Mesh picking fixes (#16110)

# Objective

- Mesh picking is noisy when a non triangle list is used
- Mesh picking runs even when users don't need it
- Resolve #16065 

## Solution

- Don't add the mesh picking plugin by default
- Remove error spam
This commit is contained in:
Aevyrie 2024-10-27 12:03:48 -07:00 committed by GitHub
parent a644ac73f7
commit 54b323ec80
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 126 additions and 157 deletions

View file

@ -1,5 +1,5 @@
use bevy_math::{Dir3, Mat4, Ray3d, Vec3}; use bevy_math::{Dir3, Mat4, Ray3d, Vec3};
use bevy_picking::{mesh_picking::ray_cast, prelude::*}; use bevy_picking::mesh_picking::ray_cast;
use criterion::{black_box, criterion_group, criterion_main, Criterion}; use criterion::{black_box, criterion_group, criterion_main, Criterion};
fn ptoxznorm(p: u32, size: u32) -> (f32, f32) { fn ptoxznorm(p: u32, size: u32) -> (f32, f32) {

View file

@ -277,24 +277,10 @@ pub struct DefaultPickingPlugins;
impl PluginGroup for DefaultPickingPlugins { impl PluginGroup for DefaultPickingPlugins {
fn build(self) -> PluginGroupBuilder { fn build(self) -> PluginGroupBuilder {
#[cfg_attr( PluginGroupBuilder::start::<Self>()
not(feature = "bevy_mesh"),
expect(
unused_mut,
reason = "Group is not mutated when `bevy_mesh` is not enabled."
)
)]
let mut group = PluginGroupBuilder::start::<Self>()
.add(input::PointerInputPlugin::default()) .add(input::PointerInputPlugin::default())
.add(PickingPlugin::default()) .add(PickingPlugin::default())
.add(InteractionPlugin); .add(InteractionPlugin)
#[cfg(feature = "bevy_mesh")]
{
group = group.add(mesh_picking::MeshPickingPlugin);
};
group
} }
} }

