /// is read/write `T`, read `U`. It must still have a read `U` access otherwise the following
/// queries would be incorrectly considered disjoint: /// queries would be incorrectly considered disjoint:
/// - `Query<&mut T>` read/write `T` /// - `Query<&mut T>` read/write `T`
/// - `Query<Option<&T>` accesses nothing /// - `Query<Option<&T>>` accesses nothing
/// ///
/// See comments the `WorldQuery` impls of `AnyOf`/`Option`/`Or` for more information. /// See comments the `WorldQuery` impls of `AnyOf`/`Option`/`Or` for more information.
#[derive(Clone, Eq, PartialEq)] #[derive(Debug, Clone, Eq, PartialEq)]
pub struct FilteredAccess<T: SparseSetIndex> { pub struct FilteredAccess<T: SparseSetIndex> {
access: Access<T>, access: Access<T>,
with: FixedBitSet, // An array of filter sets to express `With` or `Without` clauses in disjunctive normal form, for example: `Or<(With<A>, With<B>)>`.
without: FixedBitSet, // Filters like `(With<A>, Or<(With<B>, Without<C>)>` are expanded into `Or<((With<A>, With<B>), (With<A>, Without<C>))>`.
} filter_sets: Vec<AccessFilters<T>>,
impl<T: SparseSetIndex + fmt::Debug> fmt::Debug for FilteredAccess<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("FilteredAccess")
.field("access", &self.access)
.field("with", &FormattedBitSet::<T>::new(&self.with))
.field("without", &FormattedBitSet::<T>::new(&self.without))
.finish()
}
} }
impl<T: SparseSetIndex> Default for FilteredAccess<T> { impl<T: SparseSetIndex> Default for FilteredAccess<T> {
fn default() -> Self { fn default() -> Self {
Self { Self {
access: Access::default(), access: Access::default(),
with: Default::default(), filter_sets: vec![AccessFilters::default()],
without: Default::default(),
} }
} }
} }
@ -266,30 +260,46 @@ impl<T: SparseSetIndex> FilteredAccess<T> {
/// Adds access to the element given by `index`. /// Adds access to the element given by `index`.
pub fn add_read(&mut self, index: T) { pub fn add_read(&mut self, index: T) {
self.access.add_read(index.clone()); self.access.add_read(index.clone());
self.add_with(index); self.and_with(index);
} }
/// Adds exclusive access to the element given by `index`. /// Adds exclusive access to the element given by `index`.
pub fn add_write(&mut self, index: T) { pub fn add_write(&mut self, index: T) {
self.access.add_write(index.clone()); self.access.add_write(index.clone());
self.add_with(index); self.and_with(index);
} }
/// Retains only combinations where the element given by `index` is also present. /// Adds a `With` filter: corresponds to a conjunction (AND) operation.
pub fn add_with(&mut self, index: T) { ///
self.with.grow(index.sparse_set_index() + 1); /// Suppose we begin with `Or<(With<A>, With<B>)>`, which is represented by an array of two `AccessFilter` instances.
self.with.insert(index.sparse_set_index()); /// Adding `AND With<C>` via this method transforms it into the equivalent of `Or<((With<A>, With<C>), (With<B>, With<C>))>`.
pub fn and_with(&mut self, index: T) {
let index = index.sparse_set_index();
for filter in &mut self.filter_sets {
filter.with.grow(index + 1);
filter.with.insert(index);
}
} }
/// Retains only combinations where the element given by `index` is not present. /// Adds a `Without` filter: corresponds to a conjunction (AND) operation.
pub fn add_without(&mut self, index: T) { ///
self.without.grow(index.sparse_set_index() + 1); /// Suppose we begin with `Or<(With<A>, With<B>)>`, which is represented by an array of two `AccessFilter` instances.
self.without.insert(index.sparse_set_index()); /// Adding `AND Without<C>` via this method transforms it into the equivalent of `Or<((With<A>, Without<C>), (With<B>, Without<C>))>`.
pub fn and_without(&mut self, index: T) {
let index = index.sparse_set_index();
for filter in &mut self.filter_sets {
filter.without.grow(index + 1);
filter.without.insert(index);
}
} }
pub fn extend_intersect_filter(&mut self, other: &FilteredAccess<T>) { /// Appends an array of filters: corresponds to a disjunction (OR) operation.
