Split event.rs into a full module. (#13801)

# Objective

- Split the bevy_ecs::events module so it's easier to work with

## Solution

- Split the event.rs file across multiple files, made sure all tests
passed, and exports from the module were the same as previous

## Testing

- All automated tests pass.
This commit is contained in:
Bob Gardner 2024-06-10 14:45:01 -07:00 committed by GitHub
parent d803adff09
commit 2ccdae7489
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 1596 additions and 1544 deletions

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,92 @@
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
use std::{
cmp::Ordering,
fmt,
hash::{Hash, Hasher},
marker::PhantomData,
};
/// A type that can be stored in an [`Events<E>`] resource
/// You can conveniently access events using the [`EventReader`] and [`EventWriter`] system parameter.
///
/// Events must be thread-safe.
#[diagnostic::on_unimplemented(
message = "`{Self}` is not an `Event`",
label = "invalid `Event`",
note = "consider annotating `{Self}` with `#[derive(Event)]`"
)]
pub trait Event: Send + Sync + 'static {}
/// An `EventId` uniquely identifies an event stored in a specific [`World`].
///
/// An `EventId` can among other things be used to trace the flow of an event from the point it was
/// sent to the point it was processed. `EventId`s increase monotonically by send order.
///
/// [`World`]: crate::world::World
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct EventId<E: Event> {
/// Uniquely identifies the event associated with this ID.
// This value corresponds to the order in which each event was added to the world.
pub id: usize,
#[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
pub(super) _marker: PhantomData<E>,
}
impl<E: Event> Copy for EventId<E> {}
impl<E: Event> Clone for EventId<E> {
fn clone(&self) -> Self {
*self
}
}
impl<E: Event> fmt::Display for EventId<E> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
<Self as fmt::Debug>::fmt(self, f)
}
}
impl<E: Event> fmt::Debug for EventId<E> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"event<{}>#{}",
std::any::type_name::<E>().split("::").last().unwrap(),
self.id,
)
}
}
impl<E: Event> PartialEq for EventId<E> {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl<E: Event> Eq for EventId<E> {}
impl<E: Event> PartialOrd for EventId<E> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<E: Event> Ord for EventId<E> {
fn cmp(&self, other: &Self) -> Ordering {
self.id.cmp(&other.id)
}
}
impl<E: Event> Hash for EventId<E> {
fn hash<H: Hasher>(&self, state: &mut H) {
Hash::hash(&self.id, state);
}
}
#[derive(Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub(crate) struct EventInstance<E: Event> {
pub event_id: EventId<E>,
pub event: E,
}