View file

@ -1,7 +1,6 @@
use bevy_math::{bounding::Aabb3d, Dir3, Mat4, Ray3d, Vec3, Vec3A}; use bevy_math::{bounding::Aabb3d, Dir3, Mat4, Ray3d, Vec3, Vec3A};
use bevy_reflect::Reflect; use bevy_reflect::Reflect;
use bevy_render::mesh::{Indices, Mesh, PrimitiveTopology, VertexAttributeValues}; use bevy_render::mesh::{Indices, Mesh, PrimitiveTopology};
use bevy_utils::tracing::{error, warn};
use super::Backfaces; use super::Backfaces;
@ -17,7 +16,7 @@ pub struct RayMeshHit {
/// The distance from the ray origin to the intersection point. /// The distance from the ray origin to the intersection point.
pub distance: f32, pub distance: f32,
/// The vertices of the triangle that was hit. /// The vertices of the triangle that was hit.
pub triangle: Option<[Vec3A; 3]>, pub triangle: Option<[Vec3; 3]>,
/// The index of the triangle that was hit. /// The index of the triangle that was hit.
pub triangle_index: Option<usize>, pub triangle_index: Option<usize>,
} }
@ -32,84 +31,41 @@ pub struct RayTriangleHit {
/// Casts a ray on a mesh, and returns the intersection. /// Casts a ray on a mesh, and returns the intersection.
pub(super) fn ray_intersection_over_mesh( pub(super) fn ray_intersection_over_mesh(
mesh: &Mesh, mesh: &Mesh,
mesh_transform: &Mat4, transform: &Mat4,
ray: Ray3d, ray: Ray3d,
backface_culling: Backfaces, culling: Backfaces,
) -> Option<RayMeshHit> { ) -> Option<RayMeshHit> {
if mesh.primitive_topology() != PrimitiveTopology::TriangleList { if mesh.primitive_topology() != PrimitiveTopology::TriangleList {
error!( return None; // ray_mesh_intersection assumes vertices are laid out in a triangle list
"Invalid intersection check: `TriangleList` is the only supported `PrimitiveTopology`"
);
return None;
} }
// Vertex positions are required
let positions = mesh.attribute(Mesh::ATTRIBUTE_POSITION)?.as_float3()?;
// Get the vertex positions and normals from the mesh. // Normals are optional
let vertex_positions: &Vec<[f32; 3]> = match mesh.attribute(Mesh::ATTRIBUTE_POSITION) { let normals = mesh
None => { .attribute(Mesh::ATTRIBUTE_NORMAL)
error!("Mesh does not contain vertex positions"); .and_then(|normal_values| normal_values.as_float3());
return None;
}
Some(vertex_values) => match &vertex_values {
VertexAttributeValues::Float32x3(positions) => positions,
_ => {
error!("Unexpected types in {:?}", Mesh::ATTRIBUTE_POSITION);
return None;
}
},
};
let vertex_normals: Option<&[[f32; 3]]> =
if let Some(normal_values) = mesh.attribute(Mesh::ATTRIBUTE_NORMAL) {
match &normal_values {
VertexAttributeValues::Float32x3(normals) => Some(normals),
_ => None,
}
} else {
None
};
if let Some(indices) = &mesh.indices() { match mesh.indices() {
match indices { Some(Indices::U16(indices)) => {
Indices::U16(vertex_indices) => ray_mesh_intersection( ray_mesh_intersection(ray, transform, positions, normals, Some(indices), culling)
ray,
mesh_transform,
vertex_positions,
vertex_normals,
Some(vertex_indices),
backface_culling,
),
Indices::U32(vertex_indices) => ray_mesh_intersection(
ray,
mesh_transform,
vertex_positions,
vertex_normals,
Some(vertex_indices),
backface_culling,
),
} }
} else { Some(Indices::U32(indices)) => {
ray_mesh_intersection( ray_mesh_intersection(ray, transform, positions, normals, Some(indices), culling)
ray, }
mesh_transform, None => ray_mesh_intersection::<usize>(ray, transform, positions, normals, None, culling),
vertex_positions,
vertex_normals,
None::<&[usize]>,
backface_culling,
)
} }
} }
/// Checks if a ray intersects a mesh, and returns the nearest intersection if one exists. /// Checks if a ray intersects a mesh, and returns the nearest intersection if one exists.
pub fn ray_mesh_intersection<Index: Clone + Copy>( pub fn ray_mesh_intersection<I: TryInto<usize> + Clone + Copy>(
ray: Ray3d, ray: Ray3d,
mesh_transform: &Mat4, mesh_transform: &Mat4,
vertex_positions: &[[f32; 3]], positions: &[[f32; 3]],
vertex_normals: Option<&[[f32; 3]]>, vertex_normals: Option<&[[f32; 3]]>,
indices: Option<&[Index]>, indices: Option<&[I]>,
backface_culling: Backfaces, backface_culling: Backfaces,
) -> Option<RayMeshHit> ) -> Option<RayMeshHit> {
where
usize: TryFrom<Index>,
{
// The ray cast can hit the same mesh many times, so we need to track which hit is // The ray cast can hit the same mesh many times, so we need to track which hit is
// closest to the camera, and record that. // closest to the camera, and record that.
let mut closest_hit_distance = f32::MAX; let mut closest_hit_distance = f32::MAX;
@ -123,38 +79,36 @@ where
); );
if let Some(indices) = indices { if let Some(indices) = indices {
// Make sure this chunk has 3 vertices to avoid a panic. // The index list must be a multiple of three. If not, the mesh is malformed and the raycast
// result might be nonsensical.
if indices.len() % 3 != 0 { if indices.len() % 3 != 0 {
warn!("Index list not a multiple of 3");
return None; return None;
} }
// Now that we're in the vector of vertex indices, we want to look at the vertex for triangle in indices.chunks_exact(3) {
// positions for each triangle, so we'll take indices in chunks of three, where each let [a, b, c] = [
// chunk of three indices are references to the three vertices of a triangle. triangle[0].try_into().ok()?,
for index_chunk in indices.chunks_exact(3) { triangle[1].try_into().ok()?,
let [index1, index2, index3] = [ triangle[2].try_into().ok()?,
usize::try_from(index_chunk[0]).ok()?,
usize::try_from(index_chunk[1]).ok()?,
usize::try_from(index_chunk[2]).ok()?,
]; ];
let triangle_index = Some(index1);
let tri_vertex_positions = [ let triangle_index = Some(a);
