Support array / cubemap / cubemap array textures in KTX2 (#5325)

# Objective

- Fix / support KTX2 array / cubemap / cubemap array textures
- Fixes #4495 . Supersedes #4514 .

## Solution

- Add `Option<TextureViewDescriptor>` to `Image` to enable configuration of the `TextureViewDimension` of a texture.
  - This allows users to set `D2Array`, `D3`, `Cube`, `CubeArray` or whatever they need
  - Automatically configure this when loading KTX2
- Transcode all layers and faces instead of just one
- Use the UASTC block size of 128 bits, and the number of blocks in x/y for a given mip level in order to determine the offset of the layer and face within the KTX2 mip level data
- `wgpu` wants data ordered as layer 0 mip 0..n, layer 1 mip 0..n, etc. See https://docs.rs/wgpu/latest/wgpu/util/trait.DeviceExt.html#tymethod.create_texture_with_data
- Reorder the data KTX2 mip X layer Y face Z to `wgpu` layer Y face Z mip X order
- Add a `skybox` example to demonstrate / test loading cubemaps from PNG and KTX2, including ASTC 4x4, BC7, and ETC2 compression for support everywhere. Note that you need to enable the `ktx2,zstd` features to be able to load the compressed textures.

---

## Changelog

- Fixed: KTX2 array / cubemap / cubemap array textures
- Fixes: Validation failure for compressed textures stored in KTX2 where the width/height are not a multiple of the block dimensions.
- Added: `Image` now has an `Option<TextureViewDescriptor>` field to enable configuration of the texture view. This is useful for configuring the `TextureViewDimension` when it is not just a plain 2D texture and the loader could/did not identify what it should be.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This commit is contained in:
Robert Swain 2022-07-30 07:02:58 +00:00
parent 83a9e16158
commit 05e5008624
11 changed files with 615 additions and 51 deletions

View file

@ -393,6 +393,17 @@ description = "Demonstrates how to prevent meshes from casting/receiving shadows
category = "3D Rendering"
wasm = true
[[example]]
name = "skybox"
path = "examples/3d/skybox.rs"
required-features = ["ktx2", "zstd"]
[package.metadata.example.skybox]
name = "Skybox"
description = "Load a cubemap texture onto a cube like a skybox and cycle through different compressed texture formats."
category = "3D Rendering"
wasm = false
[[example]]
name = "spherical_area_lights"
path = "examples/3d/spherical_area_lights.rs"

View file

@ -0,0 +1,24 @@
#import bevy_pbr::mesh_view_bindings
#ifdef CUBEMAP_ARRAY
@group(1) @binding(0)
var base_color_texture: texture_cube_array<f32>;
#else
@group(1) @binding(0)
var base_color_texture: texture_cube<f32>;
#endif
@group(1) @binding(1)
var base_color_sampler: sampler;
@fragment
fn fragment(
#import bevy_pbr::mesh_vertex_output
) -> @location(0) vec4<f32> {
let fragment_position_view_lh = world_position.xyz * vec3<f32>(1.0, 1.0, -1.0);
return textureSample(
base_color_texture,
base_color_sampler,
fragment_position_view_lh
);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 654 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

View file

@ -0,0 +1,21 @@
Modifications
=============
The original work, as attributed below, has been modified as follows using the ImageMagick tool:
mogrify -resize 256x256 -format png *.jpg
convert posx.png negx.png posy.png negy.png posz.png negz.png -gravity center -append cubemap.png
Author
======
This is the work of Emil Persson, aka Humus.
http://www.humus.name
License
=======
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

View file

@ -110,6 +110,7 @@ pub struct Image {
pub texture_descriptor: wgpu::TextureDescriptor<'static>,
/// The [`ImageSampler`] to use during rendering.
pub sampler_descriptor: ImageSampler,
pub texture_view_descriptor: Option<wgpu::TextureViewDescriptor<'static>>,
}
/// Used in [`Image`], this determines what image sampler to use when rendering. The default setting,
@ -216,6 +217,7 @@ impl Default for Image {
usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST,
},
sampler_descriptor: ImageSampler::Default,
texture_view_descriptor: None,
}
}
}
@ -684,7 +686,13 @@ impl RenderAsset for Image {
texture
};
let texture_view = texture.create_view(&TextureViewDescriptor::default());
let texture_view = texture.create_view(
image
.texture_view_descriptor
.or_else(|| Some(TextureViewDescriptor::default()))
.as_ref()
.unwrap(),
);
let size = Vec2::new(
image.texture_descriptor.size.width as f32,
image.texture_descriptor.size.height as f32,

