Rebase of existing PBR work (#1554)

This is a rebase of StarArawns PBR work from #261 with IngmarBitters work from #1160 cherry-picked on top.

I had to make a few minor changes to make some intermediate commits compile and the end result is not yet 100% what I expected, so there's a bit more work to do.

Co-authored-by: John Mitchell <toasterthegamer@gmail.com>
Co-authored-by: Ingmar Bitter <ingmar.bitter@gmail.com>
This commit is contained in:
Jonas Matser 2021-03-20 03:22:33 +00:00
parent b6be8a5314
commit 45b2db7070
28 changed files with 520 additions and 131 deletions

View file

@ -135,6 +135,10 @@ path = "examples/3d/orthographic.rs"
name = "parenting"
path = "examples/3d/parenting.rs"
[[example]]
name = "pbr"
path = "examples/3d/pbr.rs"
[[example]]
name = "spawner"
path = "examples/3d/spawner.rs"

View file

@ -277,9 +277,12 @@ fn load_material(material: &Material, load_context: &mut LoadContext) -> Handle<
load_context.set_labeled_asset(
&material_label,
LoadedAsset::new(StandardMaterial {
albedo: Color::rgba(color[0], color[1], color[2], color[3]),
albedo_texture: texture_handle,
base_color: Color::rgba(color[0], color[1], color[2], color[3]),
base_color_texture: texture_handle,
roughness: pbr.roughness_factor(),
metallic: pbr.metallic_factor(),
unlit: material.unlit(),
..Default::default()
})
.with_dependencies(dependencies),
)

View file

@ -96,7 +96,6 @@ pub mod gltf {
#[cfg(feature = "bevy_pbr")]
pub mod pbr {
//! Physically based rendering.
//! **Note**: true PBR has not yet been implemented; the name `pbr` is aspirational.
pub use bevy_pbr::*;
}

View file

@ -1,4 +1,4 @@
use crate::{light::Light, material::StandardMaterial, render_graph::FORWARD_PIPELINE_HANDLE};
use crate::{light::Light, material::StandardMaterial, render_graph::PBR_PIPELINE_HANDLE};
use bevy_asset::Handle;
use bevy_ecs::bundle::Bundle;
use bevy_render::{
@ -27,7 +27,7 @@ impl Default for PbrBundle {
fn default() -> Self {
Self {
render_pipelines: RenderPipelines::from_pipelines(vec![RenderPipeline::new(
FORWARD_PIPELINE_HANDLE.typed(),
PBR_PIPELINE_HANDLE.typed(),
)]),
mesh: Default::default(),
visible: Default::default(),

View file

@ -42,9 +42,9 @@ impl Plugin for PbrPlugin {
materials.set_untracked(
Handle::<StandardMaterial>::default(),
StandardMaterial {
albedo: Color::PINK,
base_color: Color::PINK,
unlit: true,
albedo_texture: None,
..Default::default()
},
);
}

View file

@ -15,6 +15,8 @@ pub struct Light {
pub color: Color,
pub fov: f32,
pub depth: Range<f32>,
pub intensity: f32,
pub range: f32,
}
impl Default for Light {
@ -23,6 +25,8 @@ impl Default for Light {
color: Color::rgb(1.0, 1.0, 1.0),
depth: 0.1..50.0,
fov: f32::to_radians(60.0),
intensity: 200.0,
range: 20.0,
}
}
}
@ -48,10 +52,14 @@ impl LightRaw {
let proj = perspective.get_projection_matrix() * global_transform.compute_matrix();
let (x, y, z) = global_transform.translation.into();
// premultiply color by intensity
// we don't use the alpha at all, so no reason to multiply only [0..3]
let color: [f32; 4] = (light.color * light.intensity).into();
LightRaw {
proj: proj.to_cols_array_2d(),
pos: [x, y, z, 1.0],
color: light.color.into(),
pos: [x, y, z, 1.0 / (light.range * light.range)], // pos.w is the attenuation.
color,
}
}
}