View file

@ -0,0 +1,368 @@
use crate as bevy_ecs;
use bevy_ecs::{
event::{Event, EventId, EventInstance, ManualEventReader},
system::Resource,
};
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
use bevy_utils::detailed_trace;
use std::marker::PhantomData;
use std::ops::{Deref, DerefMut};
/// An event collection that represents the events that occurred within the last two
/// [`Events::update`] calls.
/// Events can be written to using an [`EventWriter`]
/// and are typically cheaply read using an [`EventReader`].
///
/// Each event can be consumed by multiple systems, in parallel,
/// with consumption tracked by the [`EventReader`] on a per-system basis.
///
/// If no [ordering](https://github.com/bevyengine/bevy/blob/main/examples/ecs/ecs_guide.rs)
/// is applied between writing and reading systems, there is a risk of a race condition.
/// This means that whether the events arrive before or after the next [`Events::update`] is unpredictable.
///
/// This collection is meant to be paired with a system that calls
/// [`Events::update`] exactly once per update/frame.
///
/// [`event_update_system`] is a system that does this, typically initialized automatically using
/// [`add_event`](https://docs.rs/bevy/*/bevy/app/struct.App.html#method.add_event).
/// [`EventReader`]s are expected to read events from this collection at least once per loop/frame.
/// Events will persist across a single frame boundary and so ordering of event producers and
/// consumers is not critical (although poorly-planned ordering may cause accumulating lag).
/// If events are not handled by the end of the frame after they are updated, they will be
/// dropped silently.
///
/// # Example
/// ```
/// use bevy_ecs::event::{Event, Events};
///
/// #[derive(Event)]
/// struct MyEvent {
/// value: usize
/// }
///
/// // setup
/// let mut events = Events::<MyEvent>::default();
/// let mut reader = events.get_reader();
///
/// // run this once per update/frame
/// events.update();
///
/// // somewhere else: send an event
/// events.send(MyEvent { value: 1 });
///
/// // somewhere else: read the events
/// for event in reader.read(&events) {
/// assert_eq!(event.value, 1)
/// }
///
/// // events are only processed once per reader
/// assert_eq!(reader.read(&events).count(), 0);
/// ```
///
/// # Details
///
/// [`Events`] is implemented using a variation of a double buffer strategy.
/// Each call to [`update`](Events::update) swaps buffers and clears out the oldest one.
/// - [`EventReader`]s will read events from both buffers.
/// - [`EventReader`]s that read at least once per update will never drop events.
/// - [`EventReader`]s that read once within two updates might still receive some events
/// - [`EventReader`]s that read after two updates are guaranteed to drop all events that occurred
/// before those updates.
///
/// The buffers in [`Events`] will grow indefinitely if [`update`](Events::update) is never called.
///
/// An alternative call pattern would be to call [`update`](Events::update)
/// manually across frames to control when events are cleared.
/// This complicates consumption and risks ever-expanding memory usage if not cleaned up,
/// but can be done by adding your event as a resource instead of using
/// [`add_event`](https://docs.rs/bevy/*/bevy/app/struct.App.html#method.add_event).
///
/// [Example usage.](https://github.com/bevyengine/bevy/blob/latest/examples/ecs/event.rs)
/// [Example usage standalone.](https://github.com/bevyengine/bevy/blob/latest/crates/bevy_ecs/examples/events.rs)
///
#[derive(Debug, Resource)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct Events<E: Event> {
/// Holds the oldest still active events.
/// Note that `a.start_event_count + a.len()` should always be equal to `events_b.start_event_count`.
pub(crate) events_a: EventSequence<E>,
/// Holds the newer events.
pub(crate) events_b: EventSequence<E>,
pub(crate) event_count: usize,
}
// Derived Default impl would incorrectly require E: Default
impl<E: Event> Default for Events<E> {
fn default() -> Self {
Self {
events_a: Default::default(),
events_b: Default::default(),
event_count: Default::default(),
}
}
}
impl<E: Event> Events<E> {
/// Returns the index of the oldest event stored in the event buffer.
pub fn oldest_event_count(&self) -> usize {
self.events_a
.start_event_count
.min(self.events_b.start_event_count)
}
/// "Sends" an `event` by writing it to the current event buffer. [`EventReader`]s can then read
/// the event.
/// This method returns the [ID](`EventId`) of the sent `event`.
pub fn send(&mut self, event: E) -> EventId<E> {
let event_id = EventId {
id: self.event_count,
_marker: PhantomData,
};
detailed_trace!("Events::send() -> id: {}", event_id);
let event_instance = EventInstance { event_id, event };
self.events_b.push(event_instance);
self.event_count += 1;
event_id
}
/// Sends a list of `events` all at once, which can later be read by [`EventReader`]s.
/// This is more efficient than sending each event individually.
/// This method returns the [IDs](`EventId`) of the sent `events`.
pub fn send_batch(&mut self, events: impl IntoIterator<Item = E>) -> SendBatchIds<E> {
let last_count = self.event_count;
self.extend(events);
SendBatchIds {
last_count,
event_count: self.event_count,
_marker: PhantomData,
}
}
/// Sends the default value of the event. Useful when the event is an empty struct.
/// This method returns the [ID](`EventId`) of the sent `event`.
pub fn send_default(&mut self) -> EventId<E>
where
E: Default,
{
self.send(Default::default())