View file

@ -5,13 +5,17 @@ use std::io::Read;
use basis_universal::{
DecodeFlags, LowLevelUastcTranscoder, SliceParametersUastc, TranscoderBlockFormat,
};
use bevy_utils::default;
#[cfg(any(feature = "flate2", feature = "ruzstd"))]
use ktx2::SupercompressionScheme;
use ktx2::{
BasicDataFormatDescriptor, ChannelTypeQualifiers, ColorModel, DataFormatDescriptorHeader,
Header, SampleInformation,
};
use wgpu::{AstcBlock, AstcChannel, Extent3d, TextureDimension, TextureFormat};
use wgpu::{
AstcBlock, AstcChannel, Extent3d, TextureDimension, TextureFormat, TextureViewDescriptor,
TextureViewDimension,
};
use super::{CompressedImageFormats, DataFormat, Image, TextureError, TranscodeFormat};
@ -28,10 +32,14 @@ pub fn ktx2_buffer_to_image(
pixel_height: height,
pixel_depth: depth,
layer_count,
face_count,
level_count,
supercompression_scheme,
..
} = ktx2.header();
let layer_count = layer_count.max(1);
let face_count = face_count.max(1);
let depth = depth.max(1);
// Handle supercompression
let mut levels = Vec::new();
@ -80,25 +88,25 @@ pub fn ktx2_buffer_to_image(
let texture_format = ktx2_get_texture_format(&ktx2, is_srgb).or_else(|error| match error {
// Transcode if needed and supported
TextureError::FormatRequiresTranscodingError(transcode_format) => {
let mut transcoded = Vec::new();
let mut transcoded = vec![Vec::default(); levels.len()];
let texture_format = match transcode_format {
TranscodeFormat::Rgb8 => {
let (mut original_width, mut original_height) = (width, height);
let mut rgba = vec![255u8; width as usize * height as usize * 4];
for (level, level_data) in levels.iter().enumerate() {
let n_pixels = (width as usize >> level).max(1) * (height as usize >> level).max(1);
for level_data in &levels {
let n_pixels = (original_width * original_height) as usize;
let mut rgba = vec![255u8; n_pixels * 4];
let mut offset = 0;
for _layer in 0..layer_count {
for _face in 0..face_count {
for i in 0..n_pixels {
rgba[i * 4] = level_data[i * 3];
rgba[i * 4 + 1] = level_data[i * 3 + 1];
rgba[i * 4 + 2] = level_data[i * 3 + 2];
rgba[i * 4] = level_data[offset];
rgba[i * 4 + 1] = level_data[offset + 1];
rgba[i * 4 + 2] = level_data[offset + 2];
offset += 3;
}
transcoded[level].extend_from_slice(&rgba[0..n_pixels]);
}
}
transcoded.push(rgba);
// Next mip dimensions are half the current, minimum 1x1
original_width = (original_width / 2).max(1);
original_height = (original_height / 2).max(1);
}
if is_srgb {
@ -111,41 +119,54 @@ pub fn ktx2_buffer_to_image(
TranscodeFormat::Uastc(data_format) => {
let (transcode_block_format, texture_format) =
get_transcoded_formats(supported_compressed_formats, data_format, is_srgb);
let (mut original_width, mut original_height) = (width, height);
let (block_width_pixels, block_height_pixels) = (4, 4);
let texture_format_info = texture_format.describe();
let (block_width_pixels, block_height_pixels) = (
texture_format_info.block_dimensions.0 as u32,
texture_format_info.block_dimensions.1 as u32,
);
let block_bytes = texture_format_info.block_size as u32;
let transcoder = LowLevelUastcTranscoder::new();
for (level, level_data) in levels.iter().enumerate() {
let slice_parameters = SliceParametersUastc {
num_blocks_x: ((original_width + block_width_pixels - 1)
/ block_width_pixels)
.max(1),
num_blocks_y: ((original_height + block_height_pixels - 1)
/ block_height_pixels)
.max(1),
has_alpha: false,
original_width,
original_height,
};
let (level_width, level_height) = (
(width >> level as u32).max(1),
(height >> level as u32).max(1),
);
let (num_blocks_x, num_blocks_y) = (
