Basic isometry types (#14269)

# Objective

Introduce isometry types for describing relative and absolute position
in mathematical contexts.

## Solution

For the time being, this is a very minimal implementation. This
implements the following faculties for two- and three-dimensional
isometry types:
- Identity transformations
- Creation from translations and/or rotations
- Inverses
- Multiplication (composition) of isometries with each other
- Application of isometries to points (as vectors)
- Conversion of isometries to affine transformations

There is obviously a lot more that could be added, so I erred on the
side of adding things that I knew would be useful, with the idea of
expanding this in the near future as needed.

(I also fixed some random doc problems in `bevy_math`.)

---

## Design

One point of interest here is the matter of if/when to use aligned
types. In the implementation of 3d isometries, I used `Vec3A` rather
than `Vec3` because it has no impact on size/alignment, but I'm still
not sure about that decision (although it is easily changed).

For 2d isometries — which are encoded by four floats — the idea of
shoving them into a single 128-bit buffer (`__m128` or whatever) sounds
kind of enticing, but it's more involved and would involve writing
unsafe code, so I didn't do that for now.

## Future work

- Expand the API to include shortcuts like `inverse_mul` and
`inverse_transform` for efficiency reasons.
- Include more convenience constructors and methods (e.g. `from_xy`,
`from_xyz`).
- Refactor `bevy_math::bounding` to use the isometry types.
- Add conversions to/from isometries for `Transform`/`GlobalTransform`
in `bevy_transform`.
This commit is contained in:
Matty 2024-07-14 11:27:42 -04:00 committed by GitHub
parent d7080369a7
commit 6c9ec88e54
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 432 additions and 3 deletions

View file

@ -19,7 +19,9 @@ pub struct RayCast3d {
}
impl RayCast3d {
/// Construct a [`RayCast3d`] from an origin, [`Dir3A`], and max distance.
/// Construct a [`RayCast3d`] from an origin, [direction], and max distance.
///
/// [direction]: crate::direction::Dir3
pub fn new(origin: impl Into<Vec3A>, direction: impl Into<Dir3A>, max: f32) -> Self {
let direction = direction.into();
Self {
@ -108,7 +110,9 @@ pub struct AabbCast3d {
}
impl AabbCast3d {
/// Construct an [`AabbCast3d`] from an [`Aabb3d`], origin, [`Dir3A`], and max distance.
/// Construct an [`AabbCast3d`] from an [`Aabb3d`], origin, [direction], and max distance.
///
/// [direction]: crate::direction::Dir3
pub fn new(
aabb: Aabb3d,
origin: impl Into<Vec3A>,
@ -151,7 +155,9 @@ pub struct BoundingSphereCast {
}
impl BoundingSphereCast {
/// Construct a [`BoundingSphereCast`] from a [`BoundingSphere`], origin, [`Dir3A`], and max distance.
/// Construct a [`BoundingSphereCast`] from a [`BoundingSphere`], origin, [direction], and max distance.
///
/// [direction]: crate::direction::Dir3
pub fn new(
sphere: BoundingSphere,
origin: impl Into<Vec3A>,