View file

@ -3,12 +3,28 @@ use bevy_reflect::TypeUuid;
use bevy_render::{color::Color, renderer::RenderResources, shader::ShaderDefs, texture::Texture};
/// A material with "standard" properties used in PBR lighting
/// Standard property values with pictures here https://google.github.io/filament/Material%20Properties.pdf
#[derive(Debug, RenderResources, ShaderDefs, TypeUuid)]
#[uuid = "dace545e-4bc6-4595-a79d-c224fc694975"]
pub struct StandardMaterial {
pub albedo: Color,
/// Doubles as diffuse albedo for non-metallic, specular for metallic and a mix for everything in between
/// If used together with a base_color_texture, this is factored into the final base color
/// as `base_color * base_color_texture_value`
pub base_color: Color,
#[shader_def]
pub albedo_texture: Option<Handle<Texture>>,
pub base_color_texture: Option<Handle<Texture>>,
/// Linear perceptual roughness, clamped to [0.089, 1.0] in the shader
/// Defaults to minimum of 0.089
/// If used together with a roughness/metallic texture, this is factored into the final base color
/// as `roughness * roughness_texture_value`
pub roughness: f32,
/// From [0.0, 1.0], dielectric to pure metallic
/// If used together with a roughness/metallic texture, this is factored into the final base color
/// as `metallic * metallic_texture_value`
pub metallic: f32,
/// Specular intensity for non-metals on a linear scale of [0.0, 1.0]
/// defaults to 0.5 which is mapped to 4% reflectance in the shader
pub reflectance: f32,
#[render_resources(ignore)]
#[shader_def]
pub unlit: bool,
@ -17,8 +33,19 @@ pub struct StandardMaterial {
impl Default for StandardMaterial {
fn default() -> Self {
StandardMaterial {
albedo: Color::rgb(1.0, 1.0, 1.0),
albedo_texture: None,
base_color: Color::rgb(1.0, 1.0, 1.0),
base_color_texture: None,
// This is the minimum the roughness is clamped to in shader code
// See https://google.github.io/filament/Filament.html#materialsystem/parameterization/
// It's the minimum floating point value that won't be rounded down to 0 in the calculations used.
// Although technically for 32-bit floats, 0.045 could be used.
roughness: 0.089,
// Few materials are purely dielectric or metallic
// This is just a default for mostly-dielectric
metallic: 0.01,
// Minimum real-world reflectance is 2%, most materials between 2-5%
// Expressed in a linear scale and equivalent to 4% reflectance see https://google.github.io/filament/Material%20Properties.pdf
reflectance: 0.5,
unlit: false,
}
}
@ -27,7 +54,7 @@ impl Default for StandardMaterial {
impl From<Color> for StandardMaterial {
fn from(color: Color) -> Self {
StandardMaterial {
albedo: color,
base_color: color,
..Default::default()
}
}
@ -36,7 +63,7 @@ impl From<Color> for StandardMaterial {
impl From<Handle<Texture>> for StandardMaterial {
fn from(texture: Handle<Texture>) -> Self {
StandardMaterial {
albedo_texture: Some(texture),
base_color_texture: Some(texture),
..Default::default()
}
}

View file

@ -1,65 +0,0 @@
#version 450
const int MAX_LIGHTS = 10;
struct Light {
mat4 proj;
vec4 pos;
vec4 color;
};
layout(location = 0) in vec3 v_Position;
layout(location = 1) in vec3 v_Normal;
layout(location = 2) in vec2 v_Uv;
layout(location = 0) out vec4 o_Target;
layout(set = 0, binding = 0) uniform CameraViewProj {
mat4 ViewProj;
};
layout(set = 1, binding = 0) uniform Lights {
vec3 AmbientColor;
uvec4 NumLights;
Light SceneLights[MAX_LIGHTS];
};
layout(set = 3, binding = 0) uniform StandardMaterial_albedo {
vec4 Albedo;
};
# ifdef STANDARDMATERIAL_ALBEDO_TEXTURE
layout(set = 3, binding = 1) uniform texture2D StandardMaterial_albedo_texture;
layout(set = 3, binding = 2) uniform sampler StandardMaterial_albedo_texture_sampler;
# endif
void main() {
vec4 output_color = Albedo;
# ifdef STANDARDMATERIAL_ALBEDO_TEXTURE
output_color *= texture(
sampler2D(StandardMaterial_albedo_texture, StandardMaterial_albedo_texture_sampler),
v_Uv);
# endif
# ifndef STANDARDMATERIAL_UNLIT
vec3 normal = normalize(v_Normal);
// accumulate color
vec3 color = AmbientColor;
for (int i=0; i<int(NumLights.x) && i<MAX_LIGHTS; ++i) {
Light light = SceneLights[i];
// compute Lambertian diffuse term
vec3 light_dir = normalize(light.pos.xyz - v_Position);
float diffuse = max(0.0, dot(normal, light_dir));
// add light contribution
color += diffuse * light.color.xyz;
}
// average the lights so that we will never get something with > 1.0
color /= max(float(NumLights.x), 1.0);
output_color.xyz *= color;
# endif
// multiply the light by material color
o_Target = output_color;
}

View file

@ -1,9 +1,9 @@
mod forward_pipeline;
mod lights_node;
mod pbr_pipeline;
use bevy_ecs::world::World;
pub use forward_pipeline::*;
pub use lights_node::*;
pub use pbr_pipeline::*;
/// the names of pbr graph nodes
pub mod node {
@ -50,10 +50,9 @@ pub(crate) fn add_pbr_graph(world: &mut World) {
.add_node_edge(node::LIGHTS, base::node::MAIN_PASS)
.unwrap();
}
let forward_pipeline =
build_forward_pipeline(&mut world.get_resource_mut::<Assets<Shader>>().unwrap());
let pipeline = build_pbr_pipeline(&mut world.get_resource_mut::<Assets<Shader>>().unwrap());
let mut pipelines = world
.get_resource_mut::<Assets<PipelineDescriptor>>()
.unwrap();
pipelines.set_untracked(FORWARD_PIPELINE_HANDLE, forward_pipeline);
pipelines.set_untracked(PBR_PIPELINE_HANDLE, pipeline);
}

