Scale normal bias by texel size (#26)

* 3d_scene_pipelined: Use a shallower directional light angle to provoke acne

* cornell_box_pipelined: Remove bias tweaks

* bevy_pbr2: Simplify shadow biases by moving them to linear depth

* bevy_pbr2: Do not use DepthBiasState

* bevy_pbr2: Do not use bilinear filtering for sampling depth textures

* pbr.wgsl: Remove unnecessary comment

* bevy_pbr2: Do manual shadow map depth comparisons for more flexibility

* examples: Add shadow_biases_pipelined example

This is useful for stress testing biases.

* bevy_pbr2: Scale the point light normal bias by the shadow map texel size

This allows the normal bias to be small close to the light source where the
shadow map texel to screen texel ratio is high, but is appropriately large
further away from the light source where the shadow map texel can easily cover
multiple screen texels.

* shadow_biases_pipelined: Add support for toggling directional / point light

* shadow_biases_pipelined: Cleanup

* bevy_pbr2: Scale the directional light normal bias by the shadow map texel size

* shadow_biases_pipelined: Fit the orthographic projection around the scene

* bevy_pbr2: Directional lights should have no shadows outside their projection

Before this change, sampling a fragment position from outside the ndc volume
would result in the return sample being clamped to the edge in x,y or possibly
always casting a shadow for fragment positions past the orthographic
projection's far plane.

* bevy_pbr2: Fix the default directional light normal bias

* Revert "bevy_pbr2: Do manual shadow map depth comparisons for more flexibility"

This reverts commit 7df1bab38a42d8a33bc50ca583d4be37bd9c9f0d.

* shadow_biases_pipelined: Adjust directional light normal bias in 0.1 increments

* pbr.wgsl: Add a couple of clarifying comments

* Revert "bevy_pbr2: Do not use bilinear filtering for sampling depth textures"

This reverts commit f53baab0232ce218866a45cad6902b470f4cf2c4.

* shadow_biases_pipelined: Print usage to terminal
This commit is contained in:
Robert Swain 2021-07-19 21:20:59 +02:00 committed by Carter Anderson
parent 44df4c1fae
commit 618c9e94f0
5 changed files with 412 additions and 39 deletions

View file

@ -178,6 +178,10 @@ path = "examples/3d/pbr_pipelined.rs"
name = "render_to_texture"
path = "examples/3d/render_to_texture.rs"
[[example]]
name = "shadow_biases_pipelined"
path = "examples/3d/shadow_biases_pipelined.rs"
[[example]]
name = "spawner"
path = "examples/3d/spawner.rs"