}
/// Gets a new [`ManualEventReader`]. This will include all events already in the event buffers.
pub fn get_reader(&self) -> ManualEventReader<E> {
ManualEventReader::default()
}
/// Gets a new [`ManualEventReader`]. This will ignore all events already in the event buffers.
/// It will read all future events.
pub fn get_reader_current(&self) -> ManualEventReader<E> {
ManualEventReader {
last_event_count: self.event_count,
..Default::default()
}
}
/// Swaps the event buffers and clears the oldest event buffer. In general, this should be
/// called once per frame/update.
///
/// If you need access to the events that were removed, consider using [`Events::update_drain`].
pub fn update(&mut self) {
std::mem::swap(&mut self.events_a, &mut self.events_b);
self.events_b.clear();
self.events_b.start_event_count = self.event_count;
debug_assert_eq!(
self.events_a.start_event_count + self.events_a.len(),
self.events_b.start_event_count
);
}
/// Swaps the event buffers and drains the oldest event buffer, returning an iterator
/// of all events that were removed. In general, this should be called once per frame/update.
///
/// If you do not need to take ownership of the removed events, use [`Events::update`] instead.
#[must_use = "If you do not need the returned events, call .update() instead."]
pub fn update_drain(&mut self) -> impl Iterator<Item = E> + '_ {
std::mem::swap(&mut self.events_a, &mut self.events_b);
let iter = self.events_b.events.drain(..);
self.events_b.start_event_count = self.event_count;
debug_assert_eq!(
self.events_a.start_event_count + self.events_a.len(),
self.events_b.start_event_count
);
iter.map(|e| e.event)
}
#[inline]
fn reset_start_event_count(&mut self) {
self.events_a.start_event_count = self.event_count;
self.events_b.start_event_count = self.event_count;
}
/// Removes all events.
#[inline]
pub fn clear(&mut self) {
self.reset_start_event_count();
self.events_a.clear();
self.events_b.clear();
}
/// Returns the number of events currently stored in the event buffer.
#[inline]
pub fn len(&self) -> usize {
self.events_a.len() + self.events_b.len()
}
/// Returns true if there are no events currently stored in the event buffer.
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Creates a draining iterator that removes all events.
pub fn drain(&mut self) -> impl Iterator<Item = E> + '_ {
self.reset_start_event_count();
// Drain the oldest events first, then the newest
self.events_a
.drain(..)
.chain(self.events_b.drain(..))
.map(|i| i.event)
}
/// Iterates over events that happened since the last "update" call.
/// WARNING: You probably don't want to use this call. In most cases you should use an
/// [`EventReader`]. You should only use this if you know you only need to consume events
/// between the last `update()` call and your call to `iter_current_update_events`.
/// If events happen outside that window, they will not be handled. For example, any events that
/// happen after this call and before the next `update()` call will be dropped.
pub fn iter_current_update_events(&self) -> impl ExactSizeIterator<Item = &E> {
self.events_b.iter().map(|i| &i.event)
}
/// Get a specific event by id if it still exists in the events buffer.
pub fn get_event(&self, id: usize) -> Option<(&E, EventId<E>)> {
if id < self.oldest_id() {
return None;
}
let sequence = self.sequence(id);
let index = id.saturating_sub(sequence.start_event_count);
sequence
.get(index)
.map(|instance| (&instance.event, instance.event_id))
}
/// Oldest id still in the events buffer.
pub fn oldest_id(&self) -> usize {
self.events_a.start_event_count
}
/// Which event buffer is this event id a part of.
fn sequence(&self, id: usize) -> &EventSequence<E> {
if id < self.events_b.start_event_count {
&self.events_a
} else {
&self.events_b
}
}
}
impl<E: Event> Extend<E> for Events<E> {
fn extend<I>(&mut self, iter: I)
where
I: IntoIterator<Item = E>,
{
let old_count = self.event_count;
let mut event_count = self.event_count;
let events = iter.into_iter().map(|event| {
let event_id = EventId {
id: event_count,
_marker: PhantomData,
};
event_count += 1;
EventInstance { event_id, event }
});
self.events_b.extend(events);
if old_count != event_count {
detailed_trace!(
"Events::extend() -> ids: ({}..{})",
self.event_count,
event_count
);
}
self.event_count = event_count;
}
}
#[derive(Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub(crate) struct EventSequence<E: Event> {
pub(crate) events: Vec<EventInstance<E>>,
pub(crate) start_event_count: usize,
}
// Derived Default impl would incorrectly require E: Default
impl<E: Event> Default for EventSequence<E> {
fn default() -> Self {
Self {
events: Default::default(),
start_event_count: Default::default(),
}
}
}
impl<E: Event> Deref for EventSequence<E> {
type Target = Vec<EventInstance<E>>;
fn deref(&self) -> &Self::Target {
&self.events
}
}
impl<E: Event> DerefMut for EventSequence<E> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.events
}
}
/// [`Iterator`] over sent [`EventIds`](`EventId`) from a batch.
pub struct SendBatchIds<E> {
last_count: usize,
event_count: usize,
_marker: PhantomData<E>,
}
impl<E: Event> Iterator for SendBatchIds<E> {
type Item = EventId<E>;
fn next(&mut self) -> Option<Self::Item> {
if self.last_count >= self.event_count {
return None;
}
let result = Some(EventId {
id: self.last_count,
_marker: PhantomData,
});
self.last_count += 1;
result
}
}
impl<E: Event> ExactSizeIterator for SendBatchIds<E> {
fn len(&self) -> usize {
self.event_count.saturating_sub(self.last_count)
}
}