View file

@ -0,0 +1,422 @@
//! Isometry types for expressing rigid motions in two and three dimensions.
//!
//! These are often used to express the relative positions of two entities (e.g. primitive shapes).
//! For example, in determining whether a sphere intersects a cube, one needs to know how the two are
//! positioned relative to one another in addition to their sizes.
//! If the two had absolute positions and orientations described by isometries `cube_iso` and `sphere_iso`,
//! then `cube_iso.inverse() * sphere_iso` would describe the relative orientation, which is sufficient for
//! answering this query.
use crate::{Affine2, Affine3, Affine3A, Dir2, Dir3, Mat3, Mat3A, Quat, Rot2, Vec2, Vec3, Vec3A};
use std::ops::Mul;
#[cfg(feature = "approx")]
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
#[cfg(all(feature = "bevy_reflect", feature = "serialize"))]
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
/// An isometry in two dimensions.
#[derive(Copy, Clone, Default, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Isometry2d {
/// The rotational part of a two-dimensional isometry.
pub rotation: Rot2,
/// The translational part of a two-dimensional isometry.
pub translation: Vec2,
}
impl Isometry2d {
/// The identity isometry which represents the rigid motion of not doing anything.
pub const IDENTITY: Self = Isometry2d {
rotation: Rot2::IDENTITY,
translation: Vec2::ZERO,
};
/// Create a two-dimensional isometry from a rotation and a translation.
#[inline]
pub fn new(translation: Vec2, rotation: Rot2) -> Self {
Isometry2d {
rotation,
translation,
}
}
/// Create a two-dimensional isometry from a rotation.
#[inline]
pub fn from_rotation(rotation: Rot2) -> Self {
Isometry2d {
rotation,
translation: Vec2::ZERO,
}
}
/// Create a two-dimensional isometry from a translation.
#[inline]
pub fn from_translation(translation: Vec2) -> Self {
Isometry2d {
rotation: Rot2::IDENTITY,
translation,
}
}
/// The inverse isometry that undoes this one.
#[inline]
pub fn inverse(&self) -> Self {
let inv_rot = self.rotation.inverse();
Isometry2d {
rotation: inv_rot,
translation: inv_rot * -self.translation,
}
}
/// Transform a point by rotating and translating it using this isometry.
#[inline]
pub fn transform_point(&self, point: Vec2) -> Vec2 {
self.rotation * point + self.translation
}
}
impl From<Isometry2d> for Affine2 {
#[inline]
fn from(iso: Isometry2d) -> Self {
Affine2 {
matrix2: iso.rotation.into(),
translation: iso.translation,
}
}
}
impl Mul for Isometry2d {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self::Output {
Isometry2d {
rotation: self.rotation * rhs.rotation,
translation: self.rotation * rhs.translation + self.translation,
}
}
}
impl Mul<Vec2> for Isometry2d {
type Output = Vec2;
#[inline]
fn mul(self, rhs: Vec2) -> Self::Output {
self.transform_point(rhs)
}
}
impl Mul<Dir2> for Isometry2d {
type Output = Dir2;
#[inline]
fn mul(self, rhs: Dir2) -> Self::Output {
self.rotation * rhs
}
}
#[cfg(feature = "approx")]
impl AbsDiffEq for Isometry2d {
type Epsilon = <f32 as AbsDiffEq>::Epsilon;
fn default_epsilon() -> Self::Epsilon {
f32::default_epsilon()
}
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.rotation.abs_diff_eq(&other.rotation, epsilon)
&& self.translation.abs_diff_eq(other.translation, epsilon)
}
}
#[cfg(feature = "approx")]
impl RelativeEq for Isometry2d {
fn default_max_relative() -> Self::Epsilon {
Self::default_epsilon()
}
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.rotation
.relative_eq(&other.rotation, epsilon, max_relative)
&& self
.translation
.relative_eq(&other.translation, epsilon, max_relative)
}
}
#[cfg(feature = "approx")]
impl UlpsEq for Isometry2d {
fn default_max_ulps() -> u32 {
4
}
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
&& self
.translation
.ulps_eq(&other.translation, epsilon, max_ulps)
}
}
/// An isometry in three dimensions.
#[derive(Copy, Clone, Default, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Isometry3d {
/// The rotational part of a three-dimensional isometry.
pub rotation: Quat,
/// The translational part of a three-dimensional isometry.
pub translation: Vec3A,
}
impl Isometry3d {
/// The identity isometry which represents the rigid motion of not doing anything.
pub const IDENTITY: Self = Isometry3d {
rotation: Quat::IDENTITY,
translation: Vec3A::ZERO,
};
/// Create a three-dimensional isometry from a rotation and a translation.
#[inline]
pub fn new(translation: impl Into<Vec3A>, rotation: Quat) -> Self {
Isometry3d {
rotation,
translation: translation.into(),
}
}
/// Create a three-dimensional isometry from a rotation.
#[inline]
pub fn from_rotation(rotation: Quat) -> Self {