Vec3A::from(vertex_positions[index1]), let tri_vertex_positions = &[
Vec3A::from(vertex_positions[index2]), Vec3::from(positions[a]),
Vec3A::from(vertex_positions[index3]), Vec3::from(positions[b]),
Vec3::from(positions[c]),
]; ];
let tri_normals = vertex_normals.map(|normals| { let tri_normals = vertex_normals.map(|normals| {
[ [
Vec3A::from(normals[index1]), Vec3::from(normals[a]),
Vec3A::from(normals[index2]), Vec3::from(normals[b]),
Vec3A::from(normals[index3]), Vec3::from(normals[c]),
] ]
}); });
let Some(hit) = triangle_intersection( let Some(hit) = triangle_intersection(
tri_vertex_positions, tri_vertex_positions,
tri_normals, tri_normals.as_ref(),
closest_hit_distance, closest_hit_distance,
&mesh_space_ray, &mesh_space_ray,
backface_culling, backface_culling,
@ -171,9 +125,9 @@ where
.length(), .length(),
triangle: hit.triangle.map(|tri| { triangle: hit.triangle.map(|tri| {
[ [
mesh_transform.transform_point3a(tri[0]), mesh_transform.transform_point3(tri[0]),
mesh_transform.transform_point3a(tri[1]), mesh_transform.transform_point3(tri[1]),
mesh_transform.transform_point3a(tri[2]), mesh_transform.transform_point3(tri[2]),
] ]
}), }),
triangle_index, triangle_index,
@ -181,23 +135,23 @@ where
closest_hit_distance = hit.distance; closest_hit_distance = hit.distance;
} }
} else { } else {
for (i, chunk) in vertex_positions.chunks_exact(3).enumerate() { for (i, triangle) in positions.chunks_exact(3).enumerate() {
let &[a, b, c] = chunk else { let &[a, b, c] = triangle else {
continue; continue;
}; };
let triangle_index = Some(i); let triangle_index = Some(i);
let tri_vertex_positions = [Vec3A::from(a), Vec3A::from(b), Vec3A::from(c)]; let tri_vertex_positions = &[Vec3::from(a), Vec3::from(b), Vec3::from(c)];
let tri_normals = vertex_normals.map(|normals| { let tri_normals = vertex_normals.map(|normals| {
[ [
Vec3A::from(normals[i]), Vec3::from(normals[i]),
Vec3A::from(normals[i + 1]), Vec3::from(normals[i + 1]),
Vec3A::from(normals[i + 2]), Vec3::from(normals[i + 2]),
] ]
}); });
let Some(hit) = triangle_intersection( let Some(hit) = triangle_intersection(
tri_vertex_positions, tri_vertex_positions,
tri_normals, tri_normals.as_ref(),
closest_hit_distance, closest_hit_distance,
&mesh_space_ray, &mesh_space_ray,
backface_culling, backface_culling,
@ -214,9 +168,9 @@ where
.length(), .length(),
triangle: hit.triangle.map(|tri| { triangle: hit.triangle.map(|tri| {
[ [
mesh_transform.transform_point3a(tri[0]), mesh_transform.transform_point3(tri[0]),
mesh_transform.transform_point3a(tri[1]), mesh_transform.transform_point3(tri[1]),
mesh_transform.transform_point3a(tri[2]), mesh_transform.transform_point3(tri[2]),
] ]
}), }),
triangle_index, triangle_index,
@ -228,15 +182,14 @@ where
closest_hit closest_hit
} }
#[inline(always)]
fn triangle_intersection( fn triangle_intersection(
tri_vertices: [Vec3A; 3], tri_vertices: &[Vec3; 3],
tri_normals: Option<[Vec3A; 3]>, tri_normals: Option<&[Vec3; 3]>,
max_distance: f32, max_distance: f32,
ray: &Ray3d, ray: &Ray3d,
backface_culling: Backfaces, backface_culling: Backfaces,
) -> Option<RayMeshHit> { ) -> Option<RayMeshHit> {
let hit = ray_triangle_intersection(ray, &tri_vertices, backface_culling)?; let hit = ray_triangle_intersection(ray, tri_vertices, backface_culling)?;
if hit.distance < 0.0 || hit.distance > max_distance { if hit.distance < 0.0 || hit.distance > max_distance {
return None; return None;
@ -258,25 +211,24 @@ fn triangle_intersection(
Some(RayMeshHit { Some(RayMeshHit {
point, point,
normal: normal.into(), normal,
barycentric_coords: barycentric, barycentric_coords: barycentric,
distance: hit.distance, distance: hit.distance,
triangle: Some(tri_vertices), triangle: Some(*tri_vertices),
triangle_index: None, triangle_index: None,
}) })
} }
/// Takes a ray and triangle and computes the intersection. /// Takes a ray and triangle and computes the intersection.
#[inline(always)]
fn ray_triangle_intersection( fn ray_triangle_intersection(
ray: &Ray3d, ray: &Ray3d,
triangle: &[Vec3A; 3], triangle: &[Vec3; 3],
backface_culling: Backfaces, backface_culling: Backfaces,
) -> Option<RayTriangleHit> { ) -> Option<RayTriangleHit> {
// Source: https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection // Source: https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection
let vector_v0_to_v1: Vec3A = triangle[1] - triangle[0]; let vector_v0_to_v1: Vec3 = triangle[1] - triangle[0];
let vector_v0_to_v2: Vec3A = triangle[2] - triangle[0]; let vector_v0_to_v2: Vec3 = triangle[2] - triangle[0];
let p_vec: Vec3A = (Vec3A::from(*ray.direction)).cross(vector_v0_to_v2); let p_vec: Vec3 = ray.direction.cross(vector_v0_to_v2);
let determinant: f32 = vector_v0_to_v1.dot(p_vec); let determinant: f32 = vector_v0_to_v1.dot(p_vec);
match backface_culling { match backface_culling {
@ -298,14 +250,14 @@ fn ray_triangle_intersection(
let determinant_inverse = 1.0 / determinant; let determinant_inverse = 1.0 / determinant;
let t_vec = Vec3A::from(ray.origin) - triangle[0]; let t_vec = ray.origin - triangle[0];
let u = t_vec.dot(p_vec) * determinant_inverse; let u = t_vec.dot(p_vec) * determinant_inverse;
if !(0.0..=1.0).contains(&u) { if !(0.0..=1.0).contains(&u) {
return None; return None;
} }
let q_vec = t_vec.cross(vector_v0_to_v1); let q_vec = t_vec.cross(vector_v0_to_v1);
let v = Vec3A::from(*ray.direction).dot(q_vec) * determinant_inverse; let v = (*ray.direction).dot(q_vec) * determinant_inverse;
if v < 0.0 || u + v > 1.0 { if v < 0.0 || u + v > 1.0 {
return None; return None;
} }

