Use IntersectsVolume for breakout example collisions (#11500)

# Objective

Fixes #11479

## Solution

- Remove `collide_aabb.rs`
- Re-implement the example-specific collision code in the example,
taking advantage of the new `IntersectsVolume` trait.

## Changelog

- Removed `sprite::collide_aabb::collide` and
`sprite::collide_aabb::Collision`.

## Migration Guide

`sprite::collide_aabb::collide` and `sprite::collide_aabb::Collision`
were removed.

```rust
// Before
let collision = bevy::sprite::collide_aabb::collide(a_pos, a_size, b_pos, b_size);
if collision.is_some() {
    // ...
}

// After
let collision = Aabb2d::new(a_pos.truncate(), a_size / 2.)
    .intersects(&Aabb2d::new(b_pos.truncate(), b_size / 2.));
if collision {
    // ...
}
```

If you were making use `collide_aabb::Collision`, see the new
`collide_with_side` function in the [`breakout`
example](https://bevyengine.org/examples/Games/breakout/).

## Discussion

As discussed in the linked issue, maybe we want to wait on `bevy_sprite`
generally making use of `Aabb2b` so users don't need to construct it
manually. But since they **do** need to construct the bounding circle
for the ball manually, this doesn't seem like a big deal to me.

---------

Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
This commit is contained in:
Rob Parrett 2024-01-29 10:51:24 -07:00 committed by GitHub
parent 16ce8c6136
commit 1bc293f33a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 43 additions and 309 deletions