View file

@ -0,0 +1,268 @@
use crate as bevy_ecs;
use bevy_ecs::{
batching::BatchingStrategy,
event::{Event, EventId, EventInstance, Events, ManualEventReader},
};
use bevy_utils::detailed_trace;
use std::{iter::Chain, slice::Iter};
/// An iterator that yields any unread events from an [`EventReader`] or [`ManualEventReader`].
#[derive(Debug)]
pub struct EventIterator<'a, E: Event> {
iter: EventIteratorWithId<'a, E>,
}
impl<'a, E: Event> Iterator for EventIterator<'a, E> {
type Item = &'a E;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|(event, _)| event)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
fn count(self) -> usize {
self.iter.count()
}
fn last(self) -> Option<Self::Item>
where
Self: Sized,
{
self.iter.last().map(|(event, _)| event)
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
self.iter.nth(n).map(|(event, _)| event)
}
}
impl<'a, E: Event> ExactSizeIterator for EventIterator<'a, E> {
fn len(&self) -> usize {
self.iter.len()
}
}
/// An iterator that yields any unread events (and their IDs) from an [`EventReader`] or [`ManualEventReader`].
#[derive(Debug)]
pub struct EventIteratorWithId<'a, E: Event> {
reader: &'a mut ManualEventReader<E>,
chain: Chain<Iter<'a, EventInstance<E>>, Iter<'a, EventInstance<E>>>,
unread: usize,
}
impl<'a, E: Event> EventIteratorWithId<'a, E> {
/// Creates a new iterator that yields any `events` that have not yet been seen by `reader`.
pub fn new(reader: &'a mut ManualEventReader<E>, events: &'a Events<E>) -> Self {
let a_index = reader
.last_event_count
.saturating_sub(events.events_a.start_event_count);
let b_index = reader
.last_event_count
.saturating_sub(events.events_b.start_event_count);
let a = events.events_a.get(a_index..).unwrap_or_default();
let b = events.events_b.get(b_index..).unwrap_or_default();
let unread_count = a.len() + b.len();
// Ensure `len` is implemented correctly
debug_assert_eq!(unread_count, reader.len(events));
reader.last_event_count = events.event_count - unread_count;
// Iterate the oldest first, then the newer events
let chain = a.iter().chain(b.iter());
Self {
reader,
chain,
unread: unread_count,
}
}
/// Iterate over only the events.
pub fn without_id(self) -> EventIterator<'a, E> {
EventIterator { iter: self }
}
}
impl<'a, E: Event> Iterator for EventIteratorWithId<'a, E> {
type Item = (&'a E, EventId<E>);
fn next(&mut self) -> Option<Self::Item> {
match self
.chain
.next()
.map(|instance| (&instance.event, instance.event_id))
{
Some(item) => {
detailed_trace!("EventReader::iter() -> {}", item.1);
self.reader.last_event_count += 1;
self.unread -= 1;
Some(item)
}
None => None,
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.chain.size_hint()
}
fn count(self) -> usize {
self.reader.last_event_count += self.unread;
self.unread
}
fn last(self) -> Option<Self::Item>
where
Self: Sized,
{
let EventInstance { event_id, event } = self.chain.last()?;
self.reader.last_event_count += self.unread;
Some((event, *event_id))
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
if let Some(EventInstance { event_id, event }) = self.chain.nth(n) {
self.reader.last_event_count += n + 1;
self.unread -= n + 1;
Some((event, *event_id))
} else {
self.reader.last_event_count += self.unread;
self.unread = 0;
None
}
}
}
impl<'a, E: Event> ExactSizeIterator for EventIteratorWithId<'a, E> {
fn len(&self) -> usize {
self.unread
}
}
/// A parallel iterator over `Event`s.
#[derive(Debug)]
pub struct EventParIter<'a, E: Event> {
reader: &'a mut ManualEventReader<E>,
slices: [&'a [EventInstance<E>]; 2],
batching_strategy: BatchingStrategy,
}
impl<'a, E: Event> EventParIter<'a, E> {
/// Creates a new parallel iterator over `events` that have not yet been seen by `reader`.
pub fn new(reader: &'a mut ManualEventReader<E>, events: &'a Events<E>) -> Self {
let a_index = reader
.last_event_count
.saturating_sub(events.events_a.start_event_count);
let b_index = reader
.last_event_count
.saturating_sub(events.events_b.start_event_count);
let a = events.events_a.get(a_index..).unwrap_or_default();
let b = events.events_b.get(b_index..).unwrap_or_default();
let unread_count = a.len() + b.len();
// Ensure `len` is implemented correctly
debug_assert_eq!(unread_count, reader.len(events));
reader.last_event_count = events.event_count - unread_count;
Self {
reader,
slices: [a, b],
batching_strategy: BatchingStrategy::default(),
}
}
/// Changes the batching strategy used when iterating.
///
/// For more information on how this affects the resultant iteration, see
/// [`BatchingStrategy`].
pub fn batching_strategy(mut self, strategy: BatchingStrategy) -> Self {
self.batching_strategy = strategy;
self
}
/// Runs the provided closure for each unread event in parallel.
///
/// Unlike normal iteration, the event order is not guaranteed in any form.
///
/// # Panics
/// If the [`ComputeTaskPool`] is not initialized. If using this from an event reader that is being
/// initialized and run from the ECS scheduler, this should never panic.
///
/// [`ComputeTaskPool`]: bevy_tasks::ComputeTaskPool
pub fn for_each<FN: Fn(&'a E) + Send + Sync + Clone>(self, func: FN) {
self.for_each_with_id(move |e, _| func(e));
}
/// Runs the provided closure for each unread event in parallel, like [`for_each`](Self::for_each),
/// but additionally provides the `EventId` to the closure.
///
/// Note that the order of iteration is not guaranteed, but `EventId`s are ordered by send order.
///
/// # Panics
/// If the [`ComputeTaskPool`] is not initialized. If using this from an event reader that is being
/// initialized and run from the ECS scheduler, this should never panic.
///
/// [`ComputeTaskPool`]: bevy_tasks::ComputeTaskPool
pub fn for_each_with_id<FN: Fn(&'a E, EventId<E>) + Send + Sync + Clone>(self, func: FN) {
#[cfg(any(target_arch = "wasm32", not(feature = "multi_threaded")))]
{
self.into_iter().for_each(|(e, i)| func(e, i));
}
#[cfg(all(not(target_arch = "wasm32"), feature = "multi_threaded"))]
{
let pool = bevy_tasks::ComputeTaskPool::get();
let thread_count = pool.thread_num();
if thread_count <= 1 {
return self.into_iter().for_each(|(e, i)| func(e, i));
}
let batch_size = self
.batching_strategy
.calc_batch_size(|| self.len(), thread_count);
let chunks = self.slices.map(|s| s.chunks_exact(batch_size));
let remainders = chunks.each_ref().map(|c| c.remainder());
pool.scope(|scope| {
for batch in chunks.into_iter().flatten().chain(remainders) {
let func = func.clone();
scope.spawn(async move {
for event in batch {
func(&event.event, event.event_id);
}
});
}
});
}
}
/// Returns the number of [`Event`]s to be iterated.
pub fn len(&self) -> usize {
self.slices.iter().map(|s| s.len()).sum()
}
/// Returns [`true`] if there are no events remaining in this iterator.
pub fn is_empty(&self) -> bool {
self.slices.iter().all(|x| x.is_empty())
}
}
impl<'a, E: Event> IntoIterator for EventParIter<'a, E> {
type IntoIter = EventIteratorWithId<'a, E>;
type Item = <Self::IntoIter as Iterator>::Item;
fn into_iter(self) -> Self::IntoIter {
let EventParIter {
reader,
slices: [a, b],
..
} = self;
let unread = a.len() + b.len();
let chain = a.iter().chain(b);
EventIteratorWithId {
reader,
chain,
unread,
}
}
}