View file

@ -1,10 +1,23 @@
//! A simple 3D scene to demonstrate mesh picking. //! A simple 3D scene to demonstrate mesh picking.
//! //!
//! By default, all meshes are pickable. Picking can be disabled for individual entities //! [`bevy::picking::backend`] provides an API for adding picking hit tests to any entity. To get
//! by adding [`PickingBehavior::IGNORE`]. //! started with picking 3d meshes, the [`MeshPickingPlugin`] is provided as a simple starting
//! point, especially useful for debugging. For your game, you may want to use a 3d picking backend
//! provided by your physics engine, or a picking shader, depending on your specific use case.
//! //!
//! If you want mesh picking to be entirely opt-in, you can set [`MeshPickingSettings::require_markers`] //! [`bevy::picking`] allows you to compose backends together to make any entity on screen pickable
//! to `true` and add a [`RayCastPickable`] component to the desired camera and target entities. //! with pointers, regardless of how that entity is rendered. For example, `bevy_ui` and
//! `bevy_sprite` provide their own picking backends that can be enabled at the same time as this
//! mesh picking backend. This makes it painless to deal with cases like the UI or sprites blocking
//! meshes underneath them, or vice versa.
//!
//! If you want to build more complex interactions than afforded by the provided pointer events, you
//! may want to use [`MeshRayCast`] or a full physics engine with raycasting capabilities.
//!
//! By default, the mesh picking plugin will raycast against all entities, which is especially
//! useful for debugging. If you want mesh picking to be opt-in, you can set
//! [`MeshPickingSettings::require_markers`] to `true` and add a [`RayCastPickable`] component to
//! the desired camera and target entities.
use std::f32::consts::PI; use std::f32::consts::PI;
@ -19,7 +32,12 @@ use bevy::{
fn main() { fn main() {
App::new() App::new()
.add_plugins(DefaultPlugins) .add_plugins((
DefaultPlugins,
// The mesh picking plugin is not enabled by default, because raycasting against all
// meshes has a performance cost.
MeshPickingPlugin,
))
.init_resource::<SceneMaterials>() .init_resource::<SceneMaterials>()
.add_systems(Startup, setup) .add_systems(Startup, setup)
.add_systems(Update, (on_mesh_hover, rotate)) .add_systems(Update, (on_mesh_hover, rotate))