((level_width + block_width_pixels - 1) / block_width_pixels) .max(1),
((level_height + block_height_pixels - 1) / block_height_pixels) .max(1),
);
let level_bytes = (num_blocks_x * num_blocks_y * block_bytes) as usize;
let mut offset = 0;
for _layer in 0..layer_count {
for _face in 0..face_count {
// NOTE: SliceParametersUastc does not implement Clone nor Copy so
// it has to be created per use
let slice_parameters = SliceParametersUastc {
num_blocks_x,
num_blocks_y,
has_alpha: false,
original_width: level_width,
original_height: level_height,
};
transcoder
.transcode_slice(
level_data,
&level_data[offset..(offset + level_bytes)],
slice_parameters,
DecodeFlags::HIGH_QUALITY,
transcode_block_format,
)
.map(|transcoded_level| transcoded.push(transcoded_level))
.map(|mut transcoded_level| transcoded[level].append(&mut transcoded_level))
.map_err(|error| {
TextureError::SuperDecompressionError(format!(
"Failed to transcode mip level {} from UASTC to {:?}: {:?}",
level, transcode_block_format, error
))
})?;
// Next mip dimensions are half the current, minimum 1x1
original_width = (original_width / 2).max(1);
original_height = (original_height / 2).max(1);
offset += level_bytes;
}
}
}
texture_format
}
@ -178,16 +199,52 @@ pub fn ktx2_buffer_to_image(
)));
}
// Reorder data from KTX2 MipXLayerYFaceZ to wgpu LayerYFaceZMipX
let texture_format_info = texture_format.describe();
let (block_width_pixels, block_height_pixels) = (
texture_format_info.block_dimensions.0 as usize,
texture_format_info.block_dimensions.1 as usize,
);
let block_bytes = texture_format_info.block_size as usize;
let mut wgpu_data = vec![Vec::default(); (layer_count * face_count) as usize];
for (level, level_data) in levels.iter().enumerate() {
let (level_width, level_height) = (
(width as usize >> level).max(1),
(height as usize >> level).max(1),
);
let (num_blocks_x, num_blocks_y) = (
((level_width + block_width_pixels - 1) / block_width_pixels).max(1),
((level_height + block_height_pixels - 1) / block_height_pixels).max(1),
);
let level_bytes = num_blocks_x * num_blocks_y * block_bytes;
let mut index = 0;
for _layer in 0..layer_count {
for _face in 0..face_count {
let offset = index * level_bytes;
wgpu_data[index].extend_from_slice(&level_data[offset..(offset + level_bytes)]);
index += 1;
}
}
}
// Assign the data and fill in the rest of the metadata now the possible
// error cases have been handled
let mut image = Image::default();
image.texture_descriptor.format = texture_format;
image.data = levels.into_iter().flatten().collect::<Vec<_>>();
image.data = wgpu_data.into_iter().flatten().collect::<Vec<_>>();
image.texture_descriptor.size = Extent3d {
width,
height,
depth_or_array_layers: if layer_count > 1 { layer_count } else { depth }.max(1),
};
depth_or_array_layers: if layer_count > 1 || face_count > 1 {
layer_count * face_count
} else {
depth
}
.max(1),
}
.physical_size(texture_format);
image.texture_descriptor.mip_level_count = level_count;
image.texture_descriptor.dimension = if depth > 1 {
TextureDimension::D3
@ -196,6 +253,24 @@ pub fn ktx2_buffer_to_image(
} else {
TextureDimension::D1
};
let mut dimension = None;
if face_count == 6 {
dimension = Some(if layer_count > 1 {
TextureViewDimension::CubeArray
} else {
TextureViewDimension::Cube
});
} else if layer_count > 1 {
dimension = Some(TextureViewDimension::D2Array);
} else if depth > 1 {
dimension = Some(TextureViewDimension::D3);
}
if dimension.is_some() {
image.texture_view_descriptor = Some(TextureViewDescriptor {
dimension,
..default()
});
}
Ok(image)
}