View file

@ -0,0 +1,450 @@
//! Event handling types.
mod base;
mod collections;
mod iterators;
mod reader;
mod registry;
mod update;
mod writer;
pub(crate) use base::EventInstance;
pub use base::{Event, EventId};
pub use bevy_ecs_macros::Event;
pub use collections::{Events, SendBatchIds};
pub use iterators::{EventIterator, EventIteratorWithId, EventParIter};
pub use reader::{EventReader, ManualEventReader};
pub use registry::EventRegistry;
pub use update::{
event_update_condition, event_update_system, signal_event_update_system, EventUpdates,
};
pub use writer::EventWriter;
#[cfg(test)]
mod tests {
use crate as bevy_ecs;
use bevy_ecs::{event::*, system::assert_is_read_only_system};
use bevy_ecs_macros::Event;
#[derive(Event, Copy, Clone, PartialEq, Eq, Debug)]
struct TestEvent {
i: usize,
}
#[test]
fn test_events() {
let mut events = Events::<TestEvent>::default();
let event_0 = TestEvent { i: 0 };
let event_1 = TestEvent { i: 1 };
let event_2 = TestEvent { i: 2 };
// this reader will miss event_0 and event_1 because it wont read them over the course of
// two updates
let mut reader_missed: ManualEventReader<TestEvent> = events.get_reader();
let mut reader_a: ManualEventReader<TestEvent> = events.get_reader();
events.send(event_0);
assert_eq!(
get_events(&events, &mut reader_a),
vec![event_0],
"reader_a created before event receives event"
);
assert_eq!(
get_events(&events, &mut reader_a),
vec![],
"second iteration of reader_a created before event results in zero events"
);
let mut reader_b: ManualEventReader<TestEvent> = events.get_reader();
assert_eq!(
get_events(&events, &mut reader_b),
vec![event_0],
"reader_b created after event receives event"
);
assert_eq!(
get_events(&events, &mut reader_b),
vec![],
"second iteration of reader_b created after event results in zero events"
);
events.send(event_1);
let mut reader_c = events.get_reader();
assert_eq!(
get_events(&events, &mut reader_c),
vec![event_0, event_1],
"reader_c created after two events receives both events"
);
assert_eq!(
get_events(&events, &mut reader_c),
vec![],
"second iteration of reader_c created after two event results in zero events"
);
assert_eq!(
get_events(&events, &mut reader_a),
vec![event_1],
"reader_a receives next unread event"
);
events.update();
let mut reader_d = events.get_reader();
events.send(event_2);
assert_eq!(
get_events(&events, &mut reader_a),
vec![event_2],
"reader_a receives event created after update"
);
assert_eq!(
get_events(&events, &mut reader_b),
vec![event_1, event_2],
"reader_b receives events created before and after update"
);
assert_eq!(
get_events(&events, &mut reader_d),
vec![event_0, event_1, event_2],
"reader_d receives all events created before and after update"
);
events.update();
assert_eq!(
get_events(&events, &mut reader_missed),
vec![event_2],
"reader_missed missed events unread after two update() calls"
);
}
fn get_events<E: Event + Clone>(
events: &Events<E>,
reader: &mut ManualEventReader<E>,
) -> Vec<E> {
reader.read(events).cloned().collect::<Vec<E>>()
}
#[derive(Event, PartialEq, Eq, Debug)]
struct E(usize);
fn events_clear_and_read_impl(clear_func: impl FnOnce(&mut Events<E>)) {
let mut events = Events::<E>::default();
let mut reader = events.get_reader();
assert!(reader.read(&events).next().is_none());
events.send(E(0));
assert_eq!(*reader.read(&events).next().unwrap(), E(0));
assert_eq!(reader.read(&events).next(), None);
events.send(E(1));
clear_func(&mut events);
assert!(reader.read(&events).next().is_none());
events.send(E(2));
events.update();
events.send(E(3));
assert!(reader.read(&events).eq([E(2), E(3)].iter()));
}
#[test]
fn test_events_clear_and_read() {
events_clear_and_read_impl(|events| events.clear());
}
#[test]
fn test_events_drain_and_read() {
events_clear_and_read_impl(|events| {
assert!(events.drain().eq(vec![E(0), E(1)].into_iter()));
});
}
#[test]
fn test_events_extend_impl() {
let mut events = Events::<TestEvent>::default();
let mut reader = events.get_reader();
events.extend(vec![TestEvent { i: 0 }, TestEvent { i: 1 }]);
assert!(reader
.read(&events)
.eq([TestEvent { i: 0 }, TestEvent { i: 1 }].iter()));
}
#[test]
fn test_events_empty() {
let mut events = Events::<TestEvent>::default();
assert!(events.is_empty());
events.send(TestEvent { i: 0 });
assert!(!events.is_empty());
events.update();
assert!(!events.is_empty());
// events are only empty after the second call to update
// due to double buffering.
events.update();
assert!(events.is_empty());
}
#[test]
fn test_event_reader_len_empty() {
let events = Events::<TestEvent>::default();
assert_eq!(events.get_reader().len(&events), 0);
assert!(events.get_reader().is_empty(&events));
}
#[test]
fn test_event_reader_len_filled() {
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
assert_eq!(events.get_reader().len(&events), 1);
assert!(!events.get_reader().is_empty(&events));
}
#[test]
fn test_event_iter_len_updated() {
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
events.send(TestEvent { i: 1 });
events.send(TestEvent { i: 2 });
let mut reader = events.get_reader();
let mut iter = reader.read(&events);
assert_eq!(iter.len(), 3);
iter.next();
assert_eq!(iter.len(), 2);
iter.next();
assert_eq!(iter.len(), 1);
iter.next();
assert_eq!(iter.len(), 0);
}
#[test]
fn test_event_reader_len_current() {