Isometry3d {
rotation,
translation: Vec3A::ZERO,
}
}
/// Create a three-dimensional isometry from a translation.
#[inline]
pub fn from_translation(translation: impl Into<Vec3A>) -> Self {
Isometry3d {
rotation: Quat::IDENTITY,
translation: translation.into(),
}
}
/// The inverse isometry that undoes this one.
#[inline]
pub fn inverse(&self) -> Self {
let inv_rot = self.rotation.inverse();
Isometry3d {
rotation: inv_rot,
translation: inv_rot * -self.translation,
}
}
/// Transform a point by rotating and translating it using this isometry.
#[inline]
pub fn transform_point(&self, point: impl Into<Vec3A>) -> Vec3A {
self.rotation * point.into() + self.translation
}
}
impl From<Isometry3d> for Affine3 {
#[inline]
fn from(iso: Isometry3d) -> Self {
Affine3 {
matrix3: Mat3::from_quat(iso.rotation),
translation: iso.translation.into(),
}
}
}
impl From<Isometry3d> for Affine3A {
#[inline]
fn from(iso: Isometry3d) -> Self {
Affine3A {
matrix3: Mat3A::from_quat(iso.rotation),
translation: iso.translation,
}
}
}
impl Mul for Isometry3d {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self::Output {
Isometry3d {
rotation: self.rotation * rhs.rotation,
translation: self.rotation * rhs.translation + self.translation,
}
}
}
impl Mul<Vec3A> for Isometry3d {
type Output = Vec3A;
#[inline]
fn mul(self, rhs: Vec3A) -> Self::Output {
self.transform_point(rhs)
}
}
impl Mul<Vec3> for Isometry3d {
type Output = Vec3;
#[inline]
fn mul(self, rhs: Vec3) -> Self::Output {
self.transform_point(rhs).into()
}
}
impl Mul<Dir3> for Isometry3d {
type Output = Dir3;
#[inline]
fn mul(self, rhs: Dir3) -> Self::Output {
self.rotation * rhs
}
}
#[cfg(feature = "approx")]
impl AbsDiffEq for Isometry3d {
type Epsilon = <f32 as AbsDiffEq>::Epsilon;
fn default_epsilon() -> Self::Epsilon {
f32::default_epsilon()
}
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.rotation.abs_diff_eq(other.rotation, epsilon)
&& self.translation.abs_diff_eq(other.translation, epsilon)
}
}
#[cfg(feature = "approx")]
impl RelativeEq for Isometry3d {
fn default_max_relative() -> Self::Epsilon {
Self::default_epsilon()
}
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.rotation
.relative_eq(&other.rotation, epsilon, max_relative)
&& self
.translation
.relative_eq(&other.translation, epsilon, max_relative)
}
}
#[cfg(feature = "approx")]
impl UlpsEq for Isometry3d {
fn default_max_ulps() -> u32 {
4
}
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
&& self
.translation
.ulps_eq(&other.translation, epsilon, max_ulps)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{vec2, vec3};
use approx::assert_abs_diff_eq;
use std::f32::consts::{FRAC_PI_2, FRAC_PI_3};
#[test]
fn mul_2d() {
let iso1 = Isometry2d::new(vec2(1.0, 0.0), Rot2::FRAC_PI_2);
let iso2 = Isometry2d::new(vec2(0.0, 1.0), Rot2::FRAC_PI_2);
let expected = Isometry2d::new(vec2(0.0, 0.0), Rot2::PI);
assert_abs_diff_eq!(iso1 * iso2, expected);
}
#[test]
fn mul_3d() {
let iso1 = Isometry3d::new(vec3(1.0, 0.0, 0.0), Quat::from_rotation_x(FRAC_PI_2));
let iso2 = Isometry3d::new(vec3(0.0, 1.0, 0.0), Quat::IDENTITY);
let expected = Isometry3d::new(vec3(1.0, 0.0, 1.0), Quat::from_rotation_x(FRAC_PI_2));
assert_abs_diff_eq!(iso1 * iso2, expected);
}
#[test]
fn identity_2d() {
let iso = Isometry2d::new(vec2(-1.0, -0.5), Rot2::degrees(75.0));
assert_abs_diff_eq!(Isometry2d::IDENTITY * iso, iso);
assert_abs_diff_eq!(iso * Isometry2d::IDENTITY, iso);
}
#[test]
fn identity_3d() {
let iso = Isometry3d::new(vec3(-1.0, 2.5, 3.3), Quat::from_rotation_z(FRAC_PI_3));
assert_abs_diff_eq!(Isometry3d::IDENTITY * iso, iso);
assert_abs_diff_eq!(iso * Isometry3d::IDENTITY, iso);
}
#[test]
fn inverse_2d() {
let iso = Isometry2d::new(vec2(-1.0, -0.5), Rot2::degrees(75.0));
let inv = iso.inverse();
assert_abs_diff_eq!(iso * inv, Isometry2d::IDENTITY);
assert_abs_diff_eq!(inv * iso, Isometry2d::IDENTITY);
}
#[test]
fn inverse_3d() {
let iso = Isometry3d::new(vec3(-1.0, 2.5, 3.3), Quat::from_rotation_z(FRAC_PI_3));
let inv = iso.inverse();
assert_abs_diff_eq!(iso * inv, Isometry3d::IDENTITY);
assert_abs_diff_eq!(inv * iso, Isometry3d::IDENTITY);
}
#[test]
fn transform_2d() {
let iso = Isometry2d::new(vec2(0.5, -0.5), Rot2::FRAC_PI_2);
let point = vec2(1.0, 1.0);
assert_abs_diff_eq!(vec2(-0.5, 0.5), iso * point);
}
#[test]
fn transform_3d() {
let iso = Isometry3d::new(vec3(1.0, 0.0, 0.0), Quat::from_rotation_y(FRAC_PI_2));
let point = vec3(1.0, 1.0, 1.0);
assert_abs_diff_eq!(vec3(2.0, 1.0, -1.0), iso * point);
}
}

View file

@ -19,6 +19,7 @@ mod compass;
pub mod cubic_splines;
mod direction;
mod float_ord;
pub mod isometry;
pub mod primitives;
mod ray;
mod rects;