self.without.intersect_with(&other.without); ///
self.with.intersect_with(&other.with); /// As the underlying array of filters represents a disjunction,
/// where each element (`AccessFilters`) represents a conjunction,
/// we can simply append to the array.
pub fn append_or(&mut self, other: &FilteredAccess<T>) {
self.filter_sets.append(&mut other.filter_sets.clone());
} }
pub fn extend_access(&mut self, other: &FilteredAccess<T>) { pub fn extend_access(&mut self, other: &FilteredAccess<T>) {
@ -298,9 +308,23 @@ impl<T: SparseSetIndex> FilteredAccess<T> {
/// Returns `true` if this and `other` can be active at the same time. /// Returns `true` if this and `other` can be active at the same time.
pub fn is_compatible(&self, other: &FilteredAccess<T>) -> bool { pub fn is_compatible(&self, other: &FilteredAccess<T>) -> bool {
self.access.is_compatible(&other.access) if self.access.is_compatible(&other.access) {
|| !self.with.is_disjoint(&other.without) return true;
|| !other.with.is_disjoint(&self.without) }
// If the access instances are incompatible, we want to check that whether filters can
// guarantee that queries are disjoint.
// Since the `filter_sets` array represents a Disjunctive Normal Form formula ("ORs of ANDs"),
// we need to make sure that each filter set (ANDs) rule out every filter set from the `other` instance.
//
// For example, `Query<&mut C, Or<(With<A>, Without<B>)>>` is compatible `Query<&mut C, (With<B>, Without<A>)>`,
// but `Query<&mut C, Or<(Without<A>, Without<B>)>>` isn't compatible with `Query<&mut C, Or<(With<A>, With<B>)>>`.
self.filter_sets.iter().all(|filter| {
other
.filter_sets
.iter()
.all(|other_filter| filter.is_ruled_out_by(other_filter))
})
} }
/// Returns a vector of elements that this and `other` cannot access at the same time. /// Returns a vector of elements that this and `other` cannot access at the same time.
@ -313,10 +337,34 @@ impl<T: SparseSetIndex> FilteredAccess<T> {
} }
/// Adds all access and filters from `other`. /// Adds all access and filters from `other`.
pub fn extend(&mut self, access: &FilteredAccess<T>) { ///
self.access.extend(&access.access); /// Corresponds to a conjunction operation (AND) for filters.
self.with.union_with(&access.with); ///
self.without.union_with(&access.without); /// Extending `Or<(With<A>, Without<B>)>` with `Or<(With<C>, Without<D>)>` will result in
/// `Or<((With<A>, With<C>), (With<A>, Without<D>), (Without<B>, With<C>), (Without<B>, Without<D>))>`.
pub fn extend(&mut self, other: &FilteredAccess<T>) {
self.access.extend(&other.access);
// We can avoid allocating a new array of bitsets if `other` contains just a single set of filters:
// in this case we can short-circuit by performing an in-place union for each bitset.
if other.filter_sets.len() == 1 {
for filter in &mut self.filter_sets {
filter.with.union_with(&other.filter_sets[0].with);
filter.without.union_with(&other.filter_sets[0].without);
}
return;
}
let mut new_filters = Vec::with_capacity(self.filter_sets.len() * other.filter_sets.len());
for filter in &self.filter_sets {
for other_filter in &other.filter_sets {
let mut new_filter = filter.clone();
new_filter.with.union_with(&other_filter.with);
new_filter.without.union_with(&other_filter.without);
new_filters.push(new_filter);
}
}
self.filter_sets = new_filters;
} }
/// Sets the underlying unfiltered access as having access to all indexed elements. /// Sets the underlying unfiltered access as having access to all indexed elements.
@ -325,6 +373,43 @@ impl<T: SparseSetIndex> FilteredAccess<T> {
} }
} }
#[derive(Clone, Eq, PartialEq)]
struct AccessFilters<T> {
with: FixedBitSet,
without: FixedBitSet,
_index_type: PhantomData<T>,
}
impl<T: SparseSetIndex + fmt::Debug> fmt::Debug for AccessFilters<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("AccessFilters")
.field("with", &FormattedBitSet::<T>::new(&self.with))
.field("without", &FormattedBitSet::<T>::new(&self.without))
.finish()
}
}
impl<T: SparseSetIndex> Default for AccessFilters<T> {
fn default() -> Self {
Self {
with: FixedBitSet::default(),
without: FixedBitSet::default(),
_index_type: PhantomData,
}
}
}
impl<T: SparseSetIndex> AccessFilters<T> {
fn is_ruled_out_by(&self, other: &Self) -> bool {
// Although not technically complete, we don't consider the case when `AccessFilters`'s
// `without` bitset contradicts its own `with` bitset (e.g. `(With<A>, Without<A>)`).