View file

@ -0,0 +1,334 @@
use bevy::{
core::Time,
ecs::prelude::*,
input::{mouse::MouseMotion, Input},
math::{EulerRot, Mat4, Quat, Vec2, Vec3},
pbr2::{
DirectionalLight, DirectionalLightBundle, PbrBundle, PointLight, PointLightBundle,
StandardMaterial,
},
prelude::{App, Assets, KeyCode, Transform},
render2::{
camera::{Camera, OrthographicProjection, PerspectiveCameraBundle},
color::Color,
mesh::{shape, Mesh},
},
PipelinedDefaultPlugins,
};
fn main() {
println!(
"Controls:
WSAD - forward/back/strafe left/right
LShift - 'run'
E - up
Q - down
L - switch between directional and point lights
1/2 - decrease/increase point light depth bias
3/4 - decrease/increase point light normal bias
5/6 - decrease/increase direction light depth bias
7/8 - decrease/increase direction light normal bias"
);
App::new()
.add_plugins(PipelinedDefaultPlugins)
.add_startup_system(setup.system())
.add_system(adjust_point_light_biases.system())
.add_system(toggle_light.system())
.add_system(adjust_directional_light_biases.system())
.add_system(camera_controller.system())
.run();
}
/// set up a 3D scene to test shadow biases and perspective projections
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
let spawn_plane_depth = 500.0f32;
let spawn_height = 2.0;
let sphere_radius = 0.25;
let white_handle = materials.add(StandardMaterial {
base_color: Color::WHITE,
perceptual_roughness: 1.0,
..Default::default()
});
let sphere_handle = meshes.add(Mesh::from(shape::Icosphere {
radius: sphere_radius,
..Default::default()
}));
println!("Using DirectionalLight");
commands.spawn_bundle(PointLightBundle {
transform: Transform::from_xyz(5.0, 5.0, 0.0),
point_light: PointLight {
intensity: 0.0,
range: spawn_plane_depth,
color: Color::WHITE,
shadow_depth_bias: 0.0,
shadow_normal_bias: 0.0,
..Default::default()
},
..Default::default()
});
let theta = std::f32::consts::FRAC_PI_4;
let light_transform = Mat4::from_euler(EulerRot::ZYX, 0.0, std::f32::consts::FRAC_PI_2, -theta);
commands.spawn_bundle(DirectionalLightBundle {
directional_light: DirectionalLight {
illuminance: 100000.0,
shadow_projection: OrthographicProjection {
left: -0.35,
right: 500.35,
bottom: -0.1,
top: 5.0,
near: -5.0,
far: 5.0,
..Default::default()
},
shadow_depth_bias: 0.0,
shadow_normal_bias: 0.0,
..Default::default()
},
transform: Transform::from_matrix(light_transform),
..Default::default()
});
// camera
commands
.spawn_bundle(PerspectiveCameraBundle {
transform: Transform::from_xyz(-1.0, 1.0, 1.0)
.looking_at(Vec3::new(-1.0, 1.0, 0.0), Vec3::Y),
..Default::default()
})
.insert(CameraController::default());
for z_i32 in -spawn_plane_depth as i32..=0 {
commands.spawn_bundle(PbrBundle {
mesh: sphere_handle.clone(),
material: white_handle.clone(),
transform: Transform::from_xyz(0.0, spawn_height, z_i32 as f32),
..Default::default()
});
}
// ground plane
commands.spawn_bundle(PbrBundle {
mesh: meshes.add(Mesh::from(shape::Plane {
size: 2.0 * spawn_plane_depth,
})),
material: white_handle.clone(),
..Default::default()
});
}
fn toggle_light(
input: Res<Input<KeyCode>>,
mut point_lights: Query<&mut PointLight>,
mut directional_lights: Query<&mut DirectionalLight>,
) {
if input.just_pressed(KeyCode::L) {
for mut light in point_lights.iter_mut() {
light.intensity = if light.intensity == 0.0 {
println!("Using PointLight");
100000000.0
} else {
0.0
};
}
for mut light in directional_lights.iter_mut() {
light.illuminance = if light.illuminance == 0.0 {
println!("Using DirectionalLight");
100000.0
} else {
0.0
};
}
}
}
fn adjust_point_light_biases(input: Res<Input<KeyCode>>, mut query: Query<&mut PointLight>) {
let depth_bias_step_size = 0.01;
let normal_bias_step_size = 0.1;
for mut light in query.iter_mut() {
if input.just_pressed(KeyCode::Key1) {
light.shadow_depth_bias -= depth_bias_step_size;
println!("PointLight shadow_depth_bias: {}", light.shadow_depth_bias);
}
if input.just_pressed(KeyCode::Key2) {