View file

@ -9,10 +9,10 @@ use bevy_render::{
texture::TextureFormat,
};
pub const FORWARD_PIPELINE_HANDLE: HandleUntyped =
pub const PBR_PIPELINE_HANDLE: HandleUntyped =
HandleUntyped::weak_from_u64(PipelineDescriptor::TYPE_UUID, 13148362314012771389);
pub(crate) fn build_forward_pipeline(shaders: &mut Assets<Shader>) -> PipelineDescriptor {
pub(crate) fn build_pbr_pipeline(shaders: &mut Assets<Shader>) -> PipelineDescriptor {
PipelineDescriptor {
depth_stencil: Some(DepthStencilState {
format: TextureFormat::Depth32Float,
@ -48,11 +48,11 @@ pub(crate) fn build_forward_pipeline(shaders: &mut Assets<Shader>) -> PipelineDe
..PipelineDescriptor::new(ShaderStages {
vertex: shaders.add(Shader::from_glsl(
ShaderStage::Vertex,
include_str!("forward.vert"),
include_str!("pbr.vert"),
)),
fragment: Some(shaders.add(Shader::from_glsl(
ShaderStage::Fragment,
include_str!("forward.frag"),
include_str!("pbr.frag"),
))),
})
}

View file

@ -0,0 +1,323 @@
// From the Filament design doc
// https://google.github.io/filament/Filament.html#table_symbols
// Symbol Definition
// v View unit vector
// l Incident light unit vector
// n Surface normal unit vector
// h Half unit vector between l and v
// f BRDF
// f_d Diffuse component of a BRDF
// f_r Specular component of a BRDF
// α Roughness, remapped from using input perceptualRoughness
// σ Diffuse reflectance
// Ω Spherical domain
// f0 Reflectance at normal incidence
// f90 Reflectance at grazing angle
// χ+(a) Heaviside function (1 if a>0 and 0 otherwise)
// nior Index of refraction (IOR) of an interface
// ⟨n⋅l⟩ Dot product clamped to [0..1]
// ⟨a⟩ Saturated value (clamped to [0..1])
// The Bidirectional Reflectance Distribution Function (BRDF) describes the surface response of a standard material
// and consists of two components, the diffuse component (f_d) and the specular component (f_r):
// f(v,l) = f_d(v,l) + f_r(v,l)
//
// The form of the microfacet model is the same for diffuse and specular
// f_r(v,l) = f_d(v,l) = 1 / { |n⋅v||n⋅l| } ∫_Ω D(m,α) G(v,l,m) f_m(v,l,m) (v⋅m) (l⋅m) dm
//
// In which:
// D, also called the Normal Distribution Function (NDF) models the distribution of the microfacets
// G models the visibility (or occlusion or shadow-masking) of the microfacets
// f_m is the microfacet BRDF and differs between specular and diffuse components
//
// The above integration needs to be approximated.
#version 450
const int MAX_LIGHTS = 10;
struct Light {
mat4 proj;
vec3 pos;
float inverseRadiusSquared;
vec3 color;
float unused; // unused 4th element of vec4;
};
layout(location = 0) in vec3 v_WorldPosition;
layout(location = 1) in vec3 v_WorldNormal;
layout(location = 2) in vec2 v_Uv;
layout(location = 0) out vec4 o_Target;
layout(set = 0, binding = 0) uniform CameraViewProj {
mat4 ViewProj;
};
layout(set = 0, binding = 1) uniform CameraPosition {
vec3 CameraPos;
};
layout(set = 1, binding = 0) uniform Lights {
vec3 AmbientColor;
uvec4 NumLights;
Light SceneLights[MAX_LIGHTS];
};
layout(set = 3, binding = 0) uniform StandardMaterial_base_color {
vec4 base_color;
};
#ifdef STANDARDMATERIAL_BASE_COLOR_TEXTURE
layout(set = 3, binding = 1) uniform texture2D StandardMaterial_base_color_texture;
layout(set = 3,
binding = 2) uniform sampler StandardMaterial_base_color_texture_sampler;
#endif
#ifndef STANDARDMATERIAL_UNLIT
layout(set = 3, binding = 3) uniform StandardMaterial_roughness {
float perceptual_roughness;
};
layout(set = 3, binding = 4) uniform StandardMaterial_metallic {
float metallic;
};
layout(set = 3, binding = 5) uniform StandardMaterial_reflectance {
float reflectance;
};
# define saturate(x) clamp(x, 0.0, 1.0)
const float PI = 3.141592653589793;
float pow5(float x) {
float x2 = x * x;
return x2 * x2 * x;
}
// distanceAttenuation is simply the square falloff of light intensity
// combined with a smooth attenuation at the edge of the light radius
//
// light radius is a non-physical construct for efficiency purposes,