// Such query would be considered compatible with any other query, but as it's almost
// always an error, we ignore this case instead of treating such query as compatible
// with others.
!self.with.is_disjoint(&other.without) || !self.without.is_disjoint(&other.with)
}
}
/// A collection of [`FilteredAccess`] instances. /// A collection of [`FilteredAccess`] instances.
/// ///
/// Used internally to statically check if systems have conflicting access. /// Used internally to statically check if systems have conflicting access.
@ -441,7 +526,10 @@ impl<T: SparseSetIndex> Default for FilteredAccessSet<T> {
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use crate::query::access::AccessFilters;
use crate::query::{Access, FilteredAccess, FilteredAccessSet}; use crate::query::{Access, FilteredAccess, FilteredAccessSet};
use fixedbitset::FixedBitSet;
use std::marker::PhantomData;
#[test] #[test]
fn read_all_access_conflicts() { fn read_all_access_conflicts() {
@ -514,22 +602,67 @@ mod tests {
let mut access_a = FilteredAccess::<usize>::default(); let mut access_a = FilteredAccess::<usize>::default();
access_a.add_read(0); access_a.add_read(0);
access_a.add_read(1); access_a.add_read(1);
access_a.add_with(2); access_a.and_with(2);
let mut access_b = FilteredAccess::<usize>::default(); let mut access_b = FilteredAccess::<usize>::default();
access_b.add_read(0); access_b.add_read(0);
access_b.add_write(3); access_b.add_write(3);
access_b.add_without(4); access_b.and_without(4);
access_a.extend(&access_b); access_a.extend(&access_b);
let mut expected = FilteredAccess::<usize>::default(); let mut expected = FilteredAccess::<usize>::default();
expected.add_read(0); expected.add_read(0);
expected.add_read(1); expected.add_read(1);
expected.add_with(2); expected.and_with(2);
expected.add_write(3); expected.add_write(3);
expected.add_without(4); expected.and_without(4);
assert!(access_a.eq(&expected)); assert!(access_a.eq(&expected));
} }
#[test]
fn filtered_access_extend_or() {
let mut access_a = FilteredAccess::<usize>::default();
// Exclusive access to `(&mut A, &mut B)`.
access_a.add_write(0);
access_a.add_write(1);
// Filter by `With<C>`.
let mut access_b = FilteredAccess::<usize>::default();
access_b.and_with(2);
// Filter by `(With<D>, Without<E>)`.
let mut access_c = FilteredAccess::<usize>::default();
access_c.and_with(3);
access_c.and_without(4);
// Turns `access_b` into `Or<(With<C>, (With<D>, Without<D>))>`.
access_b.append_or(&access_c);
// Applies the filters to the initial query, which corresponds to the FilteredAccess'
// representation of `Query<(&mut A, &mut B), Or<(With<C>, (With<D>, Without<E>))>>`.
access_a.extend(&access_b);
// Construct the expected `FilteredAccess` struct.
// The intention here is to test that exclusive access implied by `add_write`
// forms correct normalized access structs when extended with `Or` filters.
let mut expected = FilteredAccess::<usize>::default();
expected.add_write(0);
expected.add_write(1);
// The resulted access is expected to represent `Or<((With<A>, With<B>, With<C>), (With<A>, With<B>, With<D>, Without<E>))>`.