light.shadow_depth_bias += depth_bias_step_size;
println!("PointLight shadow_depth_bias: {}", light.shadow_depth_bias);
}
if input.just_pressed(KeyCode::Key3) {
light.shadow_normal_bias -= normal_bias_step_size;
println!(
"PointLight shadow_normal_bias: {}",
light.shadow_normal_bias
);
}
if input.just_pressed(KeyCode::Key4) {
light.shadow_normal_bias += normal_bias_step_size;
println!(
"PointLight shadow_normal_bias: {}",
light.shadow_normal_bias
);
}
}
}
fn adjust_directional_light_biases(
input: Res<Input<KeyCode>>,
mut query: Query<&mut DirectionalLight>,
) {
let depth_bias_step_size = 0.01;
let normal_bias_step_size = 0.1;
for mut light in query.iter_mut() {
if input.just_pressed(KeyCode::Key5) {
light.shadow_depth_bias -= depth_bias_step_size;
println!(
"DirectionalLight shadow_depth_bias: {}",
light.shadow_depth_bias
);
}
if input.just_pressed(KeyCode::Key6) {
light.shadow_depth_bias += depth_bias_step_size;
println!(
"DirectionalLight shadow_depth_bias: {}",
light.shadow_depth_bias
);
}
if input.just_pressed(KeyCode::Key7) {
light.shadow_normal_bias -= normal_bias_step_size;
println!(
"DirectionalLight shadow_normal_bias: {}",
light.shadow_normal_bias
);
}
if input.just_pressed(KeyCode::Key8) {
light.shadow_normal_bias += normal_bias_step_size;
println!(
"DirectionalLight shadow_normal_bias: {}",
light.shadow_normal_bias
);
}
}
}
struct CameraController {
pub enabled: bool,
pub sensitivity: f32,
pub key_forward: KeyCode,
pub key_back: KeyCode,
pub key_left: KeyCode,
pub key_right: KeyCode,
pub key_up: KeyCode,
pub key_down: KeyCode,
pub key_run: KeyCode,
pub walk_speed: f32,
pub run_speed: f32,
pub friction: f32,
pub pitch: f32,
pub yaw: f32,
pub velocity: Vec3,
}
impl Default for CameraController {
fn default() -> Self {
Self {
enabled: true,
sensitivity: 0.5,
key_forward: KeyCode::W,
key_back: KeyCode::S,
key_left: KeyCode::A,
key_right: KeyCode::D,
key_up: KeyCode::E,
key_down: KeyCode::Q,
key_run: KeyCode::LShift,
walk_speed: 10.0,
run_speed: 30.0,
friction: 0.5,
pitch: 0.0,
yaw: 0.0,
velocity: Vec3::ZERO,
}
}
}
fn camera_controller(
time: Res<Time>,
mut mouse_events: EventReader<MouseMotion>,
key_input: Res<Input<KeyCode>>,
mut query: Query<(&mut Transform, &mut CameraController), With<Camera>>,
) {
let dt = time.delta_seconds();
// Handle mouse input
let mut mouse_delta = Vec2::ZERO;
for mouse_event in mouse_events.iter() {
mouse_delta += mouse_event.delta;
}
for (mut transform, mut options) in query.iter_mut() {
if !options.enabled {
continue;
}
// Handle key input
let mut axis_input = Vec3::ZERO;
if key_input.pressed(options.key_forward) {
axis_input.z += 1.0;
}
if key_input.pressed(options.key_back) {
axis_input.z -= 1.0;
}
if key_input.pressed(options.key_right) {
axis_input.x += 1.0;
}
if key_input.pressed(options.key_left) {
axis_input.x -= 1.0;
}
if key_input.pressed(options.key_up) {
axis_input.y += 1.0;
}
if key_input.pressed(options.key_down) {
axis_input.y -= 1.0;
}
// Apply movement update
if axis_input != Vec3::ZERO {
let max_speed = if key_input.pressed(options.key_run) {
options.run_speed
} else {
options.walk_speed
};
options.velocity = axis_input.normalize() * max_speed;
} else {
let friction = options.friction.clamp(0.0, 1.0);
options.velocity *= 1.0 - friction;
if options.velocity.length_squared() < 1e-6 {
options.velocity = Vec3::ZERO;
}
}
let forward = transform.forward();
let right = transform.right();
transform.translation += options.velocity.x * dt * right
+ options.velocity.y * dt * Vec3::Y
+ options.velocity.z * dt * forward;
if mouse_delta != Vec2::ZERO {
// Apply look update
let (pitch, yaw) = (
(options.pitch - mouse_delta.y * 0.5 * options.sensitivity * dt).clamp(
-0.99 * std::f32::consts::FRAC_PI_2,
0.99 * std::f32::consts::FRAC_PI_2,
),
options.yaw - mouse_delta.x * options.sensitivity * dt,
);
transform.rotation = Quat::from_euler(EulerRot::ZYX, 0.0, yaw, pitch);
options.pitch = pitch;
options.yaw = yaw;
}
}
}

