Example for axes gizmos (#12299)

# Objective

- Follow-up to #12211 
- Introduces an example project that demonstrates the implementation and
behavior of `Gizmos::axes` for an entity with a `Transform` component.

## Solution

In order to demonstrate how `Gizmo::axes` can be used and behaves in
practice, we introduce an example of a simple scene containing a pair of
cuboids locked in a grotesque, inscrutable dance: the two are repeatedly
given random `Transform`s which they interpolate to, showing how the
axes move with objects as they translate, rotate, and scale.

<img width="1023" alt="Screenshot 2024-03-04 at 1 16 33 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/c1ff4794-6722-491c-8522-f59801645139">



On the implementation side, we demonstrate how to draw axes for
entities, automatically sizing them according to their bounding boxes
(so that the axes will be visible):
````rust
fn draw_axes(mut gizmos: Gizmos, query: Query<(&Transform, &Aabb), With<ShowAxes>>) {
    for (&transform, &aabb) in &query {
        let length = aabb.half_extents.length();
        gizmos.axes(transform, length);
    }
}
````

---

## Changelog

- Created examples/gizmos/axes.rs.
- Added 'axes' example to Cargo.toml.
This commit is contained in:
Matty 2024-03-04 14:30:39 -05:00 committed by GitHub
parent b02a2eff17
commit 4673fb3e57
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 223 additions and 0 deletions

View file

@ -2690,6 +2690,17 @@ description = "A scene showcasing 3D gizmos"
category = "Gizmos" category = "Gizmos"
wasm = true wasm = true
[[example]]
name = "axes"
path = "examples/gizmos/axes.rs"
doc-scrape-examples = true
[package.metadata.example.axes]
name = "Axes"
description = "Demonstrates the function of axes gizmos"
category = "Gizmos"
wasm = true
[[example]] [[example]]
name = "light_gizmos" name = "light_gizmos"
path = "examples/gizmos/light_gizmos.rs" path = "examples/gizmos/light_gizmos.rs"

View file

@ -267,6 +267,7 @@ Example | Description
--- | --- --- | ---
[2D Gizmos](../examples/gizmos/2d_gizmos.rs) | A scene showcasing 2D gizmos [2D Gizmos](../examples/gizmos/2d_gizmos.rs) | A scene showcasing 2D gizmos
[3D Gizmos](../examples/gizmos/3d_gizmos.rs) | A scene showcasing 3D gizmos [3D Gizmos](../examples/gizmos/3d_gizmos.rs) | A scene showcasing 3D gizmos
[Axes](../examples/gizmos/axes.rs) | Demonstrates the function of axes gizmos
[Light Gizmos](../examples/gizmos/light_gizmos.rs) | A scene showcasing light gizmos [Light Gizmos](../examples/gizmos/light_gizmos.rs) | A scene showcasing light gizmos
## Input ## Input