View file

@ -1,297 +0,0 @@
//! Utilities for detecting if and on which side two axis-aligned bounding boxes (AABB) collide.
use bevy_math::{Vec2, Vec3};
/// The side where a collision occurred, as returned by [`collide`].
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum Collision {
Left,
Right,
Top,
Bottom,
Inside,
}
struct CollisionBox {
pub top: f32,
pub bottom: f32,
pub left: f32,
pub right: f32,
}
impl CollisionBox {
pub fn new(pos: Vec3, size: Vec2) -> Self {
Self {
top: pos.y + size.y / 2.,
bottom: pos.y - size.y / 2.,
left: pos.x - size.x / 2.,
right: pos.x + size.x / 2.,
}
}
}
// TODO: ideally we can remove this once bevy gets a physics system
/// Axis-aligned bounding box collision with "side" detection.
///
/// The [Collision], in case it occurred, is the side of `b` where `a` hit.
///
/// * `a_pos` and `b_pos` are the center positions of the rectangles, typically obtained by
/// extracting the `translation` field from a [`Transform`](bevy_transform::components::Transform) component
/// * `a_size` and `b_size` are the dimensions (width and height) of the rectangles.
///
/// The return value is the side of `B` that `A` has collided with. [`Collision::Left`] means that
/// `A` collided with `B`'s left side. [`Collision::Top`] means that `A` collided with `B`'s top side.
/// If the collision occurs on multiple sides, the side with the shallowest penetration is returned.
/// If all sides are involved, [`Collision::Inside`] is returned.
pub fn collide(a_pos: Vec3, a_size: Vec2, b_pos: Vec3, b_size: Vec2) -> Option<Collision> {
let a = CollisionBox::new(a_pos, a_size);
let b = CollisionBox::new(b_pos, b_size);
// check to see if the two rectangles are intersecting
if a.left < b.right && a.right > b.left && a.bottom < b.top && a.top > b.bottom {
// check to see if we hit on the left or right side
let (x_collision, x_depth) = if a.left < b.left && a.right > b.left && a.right < b.right {
(Collision::Left, b.left - a.right)
} else if a.left > b.left && a.left < b.right && a.right > b.right {
(Collision::Right, a.left - b.right)
} else {
(Collision::Inside, -f32::INFINITY)
};
// check to see if we hit on the top or bottom side
let (y_collision, y_depth) = if a.bottom < b.bottom && a.top > b.bottom && a.top < b.top {
(Collision::Bottom, b.bottom - a.top)
} else if a.bottom > b.bottom && a.bottom < b.top && a.top > b.top {
(Collision::Top, a.bottom - b.top)
} else {
(Collision::Inside, -f32::INFINITY)
};
// if we had an "x" and a "y" collision, pick the "primary" side using penetration depth
if y_depth.abs() < x_depth.abs() {
Some(y_collision)
} else {
Some(x_collision)
}
} else {
None
}
}
#[cfg(test)]
mod tests {
use super::*;
///
///
/// ______
/// | |
/// | A |
/// ----|----|----
/// | |____| |
/// | B |
/// |____________|
///
#[test]
fn top_collision() {
let a = Vec3::new(0., 30., 0.);
let b = Vec3::new(0., 0., 0.);
check(a, b, Some(Collision::Top));
}
///
///
/// --------------
/// | B |
/// | _____ |
/// |___|____|___|
/// | |
/// | A |
/// | |
/// -----
#[test]
fn bottom_collision() {
let a = Vec3::new(0., -30., 0.);
let b = Vec3::new(0., 0., 0.);
check(a, b, Some(Collision::Bottom));
}
///
/// ______
/// | --|-----------
/// | | | |
/// | A | | B |
/// | |_|__________|
/// |_____|
///
#[test]
fn left_collision() {
let a = Vec3::new(0., 0., 0.);
let b = Vec3::new(30., 0., 0.);
check(a, b, Some(Collision::Left));
}
///
/// ______
/// -----------|-- |
/// | B | | |
/// | | | A |
/// |__________|_| |
/// |_____|
#[test]
fn right_collision() {
let a = Vec3::new(0., 0., 0.);
let b = Vec3::new(-30., 0., 0.);
check(a, b, Some(Collision::Right));
}
///
/// ______
/// ----|----|----
/// | | | |
/// | | | B |
/// |___|____|___|
/// | A |
/// |____|
#[test]
fn without_corners_on_intersection_area() {
let a = Vec3::new(0., 0., 0.);
let b = Vec3::new(0., 0., 0.);
check(a, b, Some(Collision::Inside));
}
fn check(a: Vec3, b: Vec3, expected: Option<Collision>) {
let a_size = Vec2::new(30., 50.);
let b_size = Vec2::new(50., 30.);
assert_eq!(collide(a, a_size, b, b_size), expected);
}
fn collide_two_rectangles(
// (x, y, size x, size y)
a: (f32, f32, f32, f32),
b: (f32, f32, f32, f32),
) -> Option<Collision> {
collide(
Vec3::new(a.0, a.1, 0.),
Vec2::new(a.2, a.3),
Vec3::new(b.0, b.1, 0.),
Vec2::new(b.2, b.3),
)
}
#[test]
fn inside_collision() {
// Identical
#[rustfmt::skip]
let res = collide_two_rectangles(
(1., 1., 1., 1.),
(1., 1., 1., 1.),
);
assert_eq!(res, Some(Collision::Inside));
// B inside A
#[rustfmt::skip]
let res = collide_two_rectangles(
(2., 2., 2., 2.),
(2., 2., 1., 1.),
);
assert_eq!(res, Some(Collision::Inside));
// A inside B
#[rustfmt::skip]
let res = collide_two_rectangles(
(2., 2., 1., 1.),
(2., 2., 2., 2.),
);
assert_eq!(res, Some(Collision::Inside));
}
#[test]
fn collision_based_on_b() {
// Right of B
#[rustfmt::skip]
let res = collide_two_rectangles(
(3., 2., 2., 2.),
(2., 2., 2., 2.),
);
assert_eq!(res, Some(Collision::Right));
// Left of B
#[rustfmt::skip]
let res = collide_two_rectangles(
(1., 2., 2., 2.),
(2., 2., 2., 2.),
);
assert_eq!(res, Some(Collision::Left));
// Top of B
#[rustfmt::skip]
let res = collide_two_rectangles(
(2., 3., 2., 2.),
(2., 2., 2., 2.),
);
assert_eq!(res, Some(Collision::Top));
// Bottom of B
#[rustfmt::skip]
let res = collide_two_rectangles(
(2., 1., 2., 2.),
(2., 2., 2., 2.),
);
assert_eq!(res, Some(Collision::Bottom));
}
// In case the X-collision depth is equal to the Y-collision depth, always
// prefer X-collision, meaning, `Left` or `Right` over `Top` and `Bottom`.
#[test]
fn prefer_x_collision() {
// Bottom-left collision
#[rustfmt::skip]
let res = collide_two_rectangles(
(1., 1., 2., 2.),
(2., 2., 2., 2.),
);
assert_eq!(res, Some(Collision::Left));
// Top-left collision
#[rustfmt::skip]
let res = collide_two_rectangles(
(1., 3., 2., 2.),
(2., 2., 2., 2.),
);
assert_eq!(res, Some(Collision::Left));
// Bottom-right collision
#[rustfmt::skip]
let res = collide_two_rectangles(
(3., 1., 2., 2.),
(2., 2., 2., 2.),
);
assert_eq!(res, Some(Collision::Right));
// Top-right collision
#[rustfmt::skip]
let res = collide_two_rectangles(
(3., 3., 2., 2.),
(2., 2., 2., 2.),
);
assert_eq!(res, Some(Collision::Right));
}
// If the collision intersection area stretches more along the Y-axis then
// return `Top` or `Bottom`. Otherwise, `Left` or `Right`.
#[test]
fn collision_depth_wins() {
// Top-right collision
#[rustfmt::skip]
let res = collide_two_rectangles(
(3., 3., 2., 2.),
(2.5, 2.,2., 2.),
);
assert_eq!(res, Some(Collision::Top));
// Top-right collision
#[rustfmt::skip]
let res = collide_two_rectangles(
(3., 3., 2., 2.),
(2., 2.5, 2., 2.),
);
assert_eq!(res, Some(Collision::Right));
}
}