// because otherwise every light affects every fragment in the scene
float getDistanceAttenuation(const vec3 posToLight, float inverseRadiusSquared) {
float distanceSquare = dot(posToLight, posToLight);
float factor = distanceSquare * inverseRadiusSquared;
float smoothFactor = saturate(1.0 - factor * factor);
float attenuation = smoothFactor * smoothFactor;
return attenuation * 1.0 / max(distanceSquare, 1e-4);
}
// Normal distribution function (specular D)
// Based on https://google.github.io/filament/Filament.html#citation-walter07
// D_GGX(h,α) = α^2 / { π ((n⋅h)^2 (α21) + 1)^2 }
// Simple implementation, has precision problems when using fp16 instead of fp32
// see https://google.github.io/filament/Filament.html#listing_speculardfp16
float D_GGX(float roughness, float NoH, const vec3 h) {
float oneMinusNoHSquared = 1.0 - NoH * NoH;
float a = NoH * roughness;
float k = roughness / (oneMinusNoHSquared + a * a);
float d = k * k * (1.0 / PI);
return d;
}
// Visibility function (Specular G)
// V(v,l,a) = G(v,l,α) / { 4 (n⋅v) (n⋅l) }
// such that f_r becomes
// f_r(v,l) = D(h,α) V(v,l,α) F(v,h,f0)
// where
// V(v,l,α) = 0.5 / { n⋅l sqrt((n⋅v)^2 (1α2) + α2) + n⋅v sqrt((n⋅l)^2 (1α2) + α2) }
// Note the two sqrt's, that may be slow on mobile, see https://google.github.io/filament/Filament.html#listing_approximatedspecularv
float V_SmithGGXCorrelated(float roughness, float NoV, float NoL) {
float a2 = roughness * roughness;
float lambdaV = NoL * sqrt((NoV - a2 * NoV) * NoV + a2);
float lambdaL = NoV * sqrt((NoL - a2 * NoL) * NoL + a2);
float v = 0.5 / (lambdaV + lambdaL);
return v;
}
// Fresnel function
// see https://google.github.io/filament/Filament.html#citation-schlick94
// F_Schlick(v,h,f_0,f_90) = f_0 + (f_90 f_0) (1 v⋅h)^5
vec3 F_Schlick(const vec3 f0, float f90, float VoH) {
// not using mix to keep the vec3 and float versions identical
return f0 + (f90 - f0) * pow5(1.0 - VoH);
}
float F_Schlick(float f0, float f90, float VoH) {
// not using mix to keep the vec3 and float versions identical
return f0 + (f90 - f0) * pow5(1.0 - VoH);
}
vec3 fresnel(vec3 f0, float LoH) {
// f_90 suitable for ambient occlusion
// see https://google.github.io/filament/Filament.html#lighting/occlusion
float f90 = saturate(dot(f0, vec3(50.0 * 0.33)));
return F_Schlick(f0, f90, LoH);
}
// Specular BRDF
// https://google.github.io/filament/Filament.html#materialsystem/specularbrdf
// Cook-Torrance approximation of the microfacet model integration using Fresnel law F to model f_m
// f_r(v,l) = { D(h,α) G(v,l,α) F(v,h,f0) } / { 4 (n⋅v) (n⋅l) }
vec3 specular(vec3 f0, float roughness, const vec3 h, float NoV, float NoL,
float NoH, float LoH) {
float D = D_GGX(roughness, NoH, h);
float V = V_SmithGGXCorrelated(roughness, NoV, NoL);
vec3 F = fresnel(f0, LoH);
return (D * V) * F;
}
// Diffuse BRDF
// https://google.github.io/filament/Filament.html#materialsystem/diffusebrdf
// fd(v,l) = σ/π * 1 / { |n⋅v||n⋅l| } ∫Ω D(m,α) G(v,l,m) (v⋅m) (l⋅m) dm
// simplest approximation
// float Fd_Lambert() {
// return 1.0 / PI;
// }
//
// vec3 Fd = diffuseColor * Fd_Lambert();
// Disney approximation
// See https://google.github.io/filament/Filament.html#citation-burley12
// minimal quality difference
float Fd_Burley(float roughness, float NoV, float NoL, float LoH) {
float f90 = 0.5 + 2.0 * roughness * LoH * LoH;
float lightScatter = F_Schlick(1.0, f90, NoL);
float viewScatter = F_Schlick(1.0, f90, NoV);
return lightScatter * viewScatter * (1.0 / PI);
}
// From https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
vec3 EnvBRDFApprox(vec3 f0, float perceptual_roughness, float NoV) {
const vec4 c0 = { -1, -0.0275, -0.572, 0.022 };
const vec4 c1 = { 1, 0.0425, 1.04, -0.04 };
vec4 r = perceptual_roughness * c0 + c1;
float a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y;
vec2 AB = vec2(-1.04, 1.04) * a004 + r.zw;
return f0 * AB.x + AB.y;
}
float perceptualRoughnessToRoughness(float perceptualRoughness) {