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
let reader = events.get_reader_current();
dbg!(&reader);
dbg!(&events);
assert!(reader.is_empty(&events));
events.send(TestEvent { i: 0 });
assert_eq!(reader.len(&events), 1);
assert!(!reader.is_empty(&events));
}
#[test]
fn test_event_reader_len_update() {
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
events.send(TestEvent { i: 0 });
let reader = events.get_reader();
assert_eq!(reader.len(&events), 2);
events.update();
events.send(TestEvent { i: 0 });
assert_eq!(reader.len(&events), 3);
events.update();
assert_eq!(reader.len(&events), 1);
events.update();
assert!(reader.is_empty(&events));
}
#[test]
fn test_event_reader_clear() {
use bevy_ecs::prelude::*;
let mut world = World::new();
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
world.insert_resource(events);
let mut reader = IntoSystem::into_system(|mut events: EventReader<TestEvent>| -> bool {
if !events.is_empty() {
events.clear();
false
} else {
true
}
});
reader.initialize(&mut world);
let is_empty = reader.run((), &mut world);
assert!(!is_empty, "EventReader should not be empty");
let is_empty = reader.run((), &mut world);
assert!(is_empty, "EventReader should be empty");
}
#[test]
fn test_update_drain() {
let mut events = Events::<TestEvent>::default();
let mut reader = events.get_reader();
events.send(TestEvent { i: 0 });
events.send(TestEvent { i: 1 });
assert_eq!(reader.read(&events).count(), 2);
let mut old_events = Vec::from_iter(events.update_drain());
assert!(old_events.is_empty());
events.send(TestEvent { i: 2 });
assert_eq!(reader.read(&events).count(), 1);
old_events.extend(events.update_drain());
assert_eq!(old_events.len(), 2);
old_events.extend(events.update_drain());
assert_eq!(
old_events,
&[TestEvent { i: 0 }, TestEvent { i: 1 }, TestEvent { i: 2 }]
);
}
#[allow(clippy::iter_nth_zero)]
#[test]
fn test_event_iter_nth() {
use bevy_ecs::prelude::*;
let mut world = World::new();
world.init_resource::<Events<TestEvent>>();
world.send_event(TestEvent { i: 0 });
world.send_event(TestEvent { i: 1 });
world.send_event(TestEvent { i: 2 });
world.send_event(TestEvent { i: 3 });
world.send_event(TestEvent { i: 4 });
let mut schedule = Schedule::default();
schedule.add_systems(|mut events: EventReader<TestEvent>| {
let mut iter = events.read();
assert_eq!(iter.next(), Some(&TestEvent { i: 0 }));
assert_eq!(iter.nth(2), Some(&TestEvent { i: 3 }));
assert_eq!(iter.nth(1), None);
assert!(events.is_empty());
});
schedule.run(&mut world);
}
#[test]
fn test_event_iter_last() {
use bevy_ecs::prelude::*;
let mut world = World::new();
world.init_resource::<Events<TestEvent>>();
let mut reader =
IntoSystem::into_system(|mut events: EventReader<TestEvent>| -> Option<TestEvent> {
events.read().last().copied()
});
reader.initialize(&mut world);
let last = reader.run((), &mut world);
assert!(last.is_none(), "EventReader should be empty");
world.send_event(TestEvent { i: 0 });
let last = reader.run((), &mut world);
assert_eq!(last, Some(TestEvent { i: 0 }));
world.send_event(TestEvent { i: 1 });
world.send_event(TestEvent { i: 2 });
world.send_event(TestEvent { i: 3 });
let last = reader.run((), &mut world);
assert_eq!(last, Some(TestEvent { i: 3 }));
let last = reader.run((), &mut world);
assert!(last.is_none(), "EventReader should be empty");
}
#[derive(Event, Clone, PartialEq, Debug, Default)]
struct EmptyTestEvent;
#[test]
fn test_firing_empty_event() {
let mut events = Events::<EmptyTestEvent>::default();
events.send_default();
let mut reader = events.get_reader();
assert_eq!(get_events(&events, &mut reader), vec![EmptyTestEvent]);
}
#[test]
fn ensure_reader_readonly() {
fn reader_system(_: EventReader<EmptyTestEvent>) {}
assert_is_read_only_system(reader_system);
}
#[test]
fn test_send_events_ids() {
let mut events = Events::<TestEvent>::default();
let event_0 = TestEvent { i: 0 };
let event_1 = TestEvent { i: 1 };
let event_2 = TestEvent { i: 2 };
let event_0_id = events.send(event_0);
assert_eq!(
events.get_event(event_0_id.id),
Some((&event_0, event_0_id)),
"Getting a sent event by ID should return the original event"
);
let mut event_ids = events.send_batch([event_1, event_2]);
let event_id = event_ids.next().expect("Event 1 must have been sent");
assert_eq!(
events.get_event(event_id.id),
Some((&event_1, event_id)),
"Getting a sent event by ID should return the original event"
);
let event_id = event_ids.next().expect("Event 2 must have been sent");
assert_eq!(
events.get_event(event_id.id),
Some((&event_2, event_id)),
"Getting a sent event by ID should return the original event"
);
assert!(
event_ids.next().is_none(),
"Only sent two events; got more than two IDs"
);
}
#[cfg(feature = "multi_threaded")]
#[test]
fn test_events_par_iter() {
use std::{collections::HashSet, sync::mpsc};
use crate::prelude::*;
let mut world = World::new();
world.init_resource::<Events<TestEvent>>();
for i in 0..100 {
world.send_event(TestEvent { i });
}
let mut schedule = Schedule::default();
schedule.add_systems(|mut events: EventReader<TestEvent>| {
let (tx, rx) = mpsc::channel();
events.par_read().for_each(|event| {
tx.send(event.i).unwrap();
});
drop(tx);
let observed: HashSet<_> = rx.into_iter().collect();
assert_eq!(observed, HashSet::from_iter(0..100));
});
schedule.run(&mut world);
}
// Peak tests
}