424
examples/3d/skybox.rs Normal file
View file

@ -0,0 +1,424 @@
//! Load a cubemap texture onto a cube like a skybox and cycle through different compressed texture formats
use bevy::{
asset::LoadState,
input::mouse::MouseMotion,
pbr::{MaterialPipeline, MaterialPipelineKey},
prelude::*,
reflect::TypeUuid,
render::{
mesh::MeshVertexBufferLayout,
render_asset::RenderAssets,
render_resource::{
AsBindGroup, AsBindGroupError, BindGroupDescriptor, BindGroupEntry, BindGroupLayout,
BindGroupLayoutDescriptor, BindGroupLayoutEntry, BindingResource, BindingType,
OwnedBindingResource, PreparedBindGroup, RenderPipelineDescriptor, SamplerBindingType,
ShaderRef, ShaderStages, SpecializedMeshPipelineError, TextureSampleType,
TextureViewDescriptor, TextureViewDimension,
},
renderer::RenderDevice,
texture::{CompressedImageFormats, FallbackImage},
},
};
const CUBEMAPS: &[(&str, CompressedImageFormats)] = &[
(
"textures/Ryfjallet_cubemap.png",
CompressedImageFormats::NONE,
),
(
"textures/Ryfjallet_cubemap_astc4x4.ktx2",
CompressedImageFormats::ASTC_LDR,
),
(
"textures/Ryfjallet_cubemap_bc7.ktx2",
CompressedImageFormats::BC,
),
(
"textures/Ryfjallet_cubemap_etc2.ktx2",
CompressedImageFormats::ETC2,
),
];
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_plugin(MaterialPlugin::<CubemapMaterial>::default())
.add_startup_system(setup)
.add_system(cycle_cubemap_asset)
.add_system(asset_loaded.after(cycle_cubemap_asset))
.add_system(camera_controller)
.add_system(animate_light_direction)
.run();
}
struct Cubemap {
is_loaded: bool,
index: usize,
image_handle: Handle<Image>,
}
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
// directional 'sun' light
commands.spawn_bundle(DirectionalLightBundle {
directional_light: DirectionalLight {
illuminance: 32000.0,
..default()
},
transform: Transform {
translation: Vec3::new(0.0, 2.0, 0.0),
rotation: Quat::from_rotation_x(-std::f32::consts::FRAC_PI_4),
..default()
},
..default()
});
let skybox_handle = asset_server.load(CUBEMAPS[0].0);
// camera
commands
.spawn_bundle(Camera3dBundle {
transform: Transform::from_xyz(0.0, 0.0, 8.0).looking_at(Vec3::default(), Vec3::Y),
..default()
})
.insert(CameraController::default());
// ambient light
// NOTE: The ambient light is used to scale how bright the environment map is so with a bright
// environment map, use an appropriate colour and brightness to match
commands.insert_resource(AmbientLight {
color: Color::rgb_u8(210, 220, 240),
brightness: 1.0,
});
commands.insert_resource(Cubemap {
is_loaded: false,
index: 0,
image_handle: skybox_handle,
});
}
const CUBEMAP_SWAP_DELAY: f64 = 3.0;
fn cycle_cubemap_asset(
time: Res<Time>,
mut next_swap: Local<f64>,
mut cubemap: ResMut<Cubemap>,
asset_server: Res<AssetServer>,
render_device: Res<RenderDevice>,
) {
let now = time.seconds_since_startup();
if *next_swap == 0.0 {
*next_swap = now + CUBEMAP_SWAP_DELAY;
return;
} else if now < *next_swap {
return;
}
*next_swap += CUBEMAP_SWAP_DELAY;
let supported_compressed_formats =
CompressedImageFormats::from_features(render_device.features());
let mut new_index = cubemap.index;
for _ in 0..CUBEMAPS.len() {
new_index = (new_index + 1) % CUBEMAPS.len();
if supported_compressed_formats.contains(CUBEMAPS[new_index].1) {
break;
}
info!("Skipping unsupported format: {:?}", CUBEMAPS[new_index]);
}
// Skip swapping to the same texture. Useful for when ktx2, zstd, or compressed texture support
// is missing
if new_index == cubemap.index {
return;
}
cubemap.index = new_index;
cubemap.image_handle = asset_server.load(CUBEMAPS[cubemap.index].0);
cubemap.is_loaded = false;
}
fn asset_loaded(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut images: ResMut<Assets<Image>>,
mut meshes: ResMut<Assets<Mesh>>,
mut cubemap_materials: ResMut<Assets<CubemapMaterial>>,
mut cubemap: ResMut<Cubemap>,
cubes: Query<&Handle<CubemapMaterial>>,