View file

@ -8,8 +8,6 @@ mod texture_atlas;
mod texture_atlas_builder;
mod texture_slice;
pub mod collide_aabb;
pub mod prelude {
#[doc(hidden)]
pub use crate::{

View file

@ -1,8 +1,8 @@
//! A simplified implementation of the classic game "Breakout".
use bevy::{
math::bounding::{Aabb2d, BoundingCircle, BoundingVolume, IntersectsVolume},
prelude::*,
sprite::collide_aabb::{collide, Collision},
sprite::MaterialMesh2dBundle,
};
@ -16,7 +16,7 @@ const PADDLE_PADDING: f32 = 10.0;
// We set the z-value of the ball to 1 so it renders on top in the case of overlapping sprites.
const BALL_STARTING_POSITION: Vec3 = Vec3::new(0.0, -50.0, 1.0);
const BALL_SIZE: Vec3 = Vec3::new(30.0, 30.0, 0.0);
const BALL_DIAMETER: f32 = 30.;
const BALL_SPEED: f32 = 400.0;
const INITIAL_BALL_DIRECTION: Vec2 = Vec2::new(0.5, -0.5);
@ -209,7 +209,8 @@ fn setup(
MaterialMesh2dBundle {
mesh: meshes.add(shape::Circle::default()).into(),
material: materials.add(BALL_COLOR),
transform: Transform::from_translation(BALL_STARTING_POSITION).with_scale(BALL_SIZE),
transform: Transform::from_translation(BALL_STARTING_POSITION)
.with_scale(Vec2::splat(BALL_DIAMETER).extend(1.)),
..default()
},
Ball,
@ -350,16 +351,17 @@ fn check_for_collisions(
mut collision_events: EventWriter<CollisionEvent>,
) {
let (mut ball_velocity, ball_transform) = ball_query.single_mut();
let ball_size = ball_transform.scale.truncate();
// check collision with walls
for (collider_entity, transform, maybe_brick) in &collider_query {
let collision = collide(
ball_transform.translation,
ball_size,
transform.translation,
transform.scale.truncate(),
let collision = collide_with_side(
BoundingCircle::new(ball_transform.translation.truncate(), BALL_DIAMETER / 2.),
Aabb2d::new(
transform.translation.truncate(),
transform.scale.truncate() / 2.,
),
);
if let Some(collision) = collision {
// Sends a collision event so that other systems can react to the collision
collision_events.send_default();
@ -381,7 +383,6 @@ fn check_for_collisions(
Collision::Right => reflect_x = ball_velocity.x < 0.0,
Collision::Top => reflect_y = ball_velocity.y < 0.0,
Collision::Bottom => reflect_y = ball_velocity.y > 0.0,
Collision::Inside => { /* do nothing */ }
}
// reflect velocity on the x-axis if we hit something on the x-axis
@ -413,3 +414,35 @@ fn play_collision_sound(
});
}
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
enum Collision {
Left,
Right,
Top,
Bottom,
}
// Returns `Some` if `ball` collides with `wall`. The returned `Collision` is the
// side of `wall` that `ball` hit.
fn collide_with_side(ball: BoundingCircle, wall: Aabb2d) -> Option<Collision> {
if !ball.intersects(&wall) {
return None;
}
let closest = wall.closest_point(ball.center());
let offset = ball.center() - closest;
let side = if offset.x.abs() > offset.y.abs() {
if offset.x < 0. {
Collision::Left
} else {
Collision::Right
}
} else if offset.y > 0. {
Collision::Top
} else {
Collision::Bottom
};
Some(side)
}