SystemState usage docs (#3783)

# Objective

- `SystemStates` rock for dealing with exclusive world access, but are hard to figure out how to use.
- Fixes #3341.

## Solution

- Clearly document how to use `SystemState`, and why they're useful as an end-user.
This commit is contained in:
Alice Cecile 2022-02-15 21:53:52 +00:00
parent d8974e7c3d
commit 330160cf14
2 changed files with 88 additions and 3 deletions

View file

@ -56,6 +56,82 @@ impl SystemMeta {
// TODO: Actually use this in FunctionSystem. We should probably only do this once Systems are constructed using a World reference
// (to avoid the need for unwrapping to retrieve SystemMeta)
/// Holds on to persistent state required to drive [`SystemParam`] for a [`System`].
///
/// This is a very powerful and convenient tool for working with exclusive world access,
/// allowing you to fetch data from the [`World`] as if you were running a [`System`].
///
/// Borrow-checking is handled for you, allowing you to mutably access multiple compatible system parameters at once,
/// and arbitrary system parameters (like [`EventWriter`](crate::event::EventWriter)) can be conveniently fetched.
///
/// For an alternative approach to split mutable access to the world, see [`World::resource_scope`].
///
/// # Warning
///
/// [`SystemState`] values created can be cached to improve performance,
/// and *must* be cached and reused in order for system parameters that rely on local state to work correctly.
/// These include:
/// - [`Added`](crate::query::Added) and [`Changed`](crate::query::Changed) query filters
/// - [`Local`](crate::system::Local) variables that hold state
/// - [`EventReader`](crate::event::EventReader) system parameters, which rely on a [`Local`](crate::system::Local) to track which events have been seen
///
/// # Example
///
/// Basic usage:
/// ```rust
/// use bevy_ecs::prelude::*;
/// use bevy_ecs::{system::SystemState};
/// use bevy_ecs::event::Events;
///
/// struct MyEvent;
/// struct MyResource(u32);
///
/// #[derive(Component)]
/// struct MyComponent;
///
/// // Work directly on the `World`
/// let mut world = World::new();
/// world.init_resource::<Events<MyEvent>>();
///
/// // Construct a `SystemState` struct, passing in a tuple of `SystemParam`
/// // as if you were writing an ordinary system.
/// let mut system_state: SystemState<(
/// EventWriter<MyEvent>,
/// Option<ResMut<MyResource>>,
/// Query<&MyComponent>,
/// )> = SystemState::new(&mut world);
///
/// // Use system_state.get_mut(&mut world) and unpack your system parameters into variables!
/// // system_state.get(&world) provides read-only versions of your system parameters instead.
/// let (event_writer, maybe_resource, query) = system_state.get_mut(&mut world);
/// ```
/// Caching:
/// ```rust
/// use bevy_ecs::prelude::*;
/// use bevy_ecs::{system::SystemState};
/// use bevy_ecs::event::Events;
///
/// struct MyEvent;
/// struct CachedSystemState<'w, 's>{
/// event_state: SystemState<EventReader<'w, 's, MyEvent>>
/// }
///
/// // Create and store a system state once
/// let mut world = World::new();
/// world.init_resource::<Events<MyEvent>>();
/// let initial_state: SystemState<EventReader<MyEvent>> = SystemState::new(&mut world);
///
/// // The system state is cached in a resource
/// world.insert_resource(CachedSystemState{event_state: initial_state});
///
/// // Later, fetch the cached system state, saving on overhead
/// world.resource_scope(|world, mut cached_state: Mut<CachedSystemState>| {
/// let mut event_reader = cached_state.event_state.get_mut(world);
///
/// for events in event_reader.iter(){
/// println!("Hello World!");
/// };
/// });
/// ```
pub struct SystemState<Param: SystemParam> {
meta: SystemMeta,
param_state: <Param as SystemParam>::Fetch,

View file

@ -34,6 +34,12 @@ pub use identifier::WorldId;
/// component type. Entity components can be created, updated, removed, and queried using a given
/// [World].
///
/// For complex access patterns involving [`SystemParam`](crate::system::SystemParam),
/// consider using [`SystemState`](crate::system::SystemState).
///
/// To mutate different parts of the world simultaneously,
/// use [`World::resource_scope`] or [`SystemState`](crate::system::SystemState).
///
/// # Resources
///
/// Worlds can also store *resources*, which are unique instances of a given type that don't
@ -926,9 +932,12 @@ impl World {
}
}
/// Temporarily removes the requested resource from this [World], then re-adds it before
/// returning. This enables safe mutable access to a resource while still providing mutable
/// world access
/// Temporarily removes the requested resource from this [`World`], then re-adds it before returning.
///
/// This enables safe simultaneous mutable access to both a resource and the rest of the [`World`].
/// For more complex access patterns, consider using [`SystemState`](crate::system::SystemState).
///
/// # Example
/// ```
/// use bevy_ecs::{component::Component, world::{World, Mut}};
/// #[derive(Component)]