View file

@ -8,6 +8,9 @@ pub struct PointLight {
pub range: f32,
pub radius: f32,
pub shadow_depth_bias: f32,
/// A bias applied along the direction of the fragment's surface normal. It is scaled to the
/// shadow map's texel size so that it can be small close to the camera and gets larger further
/// away.
pub shadow_normal_bias: f32,
}
@ -26,7 +29,7 @@ impl Default for PointLight {
impl PointLight {
pub const DEFAULT_SHADOW_DEPTH_BIAS: f32 = 0.02;
pub const DEFAULT_SHADOW_NORMAL_BIAS: f32 = 0.02;
pub const DEFAULT_SHADOW_NORMAL_BIAS: f32 = 0.5;
}
/// A Directional light.
@ -61,6 +64,8 @@ pub struct DirectionalLight {
pub illuminance: f32,
pub shadow_projection: OrthographicProjection,
pub shadow_depth_bias: f32,
/// A bias applied along the direction of the fragment's surface normal. It is scaled to the
/// shadow map's texel size so that it is automatically adjusted to the orthographic projection.
pub shadow_normal_bias: f32,
}
@ -87,7 +92,7 @@ impl Default for DirectionalLight {
impl DirectionalLight {
pub const DEFAULT_SHADOW_DEPTH_BIAS: f32 = 0.02;
pub const DEFAULT_SHADOW_NORMAL_BIAS: f32 = 0.02;
pub const DEFAULT_SHADOW_NORMAL_BIAS: f32 = 0.6;
}
// Ambient light color.

View file

@ -172,8 +172,8 @@ impl FromWorld for ShadowShaders {
write_mask: 0,
},
bias: DepthBiasState {
constant: 2,
slope_scale: 2.0,
constant: 0,
slope_scale: 0.0,
clamp: 0.0,
},
}),
@ -228,6 +228,14 @@ pub fn extract_lights(
color: ambient_light.color,
brightness: ambient_light.brightness,
});
// This is the point light shadow map texel size for one face of the cube as a distance of 1.0
// world unit from the light.
// point_light_texel_size = 2.0 * 1.0 * tan(PI / 4.0) / cube face width in texels
// PI / 4.0 is half the cube face fov, tan(PI / 4.0) = 1.0, so this simplifies to:
// point_light_texel_size = 2.0 / cube face width in texels
// NOTE: When using various PCF kernel sizes, this will need to be adjusted, according to:
// https://catlikecoding.com/unity/tutorials/custom-srp/point-and-spot-shadows/
let point_light_texel_size = 2.0 / POINT_SHADOW_SIZE.width as f32;
for (entity, point_light, transform) in point_lights.iter() {
commands.get_or_spawn(entity).insert(ExtractedPointLight {
color: point_light.color,
@ -236,10 +244,24 @@ pub fn extract_lights(
radius: point_light.radius,
transform: *transform,
shadow_depth_bias: point_light.shadow_depth_bias,
shadow_normal_bias: point_light.shadow_normal_bias,
// The factor of SQRT_2 is for the worst-case diagonal offset
shadow_normal_bias: point_light.shadow_normal_bias
* point_light_texel_size
* std::f32::consts::SQRT_2,
});
}
for (entity, directional_light, transform) in directional_lights.iter() {
// Calulate the directional light shadow map texel size using the largest x,y dimension of
// the orthographic projection divided by the shadow map resolution
// NOTE: When using various PCF kernel sizes, this will need to be adjusted, according to:
// https://catlikecoding.com/unity/tutorials/custom-srp/directional-shadows/
let largest_dimension = (directional_light.shadow_projection.right
- directional_light.shadow_projection.left)
.max(
directional_light.shadow_projection.top
- directional_light.shadow_projection.bottom,
);
let directional_light_texel_size = largest_dimension / DIRECTIONAL_SHADOW_SIZE.width as f32;
commands
.get_or_spawn(entity)
.insert(ExtractedDirectionalLight {
@ -248,7 +270,10 @@ pub fn extract_lights(
direction: transform.forward(),
projection: directional_light.shadow_projection.get_projection_matrix(),
shadow_depth_bias: directional_light.shadow_depth_bias,
shadow_normal_bias: directional_light.shadow_normal_bias,
// The factor of SQRT_2 is for the worst-case diagonal offset
shadow_normal_bias: directional_light.shadow_normal_bias
* directional_light_texel_size
* std::f32::consts::SQRT_2,
});
}
}