// clamp perceptual roughness to prevent precision problems
// According to Filament design 0.089 is recommended for mobile
// Filament uses 0.045 for non-mobile
float clampedPerceptualRoughness = clamp(perceptualRoughness, 0.089, 1.0);
return clampedPerceptualRoughness * clampedPerceptualRoughness;
}
// from https://64.github.io/tonemapping/
// reinhard on RGB oversaturates colors
vec3 reinhard(vec3 color) {
return color / (1.0 + color);
}
vec3 reinhard_extended(vec3 color, float max_white) {
vec3 numerator = color * (1.0f + (color / vec3(max_white * max_white)));
return numerator / (1.0 + color);
}
// luminance coefficients from Rec. 709.
// https://en.wikipedia.org/wiki/Rec._709
float luminance(vec3 v) {
return dot(v, vec3(0.2126, 0.7152, 0.0722));
}
vec3 change_luminance(vec3 c_in, float l_out) {
float l_in = luminance(c_in);
return c_in * (l_out / l_in);
}
vec3 reinhard_luminance(vec3 color) {
float l_old = luminance(color);
float l_new = l_old / (1.0f + l_old);
return change_luminance(color, l_new);
}
vec3 reinhard_extended_luminance(vec3 color, float max_white_l) {
float l_old = luminance(color);
float numerator = l_old * (1.0f + (l_old / (max_white_l * max_white_l)));
float l_new = numerator / (1.0f + l_old);
return change_luminance(color, l_new);
}
#endif
void main() {
vec4 output_color = base_color;
#ifdef STANDARDMATERIAL_BASE_COLOR_TEXTURE
output_color *= texture(sampler2D(StandardMaterial_base_color_texture,
StandardMaterial_base_color_texture_sampler),
v_Uv);
#endif
#ifndef STANDARDMATERIAL_UNLIT
// calculate non-linear roughness from linear perceptualRoughness
float roughness = perceptualRoughnessToRoughness(perceptual_roughness);
vec3 N = normalize(v_WorldNormal);
vec3 V = normalize(CameraPos.xyz - v_WorldPosition.xyz);
// Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886"
float NdotV = max(dot(N, V), 1e-4);
// Remapping [0,1] reflectance to F0
// See https://google.github.io/filament/Filament.html#materialsystem/parameterization/remapping
vec3 F0 = 0.16 * reflectance * reflectance * (1.0 - metallic) + output_color.rgb * metallic;
// Diffuse strength inversely related to metallicity
vec3 diffuseColor = output_color.rgb * (1.0 - metallic);
// accumulate color
vec3 light_accum = vec3(0.0);
for (int i = 0; i < int(NumLights.x) && i < MAX_LIGHTS; ++i) {
Light light = SceneLights[i];
vec3 lightDir = light.pos.xyz - v_WorldPosition.xyz;
vec3 L = normalize(lightDir);
float rangeAttenuation =
getDistanceAttenuation(lightDir, light.inverseRadiusSquared);
vec3 H = normalize(L + V);
float NoL = saturate(dot(N, L));
float NoH = saturate(dot(N, H));
float LoH = saturate(dot(L, H));
vec3 specular = specular(F0, roughness, H, NdotV, NoL, NoH, LoH);
vec3 diffuse = diffuseColor * Fd_Burley(roughness, NdotV, NoL, LoH);
// Lout = f(v,l) Φ / { 4 π d^2 }⟨n⋅l⟩
// where
// f(v,l) = (f_d(v,l) + f_r(v,l)) * light_color
// Φ is light intensity
// our rangeAttentuation = 1 / d^2 multiplied with an attenuation factor for smoothing at the edge of the non-physical maximum light radius
// It's not 100% clear where the 1/4π goes in the derivation, but we follow the filament shader and leave it out
// See https://google.github.io/filament/Filament.html#mjx-eqn-pointLightLuminanceEquation
// TODO compensate for energy loss https://google.github.io/filament/Filament.html#materialsystem/improvingthebrdfs/energylossinspecularreflectance
// light.color.rgb is premultiplied with light.intensity on the CPU
light_accum +=
((diffuse + specular) * light.color.rgb) * (rangeAttenuation * NoL);
}
vec3 diffuse_ambient = EnvBRDFApprox(diffuseColor, 1.0, NdotV);
vec3 specular_ambient = EnvBRDFApprox(F0, perceptual_roughness, NdotV);
output_color.rgb = light_accum + (diffuse_ambient + specular_ambient) * AmbientColor;
// tone_mapping
output_color.rgb = reinhard_luminance(output_color.rgb);
// Gamma correction.
// Not needed with sRGB buffer
// output_color.rgb = pow(output_color.rgb, vec3(1.0 / 2.2));
#endif
o_Target = output_color;
}