View file

@ -0,0 +1,224 @@
use crate as bevy_ecs;
use bevy_ecs::{
event::{Event, EventIterator, EventIteratorWithId, EventParIter, Events},
system::{Local, Res, SystemParam},
};
use std::marker::PhantomData;
/// Reads events of type `T` in order and tracks which events have already been read.
///
/// # Concurrency
///
/// Unlike [`EventWriter<T>`], systems with `EventReader<T>` param can be executed concurrently
/// (but not concurrently with `EventWriter<T>` systems for the same event type).
#[derive(SystemParam, Debug)]
pub struct EventReader<'w, 's, E: Event> {
pub(super) reader: Local<'s, ManualEventReader<E>>,
events: Res<'w, Events<E>>,
}
impl<'w, 's, E: Event> EventReader<'w, 's, E> {
/// Iterates over the events this [`EventReader`] has not seen yet. This updates the
/// [`EventReader`]'s event counter, which means subsequent event reads will not include events
/// that happened before now.
pub fn read(&mut self) -> EventIterator<'_, E> {
self.reader.read(&self.events)
}
/// Like [`read`](Self::read), except also returning the [`EventId`] of the events.
pub fn read_with_id(&mut self) -> EventIteratorWithId<'_, E> {
self.reader.read_with_id(&self.events)
}
/// Returns a parallel iterator over the events this [`EventReader`] has not seen yet.
/// See also [`for_each`](EventParIter::for_each).
///
/// # Example
/// ```
/// # use bevy_ecs::prelude::*;
/// # use std::sync::atomic::{AtomicUsize, Ordering};
///
/// #[derive(Event)]
/// struct MyEvent {
/// value: usize,
/// }
///
/// #[derive(Resource, Default)]
/// struct Counter(AtomicUsize);
///
/// // setup
/// let mut world = World::new();
/// world.init_resource::<Events<MyEvent>>();
/// world.insert_resource(Counter::default());
///
/// let mut schedule = Schedule::default();
/// schedule.add_systems(|mut events: EventReader<MyEvent>, counter: Res<Counter>| {
/// events.par_read().for_each(|MyEvent { value }| {
/// counter.0.fetch_add(*value, Ordering::Relaxed);
/// });
/// });
/// for value in 0..100 {
/// world.send_event(MyEvent { value });
/// }
/// schedule.run(&mut world);
/// let Counter(counter) = world.remove_resource::<Counter>().unwrap();
/// // all events were processed
/// assert_eq!(counter.into_inner(), 4950);
/// ```
///
pub fn par_read(&mut self) -> EventParIter<'_, E> {
self.reader.par_read(&self.events)
}
/// Determines the number of events available to be read from this [`EventReader`] without consuming any.
pub fn len(&self) -> usize {
self.reader.len(&self.events)
}
/// Returns `true` if there are no events available to read.
///
/// # Example
///
/// The following example shows a useful pattern where some behavior is triggered if new events are available.
/// [`EventReader::clear()`] is used so the same events don't re-trigger the behavior the next time the system runs.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #
/// #[derive(Event)]
/// struct CollisionEvent;
///
/// fn play_collision_sound(mut events: EventReader<CollisionEvent>) {
/// if !events.is_empty() {
/// events.clear();
/// // Play a sound
/// }
/// }
/// # bevy_ecs::system::assert_is_system(play_collision_sound);
/// ```
pub fn is_empty(&self) -> bool {
self.reader.is_empty(&self.events)
}
/// Consumes all available events.
///
/// This means these events will not appear in calls to [`EventReader::read()`] or
/// [`EventReader::read_with_id()`] and [`EventReader::is_empty()`] will return `true`.
///
/// For usage, see [`EventReader::is_empty()`].
pub fn clear(&mut self) {
self.reader.clear(&self.events);
}
}
/// Stores the state for an [`EventReader`].
///
/// Access to the [`Events<E>`] resource is required to read any incoming events.
///
/// In almost all cases, you should just use an [`EventReader`],
/// which will automatically manage the state for you.
///
/// However, this type can be useful if you need to manually track events,
/// such as when you're attempting to send and receive events of the same type in the same system.
///
/// # Example
///
/// ```
/// use bevy_ecs::prelude::*;
/// use bevy_ecs::event::{Event, Events, ManualEventReader};
///
/// #[derive(Event, Clone, Debug)]
/// struct MyEvent;
///
/// /// A system that both sends and receives events using a [`Local`] [`ManualEventReader`].
/// fn send_and_receive_manual_event_reader(
/// // The `Local` `SystemParam` stores state inside the system itself, rather than in the world.
/// // `ManualEventReader<T>` is the internal state of `EventReader<T>`, which tracks which events have been seen.
/// mut local_event_reader: Local<ManualEventReader<MyEvent>>,
/// // We can access the `Events` resource mutably, allowing us to both read and write its contents.
/// mut events: ResMut<Events<MyEvent>>,
/// ) {
/// // We must collect the events to resend, because we can't mutate events while we're iterating over the events.
/// let mut events_to_resend = Vec::new();
///
/// for event in local_event_reader.read(&events) {
/// events_to_resend.push(event.clone());
/// }
///
/// for event in events_to_resend {
/// events.send(MyEvent);
/// }
/// }
///
/// # bevy_ecs::system::assert_is_system(send_and_receive_manual_event_reader);
/// ```
#[derive(Debug)]
pub struct ManualEventReader<E: Event> {
pub(super) last_event_count: usize,
pub(super) _marker: PhantomData<E>,
}
impl<E: Event> Default for ManualEventReader<E> {
fn default() -> Self {
ManualEventReader {
last_event_count: 0,
_marker: Default::default(),
}
}
}
impl<E: Event> Clone for ManualEventReader<E> {
fn clone(&self) -> Self {
ManualEventReader {
last_event_count: self.last_event_count,
_marker: PhantomData,
}
}
}
#[allow(clippy::len_without_is_empty)] // Check fails since the is_empty implementation has a signature other than `(&self) -> bool`
impl<E: Event> ManualEventReader<E> {
/// See [`EventReader::read`]
pub fn read<'a>(&'a mut self, events: &'a Events<E>) -> EventIterator<'a, E> {
self.read_with_id(events).without_id()
}
/// See [`EventReader::read_with_id`]
pub fn read_with_id<'a>(&'a mut self, events: &'a Events<E>) -> EventIteratorWithId<'a, E> {
EventIteratorWithId::new(self, events)
}
/// See [`EventReader::par_read`]
pub fn par_read<'a>(&'a mut self, events: &'a Events<E>) -> EventParIter<'a, E> {
EventParIter::new(self, events)
}
/// See [`EventReader::len`]
pub fn len(&self, events: &Events<E>) -> usize {
// The number of events in this reader is the difference between the most recent event
// and the last event seen by it. This will be at most the number of events contained
// with the events (any others have already been dropped)
// TODO: Warn when there are dropped events, or return e.g. a `Result<usize, (usize, usize)>`
events
.event_count
.saturating_sub(self.last_event_count)
.min(events.len())
}
/// Amount of events we missed.
pub fn missed_events(&self, events: &Events<E>) -> usize {
events
.oldest_event_count()
.saturating_sub(self.last_event_count)
}
/// See [`EventReader::is_empty()`]
pub fn is_empty(&self, events: &Events<E>) -> bool {
self.len(events) == 0
}
/// See [`EventReader::clear()`]
pub fn clear(&mut self, events: &Events<E>) {
self.last_event_count = events.event_count;
}
}