expected.filter_sets = vec![
AccessFilters {
with: FixedBitSet::with_capacity_and_blocks(3, [0b111]),
without: FixedBitSet::default(),
_index_type: PhantomData,
},
AccessFilters {
with: FixedBitSet::with_capacity_and_blocks(4, [0b1011]),
without: FixedBitSet::with_capacity_and_blocks(5, [0b10000]),
_index_type: PhantomData,
},
];
assert_eq!(access_a, expected);
}
} }

View file

@ -1281,34 +1281,21 @@ macro_rules! impl_anytuple_fetch {
fn update_component_access(state: &Self::State, _access: &mut FilteredAccess<ComponentId>) { fn update_component_access(state: &Self::State, _access: &mut FilteredAccess<ComponentId>) {
let ($($name,)*) = state; let ($($name,)*) = state;
// We do not unconditionally add `$name`'s `with`/`without` accesses to `_access` let mut _new_access = _access.clone();
// as this would be unsound. For example the following two queries should conflict:
// - Query<(AnyOf<(&A, ())>, &mut B)>
// - Query<&mut B, Without<A>>
//
// If we were to unconditionally add `$name`'s `with`/`without` accesses then `AnyOf<(&A, ())>`
// would have a `With<A>` access which is incorrect as this `WorldQuery` will match entities that
// do not have the `A` component. This is the same logic as the `Or<...>: WorldQuery` impl.
//
// The correct thing to do here is to only add a `with`/`without` access to `_access` if all
// `$name` params have that `with`/`without` access. More jargony put- we add the intersection
// of all `with`/`without` accesses of the `$name` params to `_access`.
let mut _intersected_access = _access.clone();
let mut _not_first = false; let mut _not_first = false;
$( $(
if _not_first { if _not_first {
let mut intermediate = _access.clone(); let mut intermediate = _access.clone();
$name::update_component_access($name, &mut intermediate); $name::update_component_access($name, &mut intermediate);
_intersected_access.extend_intersect_filter(&intermediate); _new_access.append_or(&intermediate);
_intersected_access.extend_access(&intermediate); _new_access.extend_access(&intermediate);
} else { } else {
$name::update_component_access($name, &mut _new_access);
$name::update_component_access($name, &mut _intersected_access);
_not_first = true; _not_first = true;
} }
)* )*
*_access = _intersected_access; *_access = _new_access;
} }
fn update_archetype_component_access(state: &Self::State, _archetype: &Archetype, _access: &mut Access<ArchetypeComponentId>) { fn update_archetype_component_access(state: &Self::State, _archetype: &Archetype, _access: &mut Access<ArchetypeComponentId>) {

View file

@ -86,7 +86,7 @@ unsafe impl<T: Component> WorldQuery for With<T> {
#[inline] #[inline]
fn update_component_access(&id: &ComponentId, access: &mut FilteredAccess<ComponentId>) { fn update_component_access(&id: &ComponentId, access: &mut FilteredAccess<ComponentId>) {
access.add_with(id); access.and_with(id);
} }
#[inline] #[inline]
@ -183,7 +183,7 @@ unsafe impl<T: Component> WorldQuery for Without<T> {
#[inline] #[inline]
fn update_component_access(&id: &ComponentId, access: &mut FilteredAccess<ComponentId>) { fn update_component_access(&id: &ComponentId, access: &mut FilteredAccess<ComponentId>) {
access.add_without(id); access.and_without(id);
} }
#[inline] #[inline]
@ -339,33 +339,21 @@ macro_rules! impl_query_filter_tuple {
fn update_component_access(state: &Self::State, access: &mut FilteredAccess<ComponentId>) { fn update_component_access(state: &Self::State, access: &mut FilteredAccess<ComponentId>) {
let ($($filter,)*) = state; let ($($filter,)*) = state;
// We do not unconditionally add `$filter`'s `with`/`without` accesses to `access` let mut _new_access = access.clone();
// as this would be unsound. For example the following two queries should conflict:
// - Query<&mut B, Or<(With<A>, ())>>
// - Query<&mut B, Without<A>>
//
// If we were to unconditionally add `$name`'s `with`/`without` accesses then `Or<(With<A>, ())>`
// would have a `With<A>` access which is incorrect as this `WorldQuery` will match entities that
// do not have the `A` component. This is the same logic as the `AnyOf<...>: WorldQuery` impl.