View file

@ -4,8 +4,8 @@ layout(location = 0) in vec3 Vertex_Position;
layout(location = 1) in vec3 Vertex_Normal;
layout(location = 2) in vec2 Vertex_Uv;
layout(location = 0) out vec3 v_Position;
layout(location = 1) out vec3 v_Normal;
layout(location = 0) out vec3 v_WorldPosition;
layout(location = 1) out vec3 v_WorldNormal;
layout(location = 2) out vec2 v_Uv;
layout(set = 0, binding = 0) uniform CameraViewProj {
@ -17,8 +17,9 @@ layout(set = 2, binding = 0) uniform Transform {
};
void main() {
v_Normal = mat3(Model) * Vertex_Normal;
v_Position = (Model * vec4(Vertex_Position, 1.0)).xyz;
vec4 world_position = Model * vec4(Vertex_Position, 1.0);
v_WorldPosition = world_position.xyz;
v_WorldNormal = mat3(Model) * Vertex_Normal;
v_Uv = Vertex_Uv;
gl_Position = ViewProj * vec4(v_Position, 1.0);
gl_Position = ViewProj * world_position;
}

View file

@ -59,6 +59,7 @@ impl SystemNode for CameraNode {
const CAMERA_VIEW_PROJ: &str = "CameraViewProj";
const CAMERA_VIEW: &str = "CameraView";
const CAMERA_POSITION: &str = "CameraPosition";
#[derive(Debug, Default)]
pub struct CameraNodeState {
@ -68,6 +69,7 @@ pub struct CameraNodeState {
}
const MATRIX_SIZE: usize = std::mem::size_of::<[[f32; 4]; 4]>();
const VEC3_SIZE: usize = std::mem::size_of::<[f32; 3]>();
pub fn camera_node_system(
mut state: Local<CameraNodeState>,
@ -93,7 +95,13 @@ pub fn camera_node_system(
staging_buffer
} else {
let staging_buffer = render_resource_context.create_buffer(BufferInfo {
size: MATRIX_SIZE * 2,
size:
// ViewProj
MATRIX_SIZE +
// View
MATRIX_SIZE +
// Position
VEC3_SIZE,
buffer_usage: BufferUsage::COPY_SRC | BufferUsage::MAP_WRITE,
mapped_at_creation: true,
});
@ -134,7 +142,24 @@ pub fn camera_node_system(
);
}
if bindings.get(CAMERA_POSITION).is_none() {
let buffer = render_resource_context.create_buffer(BufferInfo {
size: VEC3_SIZE,
buffer_usage: BufferUsage::COPY_DST | BufferUsage::UNIFORM,
..Default::default()
});
bindings.set(
CAMERA_POSITION,
RenderResourceBinding::Buffer {
buffer,
range: 0..VEC3_SIZE as u64,
dynamic_index: None,
},
);
}
let view = global_transform.compute_matrix();
let mut offset = 0;
if let Some(RenderResourceBinding::Buffer { buffer, .. }) = bindings.get(CAMERA_VIEW) {
render_resource_context.write_mapped_buffer(
@ -151,24 +176,44 @@ pub fn camera_node_system(
0,
MATRIX_SIZE as u64,
);
offset += MATRIX_SIZE as u64;
}
if let Some(RenderResourceBinding::Buffer { buffer, .. }) = bindings.get(CAMERA_VIEW_PROJ) {
let view_proj = camera.projection_matrix * view.inverse();
render_resource_context.write_mapped_buffer(
staging_buffer,
MATRIX_SIZE as u64..(2 * MATRIX_SIZE) as u64,
offset..(offset + MATRIX_SIZE as u64),
&mut |data, _renderer| {
data[0..MATRIX_SIZE].copy_from_slice(view_proj.to_cols_array_2d().as_bytes());
},
);
state.command_queue.copy_buffer_to_buffer(
staging_buffer,
MATRIX_SIZE as u64,
offset,
*buffer,
0,
MATRIX_SIZE as u64,
);
offset += MATRIX_SIZE as u64;
}
if let Some(RenderResourceBinding::Buffer { buffer, .. }) = bindings.get(CAMERA_POSITION) {
let position: [f32; 3] = global_transform.translation.into();
render_resource_context.write_mapped_buffer(
staging_buffer,
offset..(offset + VEC3_SIZE as u64),
&mut |data, _renderer| {
data[0..VEC3_SIZE].copy_from_slice(position.as_bytes());
},
);
state.command_queue.copy_buffer_to_buffer(
staging_buffer,
offset,
*buffer,
0,
VEC3_SIZE as u64,
);
}
render_resource_context.unmap_buffer(staging_buffer);