) {
if !cubemap.is_loaded
&& asset_server.get_load_state(cubemap.image_handle.clone_weak()) == LoadState::Loaded
{
info!("Swapping to {}...", CUBEMAPS[cubemap.index].0);
let mut image = images.get_mut(&cubemap.image_handle).unwrap();
// NOTE: PNGs do not have any metadata that could indicate they contain a cubemap texture,
// so they appear as one texture. The following code reconfigures the texture as necessary.
if image.texture_descriptor.array_layer_count() == 1 {
image.reinterpret_stacked_2d_as_array(
image.texture_descriptor.size.height / image.texture_descriptor.size.width,
);
image.texture_view_descriptor = Some(TextureViewDescriptor {
dimension: Some(TextureViewDimension::Cube),
..default()
});
}
// spawn cube
let mut updated = false;
for handle in cubes.iter() {
if let Some(material) = cubemap_materials.get_mut(handle) {
updated = true;
material.base_color_texture = Some(cubemap.image_handle.clone_weak());
}
}
if !updated {
commands.spawn_bundle(MaterialMeshBundle::<CubemapMaterial> {
mesh: meshes.add(Mesh::from(shape::Cube { size: 10000.0 })),
material: cubemap_materials.add(CubemapMaterial {
base_color_texture: Some(cubemap.image_handle.clone_weak()),
}),
..default()
});
}
cubemap.is_loaded = true;
}
}
fn animate_light_direction(
time: Res<Time>,
mut query: Query<&mut Transform, With<DirectionalLight>>,
) {
for mut transform in &mut query {
transform.rotate_y(time.delta_seconds() * 0.5);
}
}
#[derive(Debug, Clone, TypeUuid)]
#[uuid = "9509a0f8-3c05-48ee-a13e-a93226c7f488"]
struct CubemapMaterial {
base_color_texture: Option<Handle<Image>>,
}
impl Material for CubemapMaterial {
fn fragment_shader() -> ShaderRef {
"shaders/cubemap_unlit.wgsl".into()
}
fn specialize(
_pipeline: &MaterialPipeline<Self>,
descriptor: &mut RenderPipelineDescriptor,
_layout: &MeshVertexBufferLayout,
_key: MaterialPipelineKey<Self>,
) -> Result<(), SpecializedMeshPipelineError> {
descriptor.primitive.cull_mode = None;
Ok(())
}
}
impl AsBindGroup for CubemapMaterial {
type Data = ();
fn as_bind_group(
&self,
layout: &BindGroupLayout,
render_device: &RenderDevice,
images: &RenderAssets<Image>,
_fallback_image: &FallbackImage,
) -> Result<PreparedBindGroup<Self>, AsBindGroupError> {
let base_color_texture = self
.base_color_texture
.as_ref()
.ok_or(AsBindGroupError::RetryNextUpdate)?;
let image = images
.get(base_color_texture)
.ok_or(AsBindGroupError::RetryNextUpdate)?;
let bind_group = render_device.create_bind_group(&BindGroupDescriptor {
entries: &[
BindGroupEntry {
binding: 0,
resource: BindingResource::TextureView(&image.texture_view),
},
BindGroupEntry {
binding: 1,
resource: BindingResource::Sampler(&image.sampler),
},
],
label: Some("cubemap_texture_material_bind_group"),
layout,
});
Ok(PreparedBindGroup {
bind_group,
bindings: vec![
OwnedBindingResource::TextureView(image.texture_view.clone()),
OwnedBindingResource::Sampler(image.sampler.clone()),
],
data: (),
})
}
fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout {
render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
entries: &[
// Cubemap Base Color Texture
BindGroupLayoutEntry {
binding: 0,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Texture {
multisampled: false,
sample_type: TextureSampleType::Float { filterable: true },
view_dimension: TextureViewDimension::Cube,
},
count: None,
},
// Cubemap Base Color Texture Sampler
BindGroupLayoutEntry {
binding: 1,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Sampler(SamplerBindingType::Filtering),
count: None,
},
],
label: None,
})
}
}
#[derive(Component)]
pub struct CameraController {
pub enabled: bool,
pub initialized: bool,
pub sensitivity: f32,
pub key_forward: KeyCode,
pub key_back: KeyCode,
pub key_left: KeyCode,
pub key_right: KeyCode,
pub key_up: KeyCode,
pub key_down: KeyCode,
pub key_run: KeyCode,
pub mouse_key_enable_mouse: MouseButton,