211
examples/gizmos/axes.rs Normal file
View file

@ -0,0 +1,211 @@
//! This example demonstrates the implementation and behavior of the axes gizmo.
use bevy::prelude::*;
use bevy::render::primitives::Aabb;
use rand::random;
use std::f32::consts::PI;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(Update, (move_cubes, draw_axes))
.run();
}
/// The `ShowAxes` component is attached to an entity to get the `draw_axes` system to
/// display axes according to its Transform component.
#[derive(Component)]
struct ShowAxes;
/// The `TransformTracking` component keeps track of the data we need to interpolate
/// between two transforms in our example.
#[derive(Component)]
struct TransformTracking {
/// The initial transform of the cube during the move
initial_transform: Transform,
/// The target transform of the cube during the move
target_transform: Transform,
/// The progress of the cube during the move in percentage points
progress: u16,
}
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// Lights...
commands.spawn(PointLightBundle {
point_light: PointLight {
shadows_enabled: true,
..default()
},
transform: Transform::from_xyz(2., 6., 0.),
..default()
});
// Camera...
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(0., 1.5, -8.).looking_at(Vec3::new(0., -0.5, 0.), Vec3::Y),
..default()
});
// Action! (Our cubes that are going to move)
commands.spawn((
PbrBundle {
mesh: meshes.add(Cuboid::new(1., 1., 1.)),
material: materials.add(Color::srgb(0.8, 0.7, 0.6)),
..default()
},
ShowAxes,
TransformTracking {
initial_transform: default(),
target_transform: random_transform(),
progress: 0,
},
));
commands.spawn((
PbrBundle {
mesh: meshes.add(Cuboid::new(0.5, 0.5, 0.5)),
material: materials.add(Color::srgb(0.6, 0.7, 0.8)),
..default()
},
ShowAxes,
TransformTracking {
initial_transform: default(),
target_transform: random_transform(),
progress: 0,
},
));
// A plane to give a sense of place
commands.spawn(PbrBundle {
mesh: meshes.add(Plane3d::default().mesh().size(20., 20.)),
material: materials.add(Color::srgb(0.1, 0.1, 0.1)),
transform: Transform::from_xyz(0., -2., 0.),
..default()
});
}
// This system draws the axes based on the cube's transform, with length based on the size of
// the entity's axis-aligned bounding box (AABB).
fn draw_axes(mut gizmos: Gizmos, query: Query<(&Transform, &Aabb), With<ShowAxes>>) {
for (&transform, &aabb) in &query {
let length = aabb.half_extents.length();
gizmos.axes(transform, length);
}
}
// This system changes the cubes' transforms to interpolate between random transforms
fn move_cubes(mut query: Query<(&mut Transform, &mut TransformTracking)>) {
for (mut transform, mut tracking) in &mut query {
let t = tracking.progress as f32 / 100.;
*transform =
interpolate_transforms(tracking.initial_transform, tracking.target_transform, t);
if tracking.progress < 100 {
tracking.progress += 1;
} else {
tracking.initial_transform = *transform;
tracking.target_transform = random_transform();
tracking.progress = 0;
}
}
}
// Helper functions for random transforms and interpolation:
const TRANSLATION_BOUND_LOWER_X: f32 = -5.;
const TRANSLATION_BOUND_UPPER_X: f32 = 5.;
const TRANSLATION_BOUND_LOWER_Y: f32 = -1.;
const TRANSLATION_BOUND_UPPER_Y: f32 = 1.;
const TRANSLATION_BOUND_LOWER_Z: f32 = -2.;
const TRANSLATION_BOUND_UPPER_Z: f32 = 6.;
const SCALING_BOUND_LOWER_LOG: f32 = -1.2;
const SCALING_BOUND_UPPER_LOG: f32 = 1.2;
fn random_transform() -> Transform {
Transform {
translation: random_translation(),
rotation: random_rotation(),
scale: random_scale(),
}
}
fn random_translation() -> Vec3 {
let x = random::<f32>() * (TRANSLATION_BOUND_UPPER_X - TRANSLATION_BOUND_LOWER_X)
+ TRANSLATION_BOUND_LOWER_X;
let y = random::<f32>() * (TRANSLATION_BOUND_UPPER_Y - TRANSLATION_BOUND_LOWER_Y)
+ TRANSLATION_BOUND_LOWER_Y;
let z = random::<f32>() * (TRANSLATION_BOUND_UPPER_Z - TRANSLATION_BOUND_LOWER_Z)
+ TRANSLATION_BOUND_LOWER_Z;
Vec3::new(x, y, z)
}
fn random_scale() -> Vec3 {
let x_factor_log = random::<f32>() * (SCALING_BOUND_UPPER_LOG - SCALING_BOUND_LOWER_LOG)
+ SCALING_BOUND_LOWER_LOG;
let y_factor_log = random::<f32>() * (SCALING_BOUND_UPPER_LOG - SCALING_BOUND_LOWER_LOG)
+ SCALING_BOUND_LOWER_LOG;
let z_factor_log = random::<f32>() * (SCALING_BOUND_UPPER_LOG - SCALING_BOUND_LOWER_LOG)
+ SCALING_BOUND_LOWER_LOG;
Vec3::new(
x_factor_log.exp2(),
y_factor_log.exp2(),
z_factor_log.exp2(),
)
}
fn elerp(v1: Vec3, v2: Vec3, t: f32) -> Vec3 {
let x_factor_log = (1. - t) * v1.x.log2() + t * v2.x.log2();
let y_factor_log = (1. - t) * v1.y.log2() + t * v2.y.log2();
let z_factor_log = (1. - t) * v1.z.log2() + t * v2.z.log2();
Vec3::new(
x_factor_log.exp2(),
y_factor_log.exp2(),
z_factor_log.exp2(),
)
}
fn random_rotation() -> Quat {
let dir = random_direction();
let angle = random::<f32>() * 2. * PI;
Quat::from_axis_angle(dir, angle)
}
fn random_direction() -> Vec3 {
let height = random::<f32>() * 2. - 1.;
let theta = random::<f32>() * 2. * PI;
build_direction(height, theta)
}
fn build_direction(height: f32, theta: f32) -> Vec3 {
let z = height;
let m = f32::acos(z).sin();
let x = theta.cos() * m;
let y = theta.sin() * m;
Vec3::new(x, y, z)
}
fn interpolate_transforms(t1: Transform, t2: Transform, t: f32) -> Transform {
let translation = t1.translation.lerp(t2.translation, t);
let rotation = t1.rotation.slerp(t2.rotation, t);
let scale = elerp(t1.scale, t2.scale, t);
Transform {
translation,
rotation,
scale,
}
}