View file

@ -2,10 +2,7 @@ use crate::{
camera::{ActiveCameras, VisibleEntities},
draw::{Draw, RenderCommand},
pass::{ClearColor, LoadOp, PassDescriptor, TextureAttachment},
pipeline::{
BindGroupDescriptor, BindType, BindingDescriptor, BindingShaderStage, IndexFormat,
PipelineDescriptor, UniformProperty,
},
pipeline::{IndexFormat, PipelineDescriptor},
prelude::Visible,
render_graph::{Node, ResourceSlotInfo, ResourceSlots},
renderer::{
@ -29,7 +26,6 @@ pub struct PassNode<Q: WorldQuery> {
color_resolve_target_indices: Vec<Option<usize>>,
depth_stencil_attachment_input_index: Option<usize>,
default_clear_color_inputs: Vec<usize>,
camera_bind_group_descriptor: BindGroupDescriptor,
query_state: Option<QueryState<Q>>,
commands: Vec<RenderCommand>,
}
@ -56,10 +52,6 @@ impl<Q: WorldQuery> fmt::Debug for PassNode<Q> {
"default_clear_color_inputs",
&self.default_clear_color_inputs,
)
.field(
"camera_bind_group_descriptor",
&self.camera_bind_group_descriptor,
)
.finish()
}
}
@ -102,19 +94,6 @@ impl<Q: WorldQuery> PassNode<Q> {
}
}
let camera_bind_group_descriptor = BindGroupDescriptor::new(
0,
vec![BindingDescriptor {
name: "Camera".to_string(),
index: 0,
bind_type: BindType::Uniform {
has_dynamic_offset: false,
property: UniformProperty::Struct(vec![UniformProperty::Mat4]),
},
shader_stage: BindingShaderStage::VERTEX | BindingShaderStage::FRAGMENT,
}],
);
PassNode {
descriptor,
inputs,
@ -123,7 +102,6 @@ impl<Q: WorldQuery> PassNode<Q> {
color_resolve_target_indices,
depth_stencil_attachment_input_index,
default_clear_color_inputs: Vec::new(),
camera_bind_group_descriptor,
query_state: None,
commands: Vec::new(),
}

View file

@ -321,6 +321,7 @@ mod tests {
layout(location = 0) out vec4 v_Position;
layout(set = 0, binding = 0) uniform CameraViewProj {
mat4 ViewProj;
vec4 CameraPos;
};
layout(set = 1, binding = 0) uniform texture2D Texture;
@ -378,7 +379,10 @@ mod tests {
name: "CameraViewProj".into(),
bind_type: BindType::Uniform {
has_dynamic_offset: false,
property: UniformProperty::Struct(vec![UniformProperty::Mat4]),
property: UniformProperty::Struct(vec![
UniformProperty::Mat4,
UniformProperty::Vec4
]),
},
shader_stage: BindingShaderStage::VERTEX,
}]

View file

@ -4,6 +4,7 @@ layout(location = 0) in vec3 Vertex_Position;
layout(set = 0, binding = 0) uniform CameraViewProj {
mat4 ViewProj;
vec4 CameraPos;
};
layout(set = 1, binding = 0) uniform Transform {

View file

@ -8,6 +8,7 @@ layout(location = 0) out vec2 v_Uv;
layout(set = 0, binding = 0) uniform CameraViewProj {
mat4 ViewProj;
vec4 CameraPos;
};
layout(set = 2, binding = 0) uniform Transform {

View file

@ -9,6 +9,7 @@ layout(location = 1) out vec4 v_Color;
layout(set = 0, binding = 0) uniform CameraViewProj {
mat4 ViewProj;
vec4 CameraPos;
};
// TODO: merge dimensions into "sprites" buffer when that is supported in the Uniforms derive abstraction

View file

@ -8,6 +8,7 @@ layout(location = 0) out vec2 v_Uv;
layout(set = 0, binding = 0) uniform CameraViewProj {
mat4 ViewProj;
vec4 CameraPos;
};
layout(set = 1, binding = 0) uniform Transform {

View file

@ -29,7 +29,7 @@ fn setup(
) {
let cube_handle = meshes.add(Mesh::from(shape::Cube { size: 2.0 }));
let cube_material_handle = materials.add(StandardMaterial {
albedo: Color::rgb(0.8, 0.7, 0.6),
base_color: Color::rgb(0.8, 0.7, 0.6),
..Default::default()
});

54
examples/3d/pbr.rs Normal file
View file

@ -0,0 +1,54 @@
use bevy::prelude::*;
/// This example shows how to configure Physically Based Rendering (PBR) parameters.
fn main() {
App::build()
.insert_resource(Msaa { samples: 4 })
.add_plugins(DefaultPlugins)
.add_startup_system(setup.system())
.run();
}
/// set up a simple 3D scene
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// add entities to the world
for y in -2..=2 {
for x in -5..=5 {
let x01 = (x + 5) as f32 / 10.0;
let y01 = (y + 2) as f32 / 4.0;
commands
// spheres
.spawn(PbrBundle {
mesh: meshes.add(Mesh::from(shape::Icosphere {
radius: 0.45,
subdivisions: 32,
})),
material: materials.add(StandardMaterial {
base_color: Color::hex("ffd891").unwrap(),
// vary key PBR parameters on a grid of spheres to show the effect
metallic: y01,
roughness: x01,
..Default::default()
}),
transform: Transform::from_xyz(x as f32, y as f32, 0.0),
..Default::default()
});
}
}
commands
// light
.spawn(LightBundle {
transform: Transform::from_translation(Vec3::new(0.0, 5.0, 5.0)),
..Default::default()
})
// camera
.spawn(PerspectiveCameraBundle {
transform: Transform::from_translation(Vec3::new(0.0, 0.0, 8.0))
.looking_at(Vec3::default(), Vec3::Y),
..Default::default()
});
}