pub keyboard_key_enable_mouse: KeyCode,
pub walk_speed: f32,
pub run_speed: f32,
pub friction: f32,
pub pitch: f32,
pub yaw: f32,
pub velocity: Vec3,
}
impl Default for CameraController {
fn default() -> Self {
Self {
enabled: true,
initialized: false,
sensitivity: 0.5,
key_forward: KeyCode::W,
key_back: KeyCode::S,
key_left: KeyCode::A,
key_right: KeyCode::D,
key_up: KeyCode::E,
key_down: KeyCode::Q,
key_run: KeyCode::LShift,
mouse_key_enable_mouse: MouseButton::Left,
keyboard_key_enable_mouse: KeyCode::M,
walk_speed: 2.0,
run_speed: 6.0,
friction: 0.5,
pitch: 0.0,
yaw: 0.0,
velocity: Vec3::ZERO,
}
}
}
pub fn camera_controller(
time: Res<Time>,
mut mouse_events: EventReader<MouseMotion>,
mouse_button_input: Res<Input<MouseButton>>,
key_input: Res<Input<KeyCode>>,
mut move_toggled: Local<bool>,
mut query: Query<(&mut Transform, &mut CameraController), With<Camera>>,
) {
let dt = time.delta_seconds();
if let Ok((mut transform, mut options)) = query.get_single_mut() {
if !options.initialized {
let (yaw, pitch, _roll) = transform.rotation.to_euler(EulerRot::YXZ);
options.yaw = yaw;
options.pitch = pitch;
options.initialized = true;
}
if !options.enabled {
return;
}
// Handle key input
let mut axis_input = Vec3::ZERO;
if key_input.pressed(options.key_forward) {
axis_input.z += 1.0;
}
if key_input.pressed(options.key_back) {
axis_input.z -= 1.0;
}
if key_input.pressed(options.key_right) {
axis_input.x += 1.0;
}
if key_input.pressed(options.key_left) {
axis_input.x -= 1.0;
}
if key_input.pressed(options.key_up) {
axis_input.y += 1.0;
}
if key_input.pressed(options.key_down) {
axis_input.y -= 1.0;
}
if key_input.just_pressed(options.keyboard_key_enable_mouse) {
*move_toggled = !*move_toggled;
}
// Apply movement update
if axis_input != Vec3::ZERO {
let max_speed = if key_input.pressed(options.key_run) {
options.run_speed
} else {
options.walk_speed
};
options.velocity = axis_input.normalize() * max_speed;
} else {
let friction = options.friction.clamp(0.0, 1.0);
options.velocity *= 1.0 - friction;
if options.velocity.length_squared() < 1e-6 {
options.velocity = Vec3::ZERO;
}
}
let forward = transform.forward();
let right = transform.right();
transform.translation += options.velocity.x * dt * right
+ options.velocity.y * dt * Vec3::Y
+ options.velocity.z * dt * forward;
// Handle mouse input
let mut mouse_delta = Vec2::ZERO;
if mouse_button_input.pressed(options.mouse_key_enable_mouse) || *move_toggled {
for mouse_event in mouse_events.iter() {
mouse_delta += mouse_event.delta;
}
}
if mouse_delta != Vec2::ZERO {
// Apply look update
let (pitch, yaw) = (
(options.pitch - mouse_delta.y * 0.5 * options.sensitivity * dt).clamp(
-0.99 * std::f32::consts::FRAC_PI_2,
0.99 * std::f32::consts::FRAC_PI_2,
),
options.yaw - mouse_delta.x * options.sensitivity * dt,
);
transform.rotation = Quat::from_euler(EulerRot::ZYX, 0.0, yaw, pitch);
options.pitch = pitch;
options.yaw = yaw;
}
}
}

View file

@ -116,6 +116,7 @@ Example | Description
[Render to Texture](../examples/3d/render_to_texture.rs) | Shows how to render to a texture, useful for mirrors, UI, or exporting images
[Shadow Biases](../examples/3d/shadow_biases.rs) | Demonstrates how shadow biases affect shadows in a 3d scene
[Shadow Caster and Receiver](../examples/3d/shadow_caster_receiver.rs) | Demonstrates how to prevent meshes from casting/receiving shadows in a 3d scene
[Skybox](../examples/3d/skybox.rs) | Load a cubemap texture onto a cube like a skybox and cycle through different compressed texture formats.
[Spherical Area Lights](../examples/3d/spherical_area_lights.rs) | Demonstrates how point light radius values affect light behavior
[Split Screen](../examples/3d/split_screen.rs) | Demonstrates how to render two cameras to the same window to accomplish "split screen"
[Spotlight](../examples/3d/spotlight.rs) | Illustrates spot lights