View file

@ -379,12 +379,24 @@ fn directional_light(light: DirectionalLight, roughness: f32, NdotV: f32, normal
return (specular_light + diffuse) * light.color.rgb * NoL;
}
fn fetch_point_shadow(light_id: i32, frag_position: vec4<f32>) -> f32 {
fn fetch_point_shadow(light_id: i32, frag_position: vec4<f32>, surface_normal: vec3<f32>) -> f32 {
let light = lights.point_lights[light_id];
// because the shadow maps align with the axes and the frustum planes are at 45 degrees
// we can get the worldspace depth by taking the largest absolute axis
let frag_ls = light.position.xyz - frag_position.xyz;
let surface_to_light = light.position.xyz - frag_position.xyz;
let surface_to_light_abs = abs(surface_to_light);
let distance_to_light = max(surface_to_light_abs.x, max(surface_to_light_abs.y, surface_to_light_abs.z));
// The normal bias here is already scaled by the texel size at 1 world unit from the light.
// The texel size increases proportionally with distance from the light so multiplying by
// distance to light scales the normal bias to the texel size at the fragment distance.
let normal_offset = light.shadow_normal_bias * distance_to_light * surface_normal.xyz;
let depth_offset = light.shadow_depth_bias * normalize(surface_to_light.xyz);
let offset_position = frag_position.xyz + normal_offset + depth_offset;
// similar largest-absolute-axis trick as above, but now with the offset fragment position
let frag_ls = light.position.xyz - offset_position.xyz;
let abs_position_ls = abs(frag_ls);
let major_axis_magnitude = max(abs_position_ls.x, max(abs_position_ls.y, abs_position_ls.z));
@ -398,14 +410,6 @@ fn fetch_point_shadow(light_id: i32, frag_position: vec4<f32>) -> f32 {
let w = major_axis_magnitude;
let depth = z / w;
// let shadow = texture(samplerCubeArrayShadow(t_Shadow, s_Shadow), vec4(frag_ls, i), depth - bias);
// manual depth testing
// float shadow = texture(samplerCubeArray(t_Shadow, s_Shadow), vec4(-frag_ls, 6 * i)).r;
// shadow = depth > shadow ? 0.0 : 1.0;
// o_Target = vec4(vec3(shadow * 20 - 19, depth * 20 - 19, 0.0), 1.0);
// o_Target = vec4(vec3(shadow * 20 - 19), 1.0);
// do the lookup, using HW PCF and comparison
// NOTE: Due to the non-uniform control flow above, we must use the Level variant of
// textureSampleCompare to avoid undefined behaviour due to some of the fragments in
@ -415,21 +419,35 @@ fn fetch_point_shadow(light_id: i32, frag_position: vec4<f32>) -> f32 {
return textureSampleCompareLevel(point_shadow_textures, point_shadow_textures_sampler, frag_ls, i32(light_id), depth);
}
fn fetch_directional_shadow(light_id: i32, frag_position: vec4<f32>) -> f32 {
fn fetch_directional_shadow(light_id: i32, frag_position: vec4<f32>, surface_normal: vec3<f32>) -> f32 {
let light = lights.directional_lights[light_id];
let homogeneous_coords = light.view_projection * frag_position;
if (homogeneous_coords.w <= 0.0) {
// The normal bias is scaled to the texel size.
let normal_offset = light.shadow_normal_bias * surface_normal.xyz;
let depth_offset = light.shadow_depth_bias * light.direction_to_light.xyz;
let offset_position = vec4<f32>(frag_position.xyz + normal_offset + depth_offset, frag_position.w);