View file

@ -0,0 +1,65 @@
use crate as bevy_ecs;
use bevy_ecs::{
change_detection::{DetectChangesMut, MutUntyped},
component::{ComponentId, Tick},
event::{Event, Events},
system::Resource,
world::World,
};
#[doc(hidden)]
struct RegisteredEvent {
component_id: ComponentId,
// Required to flush the secondary buffer and drop events even if left unchanged.
previously_updated: bool,
// SAFETY: The component ID and the function must be used to fetch the Events<T> resource
// of the same type initialized in `register_event`, or improper type casts will occur.
update: unsafe fn(MutUntyped),
}
/// A registry of all of the [`Events`] in the [`World`], used by [`event_update_system`]
/// to update all of the events.
#[derive(Resource, Default)]
pub struct EventRegistry {
pub(super) needs_update: bool,
event_updates: Vec<RegisteredEvent>,
}
impl EventRegistry {
/// Registers an event type to be updated.
pub fn register_event<T: Event>(world: &mut World) {
// By initializing the resource here, we can be sure that it is present,
// and receive the correct, up-to-date `ComponentId` even if it was previously removed.
let component_id = world.init_resource::<Events<T>>();
let mut registry = world.get_resource_or_insert_with(Self::default);
registry.event_updates.push(RegisteredEvent {
component_id,
previously_updated: false,
update: |ptr| {
// SAFETY: The resource was initialized with the type Events<T>.
unsafe { ptr.with_type::<Events<T>>() }
.bypass_change_detection()
.update();
},
});
}
/// Updates all of the registered events in the World.
pub fn run_updates(&mut self, world: &mut World, last_change_tick: Tick) {
for registered_event in &mut self.event_updates {
// Bypass the type ID -> Component ID lookup with the cached component ID.
if let Some(events) = world.get_resource_mut_by_id(registered_event.component_id) {
let has_changed = events.has_changed_since(last_change_tick);
if registered_event.previously_updated || has_changed {
// SAFETY: The update function pointer is called with the resource
// fetched from the same component ID.
unsafe { (registered_event.update)(events) };
// Always set to true if the events have changed, otherwise disable running on the second invocation
// to wait for more changes.
registered_event.previously_updated =
has_changed || !registered_event.previously_updated;
}
}
}
}
}

View file

@ -0,0 +1,41 @@
use crate as bevy_ecs;
use bevy_ecs::{
change_detection::Mut,
component::Tick,
event::EventRegistry,
system::{Local, Res, ResMut},
world::World,
};
use bevy_ecs_macros::SystemSet;
#[cfg(feature = "bevy_reflect")]
use std::hash::Hash;
#[doc(hidden)]
#[derive(SystemSet, Clone, Debug, PartialEq, Eq, Hash)]
pub struct EventUpdates;
/// Signals the [`event_update_system`] to run after `FixedUpdate` systems.
pub fn signal_event_update_system(signal: Option<ResMut<EventRegistry>>) {
if let Some(mut registry) = signal {
registry.needs_update = true;
}
}
/// A system that calls [`Events::update`] on all registered [`Events`] in the world.
pub fn event_update_system(world: &mut World, mut last_change_tick: Local<Tick>) {
if world.contains_resource::<EventRegistry>() {
world.resource_scope(|world, mut registry: Mut<EventRegistry>| {
registry.run_updates(world, *last_change_tick);
// Disable the system until signal_event_update_system runs again.
registry.needs_update = false;
});
}
*last_change_tick = world.change_tick();
}
/// A run condition for [`event_update_system`].
pub fn event_update_condition(signal: Option<Res<EventRegistry>>) -> bool {
// If we haven't got a signal to update the events, but we *could* get such a signal
// return early and update the events later.
signal.map_or(false, |signal| signal.needs_update)
}

View file

@ -0,0 +1,88 @@
use crate as bevy_ecs;
use bevy_ecs::{
event::{Event, EventId, Events, SendBatchIds},
system::{ResMut, SystemParam},
};
/// Sends events of type `T`.
///
/// # Usage
///
/// `EventWriter`s are usually declared as a [`SystemParam`].
/// ```
/// # use bevy_ecs::prelude::*;
///
/// #[derive(Event)]
/// pub struct MyEvent; // Custom event type.
/// fn my_system(mut writer: EventWriter<MyEvent>) {
/// writer.send(MyEvent);
/// }
///
/// # bevy_ecs::system::assert_is_system(my_system);
/// ```
///
/// # Concurrency
///
/// `EventWriter` param has [`ResMut<Events<T>>`](Events) inside. So two systems declaring `EventWriter<T>` params
/// for the same event type won't be executed concurrently.
///
/// # Untyped events
///
/// `EventWriter` can only send events of one specific type, which must be known at compile-time.
/// This is not a problem most of the time, but you may find a situation where you cannot know
/// ahead of time every kind of event you'll need to send. In this case, you can use the "type-erased event" pattern.
///
/// ```
/// # use bevy_ecs::{prelude::*, event::Events};
/// # #[derive(Event)]
/// # pub struct MyEvent;
/// fn send_untyped(mut commands: Commands) {
/// // Send an event of a specific type without having to declare that
/// // type as a SystemParam.
/// //
/// // Effectively, we're just moving the type parameter from the /type/ to the /method/,
/// // which allows one to do all kinds of clever things with type erasure, such as sending
/// // custom events to unknown 3rd party plugins (modding API).
/// //
/// // NOTE: the event won't actually be sent until commands get applied during
/// // apply_deferred.
/// commands.add(|w: &mut World| {
/// w.send_event(MyEvent);
/// });
/// }
/// ```
/// Note that this is considered *non-idiomatic*, and should only be used when `EventWriter` will not work.
#[derive(SystemParam)]
pub struct EventWriter<'w, E: Event> {
events: ResMut<'w, Events<E>>,
}
impl<'w, E: Event> EventWriter<'w, E> {
/// Sends an `event`, which can later be read by [`EventReader`]s.
/// This method returns the [ID](`EventId`) of the sent `event`.
///
/// See [`Events`] for details.
pub fn send(&mut self, event: E) -> EventId<E> {
self.events.send(event)
}
/// Sends a list of `events` all at once, which can later be read by [`EventReader`]s.
/// This is more efficient than sending each event individually.
/// This method returns the [IDs](`EventId`) of the sent `events`.
///
/// See [`Events`] for details.
pub fn send_batch(&mut self, events: impl IntoIterator<Item = E>) -> SendBatchIds<E> {
self.events.send_batch(events)
}
/// Sends the default value of the event. Useful when the event is an empty struct.
/// This method returns the [ID](`EventId`) of the sent `event`.
///
/// See [`Events`] for details.
pub fn send_default(&mut self) -> EventId<E>
where
E: Default,
{
self.events.send_default()
}
}