//
// The correct thing to do here is to only add a `with`/`without` access to `_access` if all
// `$filter` params have that `with`/`without` access. More jargony put- we add the intersection
// of all `with`/`without` accesses of the `$filter` params to `access`.
let mut _intersected_access = access.clone();
let mut _not_first = false; let mut _not_first = false;
$( $(
if _not_first { if _not_first {
let mut intermediate = access.clone(); let mut intermediate = access.clone();
$filter::update_component_access($filter, &mut intermediate); $filter::update_component_access($filter, &mut intermediate);
_intersected_access.extend_intersect_filter(&intermediate); _new_access.append_or(&intermediate);
_intersected_access.extend_access(&intermediate); _new_access.extend_access(&intermediate);
} else { } else {
$filter::update_component_access($filter, &mut _intersected_access); $filter::update_component_access($filter, &mut _new_access);
_not_first = true; _not_first = true;
} }
)* )*
*access = _intersected_access; *access = _new_access;
} }
fn update_archetype_component_access(state: &Self::State, archetype: &Archetype, access: &mut Access<ArchetypeComponentId>) { fn update_archetype_component_access(state: &Self::State, archetype: &Archetype, access: &mut Access<ArchetypeComponentId>) {

View file

@ -483,6 +483,13 @@ mod tests {
run_system(&mut world, sys); run_system(&mut world, sys);
} }
#[test]
fn any_of_and_without() {
fn sys(_: Query<(AnyOf<(&A, &B)>, &mut C)>, _: Query<&mut C, (Without<A>, Without<B>)>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test] #[test]
#[should_panic = "error[B0001]"] #[should_panic = "error[B0001]"]
fn or_has_no_filter_with() { fn or_has_no_filter_with() {
@ -498,6 +505,113 @@ mod tests {
run_system(&mut world, sys); run_system(&mut world, sys);
} }
#[test]
fn or_has_filter_with() {
fn sys(
_: Query<&mut C, Or<(With<A>, With<B>)>>,
_: Query<&mut C, (Without<A>, Without<B>)>,
) {
}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn or_expanded_with_and_without_common() {
fn sys(_: Query<&mut D, (With<A>, Or<(With<B>, With<C>)>)>, _: Query<&mut D, Without<A>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn or_expanded_nested_with_and_without_common() {
fn sys(
_: Query<&mut E, (Or<((With<B>, With<C>), (With<C>, With<D>))>, With<A>)>,
_: Query<&mut E, (Without<B>, Without<D>)>,
) {
}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic = "error[B0001]"]
fn or_expanded_nested_with_and_disjoint_without() {
fn sys(
_: Query<&mut E, (Or<((With<B>, With<C>), (With<C>, With<D>))>, With<A>)>,
_: Query<&mut E, Without<D>>,
) {
}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic = "error[B0001]"]
fn or_expanded_nested_or_with_and_disjoint_without() {
fn sys(
_: Query<&mut D, Or<(Or<(With<A>, With<B>)>, Or<(With<A>, With<C>)>)>>,
_: Query<&mut D, Without<A>>,
) {
}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn or_expanded_nested_with_and_common_nested_without() {
fn sys(
_: Query<&mut D, Or<((With<A>, With<B>), (With<B>, With<C>))>>,
_: Query<&mut D, Or<(Without<D>, Without<B>)>>,
) {
}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn or_with_without_and_compatible_with_without() {
fn sys(
_: Query<&mut C, Or<(With<A>, Without<B>)>>,
_: Query<&mut C, (With<B>, Without<A>)>,
) {
}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic = "error[B0001]"]
fn with_and_disjoint_or_empty_without() {
fn sys(_: Query<&mut B, With<A>>, _: Query<&mut B, Or<((), Without<A>)>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic = "error[B0001]"]
fn or_expanded_with_and_disjoint_nested_without() {
fn sys(
_: Query<&mut D, Or<(With<A>, With<B>)>>,
_: Query<&mut D, Or<(Without<A>, Without<B>)>>,
) {
}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic = "error[B0001]"]
fn or_expanded_nested_with_and_disjoint_nested_without() {
fn sys(
_: Query<&mut D, Or<((With<A>, With<B>), (With<B>, With<C>))>>,
_: Query<&mut D, Or<(Without<A>, Without<B>)>>,
) {
}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test] #[test]
fn or_doesnt_remove_unrelated_filter_with() { fn or_doesnt_remove_unrelated_filter_with() {
fn sys(_: Query<&mut B, (Or<(With<A>, With<B>)>, With<A>)>, _: Query<&mut B, Without<A>>) {} fn sys(_: Query<&mut B, (Or<(With<A>, With<B>)>, With<A>)>, _: Query<&mut B, Without<A>>) {}