let offset_position_clip = light.view_projection * offset_position;
if (offset_position_clip.w <= 0.0) {
return 1.0;
}
// compensate for the Y-flip difference between the NDC and texture coordinates
let offset_position_ndc = offset_position_clip.xyz / offset_position_clip.w;
// No shadow outside the orthographic projection volume
if (any(offset_position_ndc.xy < vec2<f32>(-1.0)) || offset_position_ndc.z < 0.0
|| any(offset_position_ndc > vec3<f32>(1.0))) {
return 1.0;
}
// compute texture coordinates for shadow lookup, compensating for the Y-flip difference
// between the NDC and texture coordinates
let flip_correction = vec2<f32>(0.5, -0.5);
let proj_correction = 1.0 / homogeneous_coords.w;
// compute texture coordinates for shadow lookup
let light_local = homogeneous_coords.xy * flip_correction * proj_correction + vec2<f32>(0.5, 0.5);
let light_local = offset_position_ndc.xy * flip_correction + vec2<f32>(0.5, 0.5);
let depth = offset_position_ndc.z;
// do the lookup, using HW PCF and comparison
// NOTE: Due to non-uniform control flow above, we must use the level variant of the texture
// sampler to avoid use of implicit derivatives causing possible undefined behavior.
return textureSampleCompareLevel(directional_shadow_textures, directional_shadow_textures_sampler, light_local, i32(light_id), homogeneous_coords.z * proj_correction);
return textureSampleCompareLevel(directional_shadow_textures, directional_shadow_textures_sampler, light_local, i32(light_id), depth);
}
struct FragmentInput {
@ -522,26 +540,13 @@ fn fragment(in: FragmentInput) -> [[location(0)]] vec4<f32> {
let n_directional_lights = i32(lights.n_directional_lights);
for (var i: i32 = 0; i < n_point_lights; i = i + 1) {
let light = lights.point_lights[i];
let dir_to_light = normalize(light.position.xyz - in.world_position.xyz);
let depth_bias = light.shadow_depth_bias * dir_to_light.xyz;
let NdotL = dot(dir_to_light.xyz, in.world_normal.xyz);
let normal_bias = light.shadow_normal_bias * (1.0 - NdotL) * in.world_normal.xyz;
let biased_position = vec4<f32>(in.world_position.xyz + depth_bias + normal_bias, in.world_position.w);
let shadow = fetch_point_shadow(i, biased_position);
let shadow = fetch_point_shadow(i, in.world_position, in.world_normal);
let light_contrib = point_light(in.world_position.xyz, light, roughness, NdotV, N, V, R, F0, diffuse_color);
light_accum = light_accum + light_contrib * shadow;
}
for (var i: i32 = 0; i < n_directional_lights; i = i + 1) {
let light = lights.directional_lights[i];
let depth_bias = light.shadow_depth_bias * light.direction_to_light.xyz;
let NdotL = dot(light.direction_to_light.xyz, in.world_normal.xyz);
let normal_bias = light.shadow_normal_bias * (1.0 - NdotL) * in.world_normal.xyz;
let biased_position = vec4<f32>(in.world_position.xyz + depth_bias + normal_bias, in.world_position.w);
let shadow = fetch_directional_shadow(i, biased_position);
let shadow = fetch_directional_shadow(i, in.world_position, in.world_normal);
let light_contrib = directional_light(light, roughness, NdotV, N, V, R, F0, diffuse_color);
light_accum = light_accum + light_contrib * shadow;
}