View file

@ -30,7 +30,7 @@ fn move_cubes(
for (mut transform, material_handle) in query.iter_mut() {
let material = materials.get_mut(material_handle).unwrap();
transform.translation += Vec3::new(1.0, 0.0, 0.0) * time.delta_seconds();
material.albedo =
material.base_color =
Color::BLUE * Vec3::splat((3.0 * time.seconds_since_startup() as f32).sin());
}
}
@ -58,7 +58,7 @@ fn setup(
commands.spawn(PbrBundle {
mesh: cube_handle.clone(),
material: materials.add(StandardMaterial {
albedo: Color::rgb(
base_color: Color::rgb(
rng.gen_range(0.0..1.0),
rng.gen_range(0.0..1.0),
rng.gen_range(0.0..1.0),

View file

@ -28,23 +28,25 @@ fn setup(
// this material renders the texture normally
let material_handle = materials.add(StandardMaterial {
albedo_texture: Some(texture_handle.clone()),
base_color_texture: Some(texture_handle.clone()),
unlit: true,
..Default::default()
});
// this material modulates the texture to make it red (and slightly transparent)
let red_material_handle = materials.add(StandardMaterial {
albedo: Color::rgba(1.0, 0.0, 0.0, 0.5),
albedo_texture: Some(texture_handle.clone()),
base_color: Color::rgba(1.0, 0.0, 0.0, 0.5),
base_color_texture: Some(texture_handle.clone()),
unlit: true,
..Default::default()
});
// and lets make this one blue! (and also slightly transparent)
let blue_material_handle = materials.add(StandardMaterial {
albedo: Color::rgba(0.0, 0.0, 1.0, 0.5),
albedo_texture: Some(texture_handle),
base_color: Color::rgba(0.0, 0.0, 1.0, 0.5),
base_color_texture: Some(texture_handle),
unlit: true,
..Default::default()
});
// add entities to the world

View file

@ -36,7 +36,7 @@ fn camera_order_color_system(
if let Ok(material_handle) = material_query.get(visible_entity.entity) {
let material = materials.get_mut(&*material_handle).unwrap();
let value = 1.0 - (visible_entity.order.0.sqrt() - 10.0) / 7.0;
material.albedo = Color::rgb(value, value, value);
material.base_color = Color::rgb(value, value, value);
}
}
}

View file

@ -87,6 +87,7 @@ Example | File | Description
`msaa` | [`3d/msaa.rs`](./3d/msaa.rs) | Configures MSAA (Multi-Sample Anti-Aliasing) for smoother edges
`orthographic` | [`3d/orthographic.rs`](./3d/orthographic.rs) | Shows how to create a 3D orthographic view (for isometric-look games or CAD applications)
`parenting` | [`3d/parenting.rs`](./3d/parenting.rs) | Demonstrates parent->child relationships and relative transformations
`pbr` | [`3d/pbr.rs`](./3d/[pbr].rs) | Demonstrates PBR properties Roughness/Metallic
`spawner` | [`3d/spawner.rs`](./3d/spawner.rs) | Renders a large number of cubes with changing position and material
`texture` | [`3d/texture.rs`](./3d/texture.rs) | Shows configuration of texture materials
`update_gltf_scene` | [`3d/update_gltf_scene.rs`](./3d/update_gltf_scene.rs) | Update a scene from a gltf file, either by spawning the scene as a child of another entity, or by accessing the entities of the scene

View file

@ -39,7 +39,7 @@ fn setup(
// You can also add assets directly to their Assets<T> storage:
let material_handle = materials.add(StandardMaterial {
albedo: Color::rgb(0.8, 0.7, 0.6),
base_color: Color::rgb(0.8, 0.7, 0.6),
..Default::default()
});

View file

@ -31,6 +31,7 @@ const VERTEX_SHADER: &str = r#"
layout(location = 0) in vec3 Vertex_Position;
layout(set = 0, binding = 0) uniform CameraViewProj {
mat4 ViewProj;
vec4 CameraPos;
};
layout(set = 1, binding = 0) uniform Transform {
mat4 Model;

View file

@ -39,6 +39,7 @@ const VERTEX_SHADER: &str = r#"
layout(location = 0) in vec3 Vertex_Position;
layout(set = 0, binding = 0) uniform CameraViewProj {
mat4 ViewProj;
vec4 CameraPos;
};
layout(set = 1, binding = 0) uniform Transform {
mat4 Model;