View file

@ -1,14 +1,15 @@
//! A simple scene to demonstrate picking events //! A simple scene to demonstrate picking events for UI and mesh entities.
use bevy::{color::palettes::tailwind::CYAN_400, prelude::*}; use bevy::prelude::*;
fn main() { fn main() {
let mut app = App::new(); App::new()
app.add_plugins(DefaultPlugins); .add_plugins((
DefaultPlugins,
app.add_systems(Startup, setup); MeshPickingPlugin, // Needed for mesh picking, not added by default
))
app.run(); .add_systems(Startup, setup)
.run();
} }
/// set up a simple 3D scene /// set up a simple 3D scene
@ -19,7 +20,7 @@ fn setup(
) { ) {
commands commands
.spawn(( .spawn((
Text::new("Click Me to get a box"), Text::new("Click Me to get a box\nDrag cubes to rotate"),
Node { Node {
position_type: PositionType::Absolute, position_type: PositionType::Absolute,
top: Val::Percent(12.0), top: Val::Percent(12.0),
@ -27,20 +28,7 @@ fn setup(
..default() ..default()
}, },
)) ))
.observe( .observe(on_pointer_click_spawn_cube)
|_click: Trigger<Pointer<Click>>,
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut num: Local<usize>| {
commands.spawn((
Mesh3d(meshes.add(Cuboid::new(1.0, 1.0, 1.0))),
MeshMaterial3d(materials.add(Color::srgb_u8(124, 144, 255))),
Transform::from_xyz(0.0, 0.5 + 1.1 * *num as f32, 0.0),
));
*num += 1;
},
)
.observe( .observe(
|evt: Trigger<Pointer<Out>>, mut texts: Query<&mut TextColor>| { |evt: Trigger<Pointer<Out>>, mut texts: Query<&mut TextColor>| {
let mut color = texts.get_mut(evt.entity()).unwrap(); let mut color = texts.get_mut(evt.entity()).unwrap();
@ -50,7 +38,7 @@ fn setup(
.observe( .observe(
|evt: Trigger<Pointer<Over>>, mut texts: Query<&mut TextColor>| { |evt: Trigger<Pointer<Over>>, mut texts: Query<&mut TextColor>| {
let mut color = texts.get_mut(evt.entity()).unwrap(); let mut color = texts.get_mut(evt.entity()).unwrap();
color.0 = CYAN_400.into(); color.0 = bevy::color::palettes::tailwind::CYAN_400.into();
}, },
); );
// circular base // circular base
@ -73,3 +61,28 @@ fn setup(
Transform::from_xyz(-2.5, 4.5, 9.0).looking_at(Vec3::ZERO, Vec3::Y), Transform::from_xyz(-2.5, 4.5, 9.0).looking_at(Vec3::ZERO, Vec3::Y),
)); ));
} }
fn on_pointer_click_spawn_cube(
_click: Trigger<Pointer<Click>>,
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut num: Local<usize>,
) {
commands
.spawn((
Mesh3d(meshes.add(Cuboid::new(0.5, 0.5, 0.5))),
MeshMaterial3d(materials.add(Color::srgb_u8(124, 144, 255))),
Transform::from_xyz(0.0, 0.25 + 0.55 * *num as f32, 0.0),
))
// With the MeshPickingPlugin added, you can add pointer event observers to meshes as well:
.observe(
|drag: Trigger<Pointer<Drag>>, mut transforms: Query<&mut Transform>| {
if let Ok(mut transform) = transforms.get_mut(drag.entity()) {
transform.rotate_y(drag.delta.x * 0.02);
transform.rotate_x(drag.delta.y * 0.02);
}
},
);
*num += 1;
}